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ABSTRACT
In network performance tomography, characteristics of the network
interior are inferred by correlating end-to-end measurements. In
much previous work, the presence of correlations must be arranged
at the packet level, e.g., using multicast probes or unicast emula-
tions of them. This carries costs in deployment and limits cov-
erage. However, it is difficult to determine performance charac-
teristics without correlations. Some recent work has had success
in reaching a lesser goal—identifying the lossiest network links—
using only uncorrelated end-to-end measurements. In this paper we
abstract the required properties of network performance, and show
that they are independent of the particular inference algorithm used.
This observation allows us to design a quick and simple inference
algorithm that identifies the worst performing link in a badly per-
forming subnetwork, with high likelihood when bad links are un-
common. We give several examples of perforance models and that
exhibit the required properties. The performance of the algorithm
is analyzed explicitly.

Categories and Subject Descriptors
C.2.3 [Computer–Communications Networks]: Network Opera-
tions—Network monitoring; C.4 [Performance of Systems]; G.3
[Probability and Statistics]

General Terms
Measurement, Performance, Theory

Keywords
Inference, Estimation, Performance, Networks, Correlation

1. INTRODUCTION

1.1 Motivation
Network performance tomography is the science of inferring per-

formance characteristics of the network interior by correlating sets
of end-to-end measurements. Recently, several methods have been
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proposed to infer link characteristics (including packet loss and de-
lay), and the underlying network topology. Initial proposals ex-
ploited the inherent correlations between copies of a multicast packet
seen at different endpoints; see [1] for a review. Subsequent work
emulated this approach using clusters of diversely addressed uni-
cast packets; see [3].

A key advantage of tomographic methods is that they require no
participation from network elements other than the usual forward-
ing of packets. This distinguishes them from well-known tools such
as traceroute and ping, that require ICMP responses to function. In
some networks, ICMP response has been restricted by administra-
tors, presumably to prevent probing from external sources. Another
feature of tomography is that probing and the recovery of probe
data may be embedded within transport protocols, thus co-opting
suitably enabled hosts to form impromptu measurement infrastruc-
tures; see [2] and [4].

Several challenges exist in bringing these methods to widespread
fruition. Multicast is not widely deployed. For methods based on
unicast probing, there are development and administrative costs as-
sociated with deploying appropriate probing and data collection
software. This motivates reducing such costs by developing in-
ference methods that can work with readily available end-to-end
measurements.

Recent work in this direction has been performed by Padman-
abhan, Qiu and Wang [6]. They propose to use statistics gathered
from (near a) web server about loss on the end-to-end paths from
the server to the client. The loss rates are determined by observ-
ing TCP retransmissions. In distinction with the work mentioned
above, this approach does not assume or attempt to exploit any cor-
relations in the network experience of packets destined for different
clients. Packets are only assumed to have the same probability of
being lost on traversal of a given link. The set of server-to-client
paths forms a tree. The aim is to use the end-to-end data to infer
the loss rates on the logical links joining the branch points of the
tree, at least with sufficient accuracy to identify the lossiest links.

A notable feature of the model considered in [6] is that its pa-
rameters (the loss rates on the logical links) arenot statistically
identifiable from the data (the server-to-client loss rates), mean-
ing that there exist different sets of parameters that give rise to the
same statistical distribution of data. Consider the two leaf tree of
Figure 1(left), where the transmission rate on the link terminating
at nodek is φk (thus1 − φk is the corresponding loss rate). The
transmission probabilities from the server at node0 to the clients
at nodes2 and3 are the productsp2 = φ1φ2 andp3 = φ1φ3 re-
spectively. (The transmission probability for a path is the product
of the transmission probabilities for its links). Thus the server-to-
client transmission probabilities are the same when the link prob-
abilities are adjusted as in Figure 1(right), for any multiplicative
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Figure 1: ABSENCE OF I DENTIFIABILITY FROM UNCORRE-
LATED M EASUREMENTS: trees have different link transmis-
sion rates but identical end-to-end transmission rates.

factor x betweenmax{φ2, φ3} and1/φ1. (This condition yields
link probabilities less than or equal to1). Another way to view
this is that the model has three independent parameters (the link
transmission probabilitiesφ1, φ2 andφ3) while the data depends
on only two quantities (the end-to-end transmission probabilities
p2 andp3). We cannot uniquely determine theφi from the data.

