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Abstract

Consider a bu�er whose input is a superposition of L independent identical sources, and which is

served at rate sL. Recent work has shown that, under very general circumstances, the stationary tail

probabilities for the queue of un�nished work Q in the bu�er have the asymptotics P[Q > Lb] � e

�LI(b)

for large L. Here the shape function, I, is obtained from a variational expression involving the transient

log cumulant generating function of the arrival process.

In this paper, we extend this analysis to cover time-dependent asymptotics for Markov arrival pro-

cesses subject to conditioning at some instant. In applications we envisage that such conditioning would

arise due to knowledge of the queue at a coarse-grained level, for example of the number of current active

sources. We show how such partial knowledge can be used to predict future tail probabilities by use of a

time dependent, conditioned shape function. We develop some heuristics to describe the time-dependent

shape function in terms of a reduced set of quantities associated with the underlying arrivals process and

show how to calculate them for renewal arrivals and a class of on-off arrivals. This bypasses the full

variational calculation of the shape function for such models.

1 Introduction

In this paper we explore the time evolution of estimates of loss ratios in multiplexers of many superposed

Markovian sources. Speci�cally we are interested in their response to conditionings applied at an instant of

time. In practice such conditioning could arise through determination of a reduced set of state variables, for

example the number of currently active sources.

The phenomenology of the conditioned evolution of loss ratios can be anticipated from the following obser-

vation. It has been established in a large class of queues serving increasingly many sources that at a given

time, the most likely way for the queue length Q to exceed a given level b is for arrivals to build up over

the previous interval whose duration � (b) is asymptotically proportional to b for large b. (See [2, 12] for

some general results of this nature for sources obeying mixing conditions; see [15, 16] speci�cally for large

superpositions). Now suppose that the arrival process takes a time t

r

to relax back to stationarity from its

�
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conditioned state. Then the probability that the queue exceeds a level b at time u > 0 will be the same as

for the stationary queue provided that b is su�ciently small that � (b) < u� t

r

holds. For then, only arrivals

since the return to stationarity e�ect the probabilities of interest. However, for larger b, the P [Q > b] will be

determined by the arrivals prior to relaxation also. Since � (b) is asymptotically linear in b one can summarize

these observations as saying that the conditioning at time 0 can be accounted for as a change to the tail

distribution P [Q > b] which passes out to in�nity as time increases, leaving the stationary distribution in

its wake. In this paper we shall substantiate this description for Markovian arrivals processes which satisfy

appropriate mixing conditions, and provide some heuristics to describe the evolution of the tail distributions.

We illustrate the heuristics with the subclasses of renewal and on-off arrivals.

First, we introduce the framework within the asymptotics of the tail distributions of the bu�er occupations.

Consider an in�nitely bu�ered queue which processes stationary mixing arrivals. Using the theory of large

deviations it can be shown that the tail asymptotics satisfy

lim

b!1

b

�1

logP[Q > b] = ��; (1.1)

where the exponential decay rate � is calculated in terms of the arrivals process and the service rate of the

queue. This result has been proved in various degrees of generality in [6, 18, 23].

The consequent e�ective bandwidth approximation

P[Q > b] � e

��b

(1.2)

has been proposed as an estimate of the loss ratio in a bu�er of size b (See [26, 34] and references therein).

However, there is recent work, both numerical [7] and theoretical [5, 9, 31], which shows that this estimate

can be inaccurate when the arrivals are composed of superposition of L streams each with a high degree of

autocorrelation, increasingly so as L becomes large. (See also [33] for an earlier large deviation treatment

of the large L asymptotic for Markov uid sources). This is illustrated in Figure 1 for a set of simulated

loss curves for various L. These are generated at constant load in that the service rate is proportional to L.

Each source was a discrete time Markov Modulated process, in which the modulating process was a 2-state

Markov chain which generated periodic arrivals of �xed size in the one state and no arrivals in the other.

This was proposed as a model of packetized voice tra�c in [11]. The simulation curves are taken from [8].

Large deviation theory provides the explanation of this behavior. We present briey from [5]. A basic result

is that for the L-fold superposition, served at a rate proportional to L so that the o�ered load is independent

of L:

lim

L!1

L

�1

logP[Q > Lb] = �I(b) (1.3)

for some shape function I depending on the service rate and the arrival process. I is determined as follows.

Let time t take values in T = R

+

or Z

+

. Consider an L-fold superposition (possibly heterogeneous) of

arrival streams. Let A

L

t

denote the work arriving from this superposition during the interval [�t; 0). The

service rate is sL for some �xed s. De�ne the excess workload process byW

L

t

= A

L

t

�Lst, i.e., the di�erence

between the work arriving in [�t; 0) and the amount of work which would be processed during a busy period

of length t. The transient cumulant generating function (cgf, or log moment generating function) of the

workload process is de�ned by

�

L

t

(�) = (Lt)

�1

logE[e

�W

L

t

]: (1.4)

We assume
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Figure 1: Simulated loss curves for increasing L.

Hypothesis 1 (i) Limiting cgf: The limits �

t

(�) = lim

L!1

�

L

t

(�) and �(�) = lim

t!1

�

t

(�) exist as

extended real numbers for all � 2 R, the �rst limit uniform for t su�ciently large.

(ii) Stability: There exists � > 0 such that �

t

(�) < 0 for t su�ciently large.

(iii) Smoothness: �

t

and � are essentially smooth (see [29]).

Let Q denote the amount of unprocessed work at t = 0. Pathwise we have (see [4])

Q = sup

t�0

W

L

t

: (1.5)

Denote by f

�

the Legendre Transform of a real function f , i.e. f

�

(x) = sup

�

(x� � f(�)).

Proposition 1 Under Hypothesis 1 (and with the addition of a regularity condition 1(iv) of [5] when T =

R

+

) then eq. (1.3) holds with

I(b) = inf

t>0

(t�

t

)

�

(b): (1.6)

Hypothesis 2 (i) The equation �(�) = 0 has a positive solution.

(ii) � := lim

t!1

�

t

exists and is �nite, where �

t

= �t�

t

(�); and � is the positive solution of (i).

Proposition 2 Under Hypothesis 2 (and with the addition of a regularity condition 3(ii) of [5] for T = Z

+

)

then � can be expressed as

� = inf

x>0

x�

�

(1=x); and (1.7)

lim

b!1

(I(b) � �b) = �: (1.8)
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It is worth remarking that neither stationarity of the increments of the W

L

t

nor homogeneity of the arrivals

are required for Propositions 1 and 2.

The work of this paper rests upon the observation (which we shall substantiate in classes of models) that

whereas � is insensitive to conditioning of the arrivals process A at some point in time, � is not. One can

understand this latter property at an intuitive level by remarking that the mixing conditions su�cient for the

existence of � (see e.g. [13]) should mean that the e�ects of conditioning decay with t and are time-averaged

out in (1.4) as t !1. However, we see from Hypothesis 2(ii) that � is not a time-averaged quantity: so it

is plausible that the e�ects of initial conditions persist at this �ner level of the shape function.

Now the motivation for the shape function was that is should provide a correction to the e�ective bandwidth

approximation for queue-tail asymptotics. Consider a bu�er serving a large number of stationary sources;

take, for example, MMPP sources. Suppose at t = 0 we observe a deviation in the empirical distribution

of the modulating processes away from its mean. Conditioned upon this event, the large bu�er asymptotic

of the shape function I(b) � �b + � as b ! 1 will be shifted from its average value, due to the shift in

�. The rami�cations of this are that predictions of the cell-loss ratios based on the e�ective bandwidth

approximation (1.2), or its re�nements using (1.3) and (1.8), can be inaccurate in the presence an observed

large deviation in the aggregate arrival process.

What can be said about the evolution in time of such phenomena? We shall show that for �nite b a good

approximation to I(b) can be got by taking I(b) � �b+ �

�(b)

where � (b) is the time-scale over which arrivals

must build up in order for the queue to exceed the level b. This enables us to substantiate the behavior

announced at the start of this section: at times u > 0 and bu�er sizes b such that � (b) < u � t

r

where t

r

is the time required to relax to stationarity after conditioning, then �

�(b)

is the same as it would be for the

unconditioned process. The consequent approximation for loss ratios is

P[Q

L

> Lb] � e

�LI(b)

� e

�L�b

e

�L�

�(b)

: (1.9)

We envisage that the consequent of loss ratios under conditioning could be used as the basis for admission

control under two di�erent scenarios. The �rst is in circumstances where information on the modulating

state (for example, the number of sources currently active) is more readily available that detailed information

about the state of the queue. This is reasonable if modulating state information resides is more accessible

that detailed state describing the queue and short term arrival patterns. For example, the former could

reside high in the protocol stack, the latter being buried within the implementation of the queue. However,

with an appropriate model of the detailed behavior of the sources, admission control would then be based

on determining, through knowledge of the current modulating state, the bandwidth required in order to

guarantee su�ciently small loss ratios in the future. These probabilities would be determined by the condi-

tioned, time-dependent shape function determined from a tra�c model. An example of admission and other

controls based on such modulating state information is presented in [19].