Despite the fact that the model is not statistically identifiable,
some methods proposed in [6] are quite successful in identifying
the lossiest links, both in a class of model networks (particularly
when lossy links are rare), and in real topologies where the lossiest
links tend to be at the clients. (Although the most accurate meth-
ods are computationally very intensive). If we can understand the
structural reasons why this is possible, we can use this understand-
ing to develop classes of quick and simple estimators for the worst
performing links for a range of performance characteristics. This
will be the focus of the present paper.

1.2 Contribution and Summary
The key to understanding how the worst links can be found in

practice rests on a structural assumption about the nature of link
performance. Suppose we can classify links as “good” or “bad”,
with performance measures sufficiently separated. Then the per-
formance experienced along a network path will be bad only if one
of its constituent links is bad. The separation between good and bad
performance means that a bad path can not arise through a combi-
nation of two or more “partially bad” links.

Moreover, if link badness is sufficiently uncommon, then when
bad performance is observed on two intersecting end-to-end paths,
the overwhelmingly most likely way for this to have occurred is if
the common path portion contains a bad link. In this way, we can
identity such bad links with high probability.

The contributions of this paper are as follows:

(a) using a set of simple point-to-point performance measures, we
show that the worst performing links in a tree can, with high likeli-
hood, be successfully identified, even though the underlying statis-
tical model is not identifiable.

(b) we describe examples of such performance measures, and show
that the network models of [6] fall (or almost fall) into the class of
models that admit this approach.

(c) we describe a quick and simple algorithm—the smallest consis-
tent failure set (SCFS) rule—for identifying, with high likelihood,
the worst performing links. In doing so, we take advantage of the
fact that the ability to perform such identification stems from struc-
tural properties of the underlying statistical model, rather than be-
ing dependent on the choice of inference algorithm.

(d) the SCFS algorithm is sufficiently simple that we can analyze its
performanceanalytically in model networks, rather than requiring
model simulations. Evaluation of the performance under perturba-
tions from the model assumptions are currently under study: we
hope to report these results in an extended paper.

The remainder of the paper is as follows. Section 2 defines the
notion of separability for performance measures, and argues that
it is satisfied both by performance models treated in the literature,
and by some classes of experimental network performance mea-
surements. The simple tomographic inference rule is defined to
identify likely bad performing links in tree networks. Section 3 an-
alyzes the performance of the inference rule under a network per-
formance model under which bad links are distributed at random.
We discuss the scaling behavior of the performance for deep trees,
and draw some comparisons with the the findings of [6]. We con-
clude in Section 4 with a discussion of the work ongoing to bring
this research to completion. The proofs of all theorems are omitted.

2. NETWORK PERFORMANCE MODEL
We start in Section 2.1 by recording our terminology for trees.

Section 2.2 formalizes the separation of links into good and bad
subsets, and Section 2.3 describes some examples. Section 2.4 de-
scribes the inference rule.

2.1 Tree Model and Terminology
The network topology is represented as a directed treeT =

(V, L) comprising a set of nodesV joined by links inL. A packet
source (e.g. a server) is located at the root node0, while a set of
destinations (e.g. clients) are located at the leaf nodesR. The in-
terior nodes of the tree represent the branch points of the routing
tree from the source to the destinations, and the linksL are the log-
ical links that link these branch points. We say nodej is the parent
of nodek if (j, k) ∈ L, and writej = f(k). Other ancestors of
k are defined byfn(k) = f(fn−1(k)) with f1 = f . We write
j ≺ k if j is a descendant ofk, i.e., if k = fm(j) for somem.
The set of children of nodek is d(k) = {j ∈ V : (k, j) ∈ L}.
We sometimes writeU = V \ {0}. We will often refer to the link
terminating at nodek as “link k”. The root node0 is assumed to
have a single child, denoted by1. If, not the tree can be disjoined
into subtrees with this property.

2.2 Link Performance and Separability
Our performance model is as follows. During some measure-

ment period, the source dispatches a set of packets to each desti-
nation. On traversing linkk, each packet is subject to a perfor-
mance degradation (e.g. loss or delay) according to a distribution
specified by a parameterφk. If the source-destination path com-
prises linksk1, . . . , km, the performance degradation along the
path follows a composite distribution described by the parameters
φ = φk1 , . . . , φkm .

Let ψ be the expected value of a statistic computed from link or
path performance distributions; writeψ(φk) andψ(φk1 , . . . , φkm)
respectively. For each link or path, we partition the set of possi-
ble ψ values into two subsets that we we call “good” and “bad”.
Likewise, we call the link, or its parameterφk bad, iff the expected
statisticsψ(φk) is bad, and we call the pathk1, . . . , km bad iff
ψ(φk1 , . . . , φkm) is bad. The key property that captures the ability
to detect the presence of badly performing links from end to end
measurements is as follows:

• The partitions are calledseparablewhen a path is bad if and
only if at least one of its constituent links is bad.



• The partitions are calledweakly separablewhen a path being
bad implies at least one of its constituent links is bad.

We use the word “separable” because if the good and bad link pa-
rameter sets are too close together, it will not be possible to dis-
tinguish between them in the composite path measurements. Weak
separability means that paths with all good links are correctly iden-
tified, but some bad links may go undetected.

We can always arrange for weak separability by defining the
set of good paths to be those with expected statisticψ in the set
Ψgood = {ψ(φk1 , . . . , φkm) | all φi good}. The extent to which
this is useful then depends on the false positive rate for good links,
i.e. the probability that a path withψ ∈ Ψgood does, in fact, contain
a bad link. We now illustrate this framework with some examples.

2.3 Examples of Separable Performance

Connectivity. If a link or a path is good, it transmits all packets; if
bad, it transmits none. Thus the path is bad iff at least one link of
the path is bad.

High-Low Loss Model. Packets traverse linkk independently with
probabilityφk. The ranges of transmission probabilities for good
and bad links are separated. Good linksk have transmission rate
φk > x; bad links have transmission rateψ = φk < y, with
y < x` where` is the depth of the tree (i.e. maximum hop count
from root to leaf). For a path traversing links1, . . . , m we take
ψ =

Qm
i=1 φki , i.e., the path transmission rate.

The minimum transmission rate on a path containing no bad link
is x`, while the maximum transmission rate on other paths isy.
Picking anyz betweeny andx`, we call a path good if its trans-
mission rate exceedsz, and bad otherwise. Then a path is bad if
and only if it contains at least one bad link.

In the modelLM1 of [6], good links have loss rates1 − φk

uniformly distributed between0% and1%; bad links have loss rates
uniformly distributed between5% and10%. Taking the threshold
between good and bad path transmission rates as0.95, this model
is separable if the tree depth does not exceed5.

In the modelLM2 the bad links have loss uniformly distributed
between1% and 100%. In this case the ranges of transmission
probabilities for good and bad links are contiguous. Nevertheless,
if we chose0.99` to be the threshold transmission rate separating
good and bad paths of̀hops, then the partition is weakly sepa-
rable, i.e., all paths containing only good links are designated as
good. The chance for a path containing at least one bad link to
be designated good is no more than1 − 0.99`−1, e.g., about a 4%
chance for̀ = 5. Thus the paths containing bad links can still be
identified with high probability.

General Additive High-Low Model. The above model type gener-
alizes to a class of models in which link performance is indepen-
dent, and the statisticφ is any characteristic that is additive over
links: ψ(φk1 , . . . , φkm) = ψ(φk1) + · · · + ψ(φkm). The loss
model above falls into this class if we take asφ, instead of the
transmission probability, its logarithm. Other examples of additive
statistics are delay mean and variance.