In the second scenario we assume instead that we have access to detailed state of the arrivals process. Some

recent work [10, 17] has demonstrated the possibility of determining the cgf � and the consequent slope �

for real-tra�c. In principle the o�set � can be measured in the same manner and used to determine loss

probabilities via (1.3) and (1.8) in a model independent manner without identifying a speci�c conditioning

of the arrivals.
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Our work in this paper is divided into three parts. Firstly, we demonstrate the generality of the behavior

described above by establishing it in queues with a broad class of arrivals processes, namely Markov Additive

Processes (MAP's). The tasks involved in this are as follows. In section 2 we establish the sensitivity of �

to conditioning and show how to combine conditionings on di�erent MAP sources in order to approximate

the loss curve for the queue fed by their superposition. In section 3 we demonstrate the time-dependent

behavior of the conditioned shape function, and in section 4 we propose two heuristics to describe this. The

heuristics have the advantage that they are characterized by a reduced set of quantities rather than the full

conditioned shape function. Having established the behavior described above to the level of generality of

MAP's, the second part of our work is to provide formula for its application in two simpler subclasses of

models, namely renewal arrivals processes, and alternating renewal arrivals processes, or on-off models.

This is done in section 5. As a by-product we are able to provide formulas for the stationary o�set � for

such models; this is a matter of independent interest which seems not to have been worked out yet. With

these results to hand, the third part of our work, done in section 6, is to demonstrate the accuracy of the

heuristics by comparing them with the full time dependent conditioned shape function with the heuristic

approximations in an example.

2 Conditioning in a queue with Markovian arrivals.

When a queue is fed by an L-fold superposition of independent sources served at rate sL then the transient

cgf for W

L

t

decomposes as a sum

�

L

t

(�) = L

�1

L

X

i=1

�

i;t

(�) (2.1)

where �

i;t

(�) = t

�1

logE[e

�W

i;t

] is the transient cgf of source i assigned a service rate s. Our �rst step in

analysis of the conditioned asymptotics for large superpositions will be to analyze the conditioned cgf for

a single Markovian source and to �nd the appropriate form for �.

Consider a single source for which the backward excess workload process W is the additive component of an

MAP (X;W ). That is to say, let X = (X

t

)

t2T

be an irreducible aperiodic Markov process on a state space

E with �-�eld E , adjoined to which is an additive component W = (W

t

)

t2T

with W

0

= 0 such that (X;W )

is a Markov process on the state space E � R. Here X plays the role of a modulating process, while W

t

gives the cumulative additions to the excess workload as determined by (X

s

: 0 � s � t). As a special case,

X may itself be the increment process of the workload so that W

t

=

R

t

0

ds X

s

. For each t

0

� 0 2 T the joint

distribution of X

t+t

0

and the increments W

t+t

0

�W

t

, conditioned on (X

t

00

;W

t

00

)

0�t

00

�t

depend only on X

t

.

This dependence can be expressed through the kernel

P

t

0

(x;G�B) := P[X

t+t

0

2 G;W

t+t

0

�W

t

2 B j X

t

= x] ;

for G 2 E and B a Borel set of R. We assume the existence of a stationary distribution q for X.

A recurrence condition on the kernel P is required for what follows (see [25], or the summary in Hypothesis

5 in [5]). We assume it to be satis�ed. De�ne the transformed kernel

^

P

t

(�) =

^

P

t

(x; dy; �) =

Z

P

t

(x; dy � dw)e

�w

: (2.2)
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Let e

�(�)

denote the maximal eigenvalue of

^

P

1

(�), r(�); `(�) the corresponding (right) eigenfunction and (left)

eigenmeasure respectively. De�ne the conditioned cgf

�

t

(�; x) := t

�1

logE[e

�W

t

j X

0

= x] = t

�1

log

^

P

t

(x;E; �); (2.3)

and its unconditioned version

�

t

(�) = t

�1

logE[e

�W

t

] = t

�1

log

Z

q(dx)

^

P

t

(x;E; �): (2.4)

Our �rst result establishes the convergence of the single source cgf under conditioning and gives the appro-

priate conditioned form of �.