Delay Spike Model. Measurement of network round trip times (RTT)
have shown the presence of “delay spikes”, namely intervals of
highly elevated round trip times; see [8]. To get a rough idea of
what is observed, in one data set, delay spikes of median delay
16.9 standard deviations above the mean RTT had median duration
ds = 150ms. The spike episodes were found to be well modeled

1. input: TopologyT ; End-to-end measurements{Xk}k∈R;
2. Y0 = 1;
3. W = ∅;
4. recurse(1);
5. output: W ;
6.
7. subroutine recurse(k) {
8. if (k ∈ R) {Yk = Xk};
9. else{
10. Yk = maxj∈d(k) Yj ;
12. foreach(j ∈ d(k)){
13. if ((Yj == 0) & (Yk == 1)){
14. W = W ∪ {j};
15. }
16. }
17. }

Figure 2: Recursive Implementation of SCFS rule. Recall1
denotes the single child node of the root node0.

by a Poisson process, with typical mean interarrival timeτs of the
order of10s to a few hundreds of seconds.

We assume that for a given application, delay spike beyond to a
certain levelz are not tolerable. Paths with (some statistic of) the
spike delay greater thanz will be designated as bad.

We model of the occurrence of delay spikes as follows. Packets
are potentially subject to delay spikes on each link, although links
may not exhibit any delay spikes at all. We assume

(A1) Delay spikes are short enough that a given packet will likely
encounter only one spike on a network path.

(A2) Spikes on a given link are assumed frequent enough that at
least one packet of the set destined to a given receiver will
encounter a delay spike on a link that exhibits them.

Under these assumptions, we choseψ as the some quantile (e.g. the
maximum) of the delay spike distribution. If a path measurement
yieldsψ > z (the threshold describes above), then according to as-
sumption (A1), a delay spike of that size was present on at least one
of the links of the path: we will call such links bad. By Assumption
(A2) this delay spike should be present on all the paths through the
bad links. Hence, the division into good and bad links and paths is
expected to be separable.

We show that the delay spike processes observed in [8] are con-
sistent with assumptions (A1) and (A2). We assume the numbers
ds and τs characterize the delay spikes of a single link. (In our
model, the delays are one-way, rather than RTTs).

First, (A1). The probabilityq for a packet to encounter more
than one delay spike on a path comprisingL hops is about1− (1−
ds/τs)

` − `(1− ds/τs)
`−1ds/τs. This probability increases with

path length. Taking̀ = 30, larger than most paths today (see [5])
andds = 150ms, thenq ranges from0.02 for τs = 20s, down to
3 × 10−5 for τs = 600s. The chance of encountering more than
one spike is very small for these values.

Now, (A2). Consider measurement over an interval of duration
T with probe packets at frequencyr. The average number of spikes
encountered by the probes is aboutn = dsrT/τs, while the prob-
ability that at least one probe encounters at least one spike is about
p = (1− (1−ds/τs)

rT . Consider a 10KByte/s probe stream com-
prising one 200 byte packet every 20ms, equivalent to a compressed
audio transfer; thusr = 50. Assuming a measurement period of
T = 600s, then(n, p) = (225, 1) for τs = 20s, and(7.5, 0.9995)
whenτs = 600s. Hence Assumption (A2) is reasonable here.
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Figure 3: OPERATION OF THE SCFS RULE : Yk shown at each
node k.. Left: status of link a, b and subtree descended from
them are uncertain because paths to these subtrees are bad.
Right: SCFS attributes badness to common path (linksa and
b) and designated remaining nodes as good.

2.4 Smallest Consistent Failure Set Rule
The smallest consistent failure set (SCFS) rule designates as bad

only those links nearest the root that are consistent with the ob-
served pattern of bad paths.

Define an indicator variableZk to be1 if link k is good, and0
if it is bad; for the root node0 setZ0 = 1 by convention. For
each path from the root0 to the nodek, let Xk = 1 if the path is
good, and0 if it is bad. Under the separability assumption, we can
write Xk =

Q
jºk Zj , i.e. the product of the link indicatorsXj for

ancestorsj of k (includingk itself).
Let Rk denote the set of leaf nodes inR that are descended from

k. WriteYk = maxj∈Rk Xj for k ∈ U and setY0 = 1 by conven-
tion. Yk = 1 iff at least one source-destination path routed through
k is good. Clearly, ifYk = 1, then the path segment from0 to
k is composed entirely of good links. IfYk = 0 but Yf(k) = 1
we call the subtree rooted atk a maximal bad subtree. A cautious
approach would be to declare as bad linkk and all links in the sub-
tree. In practice, this is probably not very useful, due to the cost of
inspecting all the links for badness.