Proposition 3 (i) �(�) is essentially smooth and essentially strictly convex on some domain D.

(ii) For � 2 D, `(�) is absolutely continuous with respect to q; r(�) and d`(�)=dq are uniformly positive and

bounded.

(iii) For all � 2 D

e

t�

t

(�;x)

= e

��(�;x)

e

t�(�)

�

1 +O("

t

(�))

�

(2.5)

for some "(�) 2 (0; 1) where � is the unconditioned cgf and

e

��(�;x)

=

r(�; x)`(�; E)

R

`(�; dy)r(�; y)

> 0: (2.6)

(iv) For all � 2 D and x 2 E lim

t!1

�

t

(�; x) = �(�). Moreover, the convergence is uniform in x.

(v) If a strictly positive solution � to the equation �(�) = 0 exists

� lim

t!1

t�

t

(�; x) = �(x) := �(�; x): (2.7)

Proof: (i,ii,iii) follow from Lemmas 3.1 and 3.4 of [25]. Then (iv) and (v) become trivial corollaries. The

uniformity of convergence in (iv) follows from the form (2.5) and the boundedness of r(�) and d`(�)=dq.

We now treat heterogeneous conditioning within otherwise homogeneous superpositions of sources. (The

extension to superpositions of multiple classes of arrival processes, each with heterogeneous conditioning

is straightforward). Consider at L-fold superposition of MAP sources (X

i;t

;W

i;t

)

i=1;:::L;t2R

with identical

transition kernels. Set X

L

0

= fX

i;0

: i = 1; 2; : : :Lg and let �

L

denote the empirical distribution of the X

i;0

,

i.e.

�

L

=

1

L

X

i

�

X

i;0

; (2.8)

where �

x

is measure with a single atom at x 2 E. Then the conditioned cgf for �nite L is

�

L

t

(�;X

L

0

) =

Z

�

L

(dx)�

t

(�; x): (2.9)

Proposition 4 Assume �

L

converges weakly to some measure � as L!1. Then

(i) lim

L!1

�

L

t

(�;X

L

0

) = �

t

(�; �) :=

R

�(dx)�

t

(�; x) uniformly for t � 1 and � 2 R.
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(ii) lim

t!1

�

t

(�; �) = �(�) where � is the cgf of the unconditioned process.

(iii) Suppose a positive solution � to equation �(�) = 0 exists. Then

�(�) :=

Z

�(dx)�(x) = � lim

t!1

t�

t

(�; �): (2.10)

Proof: (i) The convergence is uniform since by Prop. 3(ii,iii), j�

t

(�; x) � �(�)j is uniformly bounded for

t � 1. (ii) This follows, from Prop. 3(iv), using the uniformity in x of convergence of �

t

(�; x) to �(�) as

t!1. (iii) By Prop. 3(ii,iii) �(x) is a bounded on E, and j�(x)� t�

t

(�; x)j converges to 0 as t!1 and is

uniformly bounded for all x 2 E and t � 1.

In conjunction with Proposition 3, Proposition 4 tells us when a positive solution � to the equation �(�) = 0

exists then Hypotheses 1 and 2 are satis�ed. The main theorem of the section then follows as a corollary.

Theorem 1 For the conditioned queueing system described above then the asymptotic (1.3) holds with a

shape function I for which

lim

b!1

(I(b) � �b) = �(�): (2.11)

3 Evolution after conditioning

How does the shift in � from its stationary value evolve after conditioning? We will answer this question

at the level of single source shape functions, or equivalently, for homogeneous conditionings. The results

extend to heterogeneous conditions by use of Proposition 4; one need only take the expectation of a given

conditioned shape function with the distribution � if initial conditions. We will recapitulate how to do this

at the end of section 4. Our ability to predict the future shape function rests on the assumption of a priori

stationarity of X and of the increments of W . In this case the Markov property for the backward process

(X;W ) is equivalent to that of the corresponding re-reversed (i.e. forward) process (

~

X;

~

W ). We examine the

e�ects of condition at some point t = �u in the past, and derive the shape function for the queue at t = 0.

In the main result of this section, Theorem 3, we show that for any �xed bu�er level b, the o�set � of the

shape function converges to its stationary value as we move forward in time. However, the conditioned value

of � persists at increasingly large bu�er levels. We conclude this section by obtaining a relation between the

conditioned o�sets for a given MAP and its time-reversed process.

Let

~

R be the transition kernel for

~

X . Then the moment generating function of the work arriving in the t

units of time previous to some u > 0, conditioned on the modulating process X taking the value x at time

0 is, by stationarity of (X;W ), equal to

E[e

�W

t

j X

u

= x] =

�
R

~

R

u�t

(x; dy)E[e

�W

t

j X

t

= y] if t � u

E[e

�(W

t

�W

u

)

j X

u

= x]E[e

�W

u

j X

u

= x] if t > u

: (3.1)

In the last expression we have used the Markov property of the MAP. Using �

t

;

~

�

t

to denote the transient

cgf's for the backward and forward workloads respectively, and similarly de�ning � and ~�, we get from (3.1)

that

t�

x;u;t

(�) := logE[e

�W

t

j X

u

= x] =

(

log

R

~

R

u�t

(x; dy)e

t

~

�

t

(�;y)

if t � u

(t� u)�

t�u

(�; x) + u

~

�

u

(�; x) if t > u

: (3.2)
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Let I

x;u

be the shape function derived from the �

x;u;t

; i.e.,

I

x;u

(b) = inf

t>0

(t�

x;u;t

)

�

(b); (3.3)

and I that from the �

t

. The next proposition shows that in the limit t!1, �

x;u;t

is completely insensitive

to the time u since the conditioning took place.

Proposition 5 Let U (�) be any positive function on R

+

. Then lim

t!1

�

x;U(t);t

(�) = �(�) =

~

�(�).

Proof: The equality of

~

� and � follows from the (trivial) equality of

~

�

t

and �

t

. To obtain the �rst equality,

substitute (2.5) into (3.2) and use the fact (from Prop. 3(ii,iii) ) that j�(x)j is bounded to show that

�

x;u(t);t

(�; x) = �(�) +O(t

�1

) for t � 1.

The last result suggests that we will be able to assign the same asymptotic slope � (the positive root of

�(�) = 0) to any of the shape functions I

u

. However, while the slope will be independent of u, the o�set of

the asymptote from the origin is not. The next proposition helps determine the location �̂ (u) of the in�mum

in the variational expression (1.6) for I

x;u

, and to express the o�set I

u

(b)� �b in terms of it.

Proposition 6 Let � : R

+

! R

+

be strictly increasing to in�nity. Then there exist functions �; �̂ : R

+

!

R

+

, with �(u) eventually increasing to in�nity, such that as u!1

�(u)=� (u)! �

0

(�) ; � (u)=�̂ (u)! 1 (3.4)

and for which the following bounds hold for all u > 0

��̂ (u)�

x;u;�̂(u)

(�) � I

x;u

(�(u)) � ��(u) � �� (u)�

x;u;�(u)

(�) (3.5)

Proof: De�ne �(u) = � (u)�

0

x;u;�(u)

(�). By Lemma 5 and Lemma IV.6.3 of [20],

lim

u!1

�

0

x;u;�(u)

(�) = �

0

(�) (3.6)

and hence � is eventually increasing, and the �rst limit in (3.4) holds.

Upper Bound: I

x;u

(�(u)) � ��(u) � (� (u)�

x;u;�(u)

)

�

(�(u)) � ��(u) = �� (u)�

x;u;�(u)

(�):

Lower Bound: Let the in�mum (1.6) for I

x;u

(�(u)) be attained at �̂ (u). Then

I

x;u

(�(u)) � ��(u) = (�̂ (u)�

x;u;�̂(u)

)

�

(�(u)) � ��(u) � ��̂ (u)�

x;u;�̂(u)

(�) (3.7)

The results then follows if we can establish that � (u)=�̂(u) ! 1 as u!1. This follows from the Theorem

4 in [15] provided that for some t

0

> 0

lim inf

b!0

inf

0<t<t

0

t�

�

bt

(1=t) � �: (3.8)

Now from (2.5) it follows that for some K > 0, e

t�

t

(�)

� e

K

e

t�(�)

for all � and for all t > 0. Consequently

�

t

(�) � �(�) +K=t and hence t�

�

bt

(1=t) � t�

�

(1=t)�K=b: (3.9)

(3.8) then follows for any t

0

> 0 by use of (1.7).

8



Proposition 6 is the technical result which will enable us to substantiate (1.9) in an appropriate sense. It

indicates that when �(u) is equal to some large b, then � (b) of (1.9) is roughly b�

0

(�) and so the quantity

denoted by �

�(b)

in (1.9) which approximates I

x;u

(b) � �b is roughly �b�

0

(�)�

x;u;b�

0

(�)

(b�

0

(�)). We now

formalize this in the main theorems of this section. First we establish the extreme values of the o�set as

b!1 and u!1, according to the order in which we take limits.