The SCFS rule takes the other extreme, by designating as bad,
one link in the subtree that is very likely to be amongst the set of
bad links, namely the linkk. For suppose on the other handk is
not bad. Then all the path segments fromk to the destinations in
R(k) must be bad. This is of course, possible, which is why we
cannot pin down the bad links with certainty. However, if the rate
of occurrence of bad links is sufficiently small, then, as we shall
see, it is far more likely that the linkk is bad. Anticipating this,
we form an inference rule which designates linkk to be bad and
all its descendant links good. Put another way, we estimateZk bybZk = 0, while for all linksj with j ¹ k we estimateZj by bZj = 1.

Smallest Common Failure Set (SCFS) Rule

• Inputs: TreeT , End-to-end measurements{Xk}k∈R;

• W ′ = {k ∈ U | maxj∈Rk Xk = 0};
• W = {k ∈ W ′ | f(k) /∈ W ′};
• Output:W ;

In algorithmic terms, the setW can be calculated on a recursion
through the tree; see Figure 2. The setW contains those linksk for
which nodek is the root of a maximal bad subtree.

The action of the SCFS rule is illustrated in Figure 3. On the left,
given the data{Xk}k∈R, we display the valuesYk for each nodek.
NoteYk = Xk for leaf nodesk. We can only infer with certainty
that the paths from the root0 to leaf nodesk with Yk = 1 nodes are
good. The status of the linksa andb, and the subtrees descended
from them, is uncertain. The right figure shows the action of the
SCFS rule. The linksa andb are designated as bad, while all links
in subtrees descended from these links are designated good.

A special case is whenk is a bad leaf link whose parent has a
good path routed through it. In this case,k can ambiguously be
declared bad since the maximal bad subtree descended throughk
has one member, namely,k itself.

3. ANALYSIS OF SCFS PERFORMANCE
The SCFS rule codifies a parsimonious approach that might well

be taken without the benefit of analysis, namely, to attribute a pat-
tern to bad paths as being due to badness in the smallest possible
set of interior links. This section analyzes the performance of the
SCFS algorithm under a statistical model for the distribution of bad
links in the network. Following [6] we assume that links are good
or bad independently. Thus theZk are independent random vari-
ables, and we denote byαk = P[Zk] the probability thatXk is
good. In the next section we analyze the performance of the infer-
ence rule under this statistical model. For compactness we will use
the notationα = 1− α in what follows.

3.1 False Positives in Identifying Bad Links
We now provide a statistical justification of the inference rule in

terms of its performance. Recall that the inference rule makes the
estimatebZk = 0 when nodek routes no good paths to its descen-
dant leaves (Yk = 0), but a path through its parent is known to be
good (Yf(k) = 1). The false positive rateFk for this decision is the
conditional probability that the link was in fact good, i.e.,

Fk = P[Zk = 1|Yk = 0, Yf(k) = 1] (1)

To compute this, note thatYf(k) = 1 ⇒ Xf(k) = 1 (if there is
a good path throughf(k), the path from0 to f(k) must be good)
andZk = 0 ⇒ Yk = 0 (if the link k is bad, all paths throughk are
bad), and theZk are independent random variables. Thus

1− Fk = P[Zk = 0|Yk = 0, Yf(k) = 1]

=
P[Zk = 0]

P[Yk = 0|Xf(k) = 1]
(2)

Now the numerator isαk. The denominator, which we denote by
δk, can be expressed through the recursion

δk = P[Yk = 0|Xf(k) = 1]

= P[Zk = 0] + P[Zk = 1]
Y

j∈d(k)

P[Yj = 0|Xk = 1]))

= αk + αk

Y
j∈d(k)

δj , (3)

with the convention that an empty product is0 for k a leaf node.
Clearly the value ofδk depends on the topology. First consider a

perfectly balance tree with branching ratior and uniformαk = α.
For this tree we can thus write

δf(k) = Dα,r(δk) := α + αδr
k (4)

As we move up the tree, the value ofδk increases towards a limit
which is a fixed point of the iteration ofDα,r:

THEOREM 1. (i) Whenαr > 1, the equationδ = Dα,r(δ)
as a unique fixed pointδ∗(α, r) in the interval(0, 1).
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Figure 4: Bounds on false positive rate for identification of bad link, as function of the fractionα of good links, for branching ratios
r = 2, 3 and 10. Note different vertical scales.

(ii) Whenαr ≤ 1, the equationδ = Dα,r(δ) exactly one fixed
point δ∗(α, r) = 1.

(iii) The sequenceδ(n+1) = Dα,r(δ
(n)) with δ(0) = α is in-

creasing.

(iv) The sequence{δ(n)} converges toδ∗(α, r).

Since{δ(n)} is increasing, we can bound the denominator in
the RHS of (2) to find an upper bound (i.e. worst case) for the false
positive rateFk. This extends to anarbitrary tree with non-uniform
fraction of bad links.

THEOREM 2. (i) In a perfectly balanced tree with branch-
ing ratio r and constantαk = α,

Fk ≤ 1− α

δ∗(α, r)
(5)

(ii) In an arbitrary tree, letαmin
k = min{αj : j ¹ k} be the

minimum of probabilitiesαj for links to be good on the sub-
tree descended fromk, and letrmin

k = min{#d(j) : j ¹
k, j /∈ R} be the minimum branching ratio in the subtree
descended fromk.

Fk ≤ 1− αk

δ∗(αmin
k , rmin

k )
(6)

The worst case lower bound is for branching ratior = 2. Here
δ∗α,2 = min{1, α/α}, and hence1−α/δ∗(α, 2) = 1−max{α, α}.
We plot1 − α/δ∗(α, r) for r = 2, 3 and10 in Figure 4. We also
plot the best case for the givenr, replacingδ∗ by δ(1), correspond-
ing to the nodek havingr leaves as children. The following obser-
vations, read from the graphs, can be established rigorously.

• The false positive rate approaches0 for largeα (i.e. small
fraction of bad links).

• Forr > 2, the curve of the false positive rate becomes flat as
α approaches1. Hence the false positive rate is insensitive
to the fraction of bad links, provided this is small.

The probability that linkk is identified as bad isPk = P[Yk =
0, Yf(k) = 1]. Let Ak =

Q
jºk αk denote the probability for the

entire path between the root0 and nodek to be good.

THEOREM 3. Pk = Af2(k)(δf(k)−δkαf(k)), exceptP1 = δ1.

The total rate of false positives is thus

F =
X
k∈U

FkPk/
X
k∈U

Pk. (7)

3.2 Coverage in Identifying Bad Links
In the previous section we saw that the linkk at the head of

a maximal bad subtree is increasingly likely to be bad when bad
links are rare. However, we did not exclude the possibility of bad
links elsewhere in the subtree. We now evaluate the performance of
the inference rule in identifying all bad links. We compute the link
coverageCk = P[Zk = 0, Yk = 0, Yf(k) = 1]: the probability
that linkk ∈ U is bad and designated as such.

THEOREM 4. Ck = Pkαk/δk

Using Mathematica [7], we have implemented symbolic compu-
tation of theδk, and henceCk. As a summary performance statis-
tic, we compute the coverageC =

P
k∈U Ck/

P
k∈U αk, i.e., the

average proportion of bad links that are correctly identified.
Let Tα(r1, . . . , rn) denote the perfectly balanced tree of depth

n with successive branching ratiosr1, . . . , rn, and uniform proba-
bility α for a link to be good. We plotC for several such topolo-
gies in Figure 5. The left figure is for trees of depth 2 but increas-
ing branching ratio. The coverage is relatively insensitive to the
branching ratio. This reflects a trade-off: on the one hand, we have
seen in Figure 4 that the probability of correct designation of a bad
link at the root of a maximal bad subtree increases with the branch-
ing ratio. On the other hand, the impact of an incorrect designation
increases with branching ratio, sinceYk = 0 but Ak = 1 requires
a higher number of bad nodes in the subtree rooted atk. An even
high number of nodes is impacted similarly when the tree depth
increases: the middle figure shows thatC decreases as the depth
increases at constant branching ratio.