Theorem 2 Assume that � exists as the positive solution of �(�) = 0 and the hypotheses of Proposition 2

are satis�ed. Then

(i) lim

b!1

lim

u!1

(I

x;u

(b)� �b) = � = ~�.

(ii) lim

u!1

lim

b!1

(I

x;u

(b)� �b) = �(x) + ~�(x).

Proof: (i) Since by assumption (1.8) holds, it su�ces to show that lim

u!1

I

x;u

(b) = I(b) for all x and b.

Since X is assumed to irreducible and aperiodic,

~

R

u�t

(x; dy)! q(dy) weakly as u!1, and hence

lim

u!1

�

x;u;t

(�; x) =

~

�

t

(�) = �

t

(�) (3.10)

independent of x, pointwise for t and �. Thus by Lemma 1 of [15],

lim

u!1

(t�

x;u;t

)

�

(b) = (t�

t

)

�

(b) (3.11)

pointwise for t, and for b in the e�ective domain of �

�

t

. Then we get a lower bound:

lim inf

u!1

I

x;u

(b) = lim inf

u!1

inf

t>0

(t�

x;u;t

)

�

(b) (3.12)

� inf

t>0

lim inf

u!1

(t�

x;u;t

)

�

(b) (3.13)

= inf

t>0

(t�

t

)

�

(b) = I(b): (3.14)

For the corresponding upper bound, observe that for any t

0

> 0, I

x;u

(b) � (t

0

�

x;u;t

0

)

�

(b) so that

lim sup

u!1

I

x;u

(b) � (t

0

�

0

t

)

�

(b): (3.15)

Since t

0

is arbitrary

lim sup

u!1

I

x;u

(b) � inf

t�0

(t�

t

)

�

(b) = I(b): (3.16)

(ii) From (1.8) and (3.2) we have

lim

b!1

(I

x;u

(b)� �b) = lim

t!1

t�

x;u;t

(�) = u

~

�

u

(�; x) + lim

t!1

t�

t

(�; x) (3.17)

from which the result follows upon taking u!1.

We can make a more precise identi�cation of the location of the change in the o�set I

x;u

(b) � �b between

the two limiting values in Theorem 2. Roughly speaking in the o�set moves outwards as u increases and is

located around b = u�

0

(�).
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Theorem 3 For each k 2 (0; 1) or (1;1) there exist k

u

with lim

u!1

k

u

= k such that

lim

u!1

I

x;u

(k

u

u�

0

(�)) � �k

u

u�

0

(�) =

�

� if 0 < k < 1

�(x) + ~�(x) if k > 1

: (3.18)

Proof: Let � (u) = ku with k > 1. Combining (3.2) and Proposition 6 we have

(u� �̂ (u))�

�̂ (u)�u

(�; x) + u

~

�

u

(�x) � I

x;u

(ku�

0

x;u;ku

(�)) � �ku�

0

x;u;ku

(�) � u(1� k)�

u(k�1)

(�; x) + u

~

�

u

(�; x):

(3.19)

As u!1, the upper bound converges to �(x)+~�(x). Now we have seen in Proposition 6 that �̂ (u)=� (u)! 1

and k

u

:= k�

0

x;u;�(u)

(�)=�

0

(�) ! k as u ! 1. From this it is not di�cult to show that the lower bound

converges also to �(x) + ~�(x) and we are done.

When k < 1 the proof is similar, except now the upper bound is � log

R

~

R

u(1�k)

(x; dy)e

ku

~

�

ku

(�;y)

, with a

similar lower bound having �̂ (u) is place of ku. As u!1, then by the weak convergence of

~

R

u(1�k)

(x; dy)

to the stationary distribution q(dy) and (2.5), this converges to � log

R

q(dy)e

��(y)

. This is equal to � by

the following Proposition 7(iv). .

Theorem 3 says that the step in the o�set becomes sharp at b = u�

0

(�), as measured in a time scale

proportional to u. This phenomenon conforms to the sharpness of relaxation times found in classes of

Markov processes when their dimensionality becomes large; see e.g. [1] for some results and references.

What can be said about the accuracy of approximations based on Theorems 1, 2 and 3 as applied to models

with �nite L? It is not di�cult