3.3 Scaling Behavior For Deep Networks
If the tree depthd increases whileα remains constant, the chance

αd for a given path to be good decreases towards zero. But as net-
works grow, the links must perform better in order to maintain the
same path quality. Thus, in modeling deep networks we consider
constant path failure ratescaling: the chance for a link to be good
is α1/d, so that the chance for a path to be good remains constant.

Figure 5(right) shows the behavior ofC as the tree depth in-
creases in the constant path failure rate scaling, using depthd trees
Tα1/d(2, . . . , 2) for d = 2, 3, 4, 5. Observe that for mostα, C
is almost independent of the tree depth. It can be shown that in a
perfectly balanced tree with constant branching ratior ≥ 2 and
uniform link probabilitiesα, the slope ofC is always shallower
than1. Summarizing, the fraction of correctly identified bad links
is roughly equal to the fraction of good paths in any such topology.
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Figure 5: COVERAGE : THE PROPORTION OF CORRECTLY I DENTIFIED BAD L INKS , AS FUNCTION OF FRACTION OF GOOD LINKS .
Left: insensitivity to branching ratio. Middle: decrease with increasing tree depth. Right: insensitivity to tree depth in the constant
path failure rate scaling.

α F C C′

0.95 0.02%—0.08% 75%—82% 95%
0.9 0.09%—0.24% 55%—67% 91%
0.8 0.4%—0.9% 29%—43% 81%

Table 1: Approx. 1000 node tree. False Positive RateF , cover-
ageC, and coverageC′ under constant path failure scaling, as
function of fraction α of good links.

3.4 Comparison with Other Approaches
We would like to compare the performance of the inference rule

with the methods of [6] in identical topologies; these are random,
although only the total number of nodes and maximum branching
ratio are specified. To get a rough idea, we computed the cover-
ageC and false positive rateF on several topologies comprising
approximately 1,000 nodes with maximum branching ratio 10, and
depth between 3 and 6. These are shown in Table 1. From these
results our impression is that coverage is roughly equivalent to that
of the linear programming (LP) algorithm of [6] (somewhat better
when bad links are rare, somewhat worse when they are common),
while the false positive rate is at least as good as that of any method
considered there. In computational complexity, we expect our al-
gorithm to be less complex than LP, and far less complex than the
general most accurate method presented, Gibbs Sampling. We also
show the coverage rateC′ in the constant path failure scaling. This
is barely sensitive to topology, and approximately equal to the pro-
portion of good links.

4. DISCUSSION AND FURTHER WORK
This paper has argued that when network link performance char-

acteristics can be well separated into two categories, good and bad,
a simple inference algorithm—that attributes path failure to the
smallest set of consistent link failures—can be effective in identi-
fying candidate bad links on a tree from end-to-end measurements.
This approach is justified by the observation that when bad links are
uncommon, the two or more badly performing paths likely have a
bad link in their intersection. Moreover, the likelihood for this to
happen is relatively insensitive to changes if the fraction of (un-
common) bad links. Conversely, the false positive rate is very low
in this regime, because only those (rare) good links at the head of
maximal bad subtrees are falsely deemed bad.

On the negative side, a bad link will not be identified if there an-
other bad link between it and the root. For some applications, this

need not be regarded as a deficiency. Suppose only limited time
and/or resources are available to “repair” bad links, i.e. make them
good. Depending on context, this could be achieved by replacing
a bad component, or by rerouting traffic away from them. In re-
pairing the link at the head of a maximal bad subtree, not only was
the link likely bad, but repairing has potential benefit to the largest
number of downstream paths. Repeating the algorithm after further
measurements could then identify likely downstream bad links.

Finally, the notion of separability can also be applied to perfor-
mance measurements taken over a set of time intervals. Assume
that in each intervalt, link k is good with probabilityαk, indepen-
dently for differentk andt. (αk may depend on the interval width).
The measured data comprises the good/bad stateXk,t observed at
each receiverk in intervalt. Under the assumption of separability,
the two-state Maximum Likelihood Estimator from [1] can be used
to estimate theαk. Both this method and the work described in the
rest of the paper are to be evaluated experimentally in future work.
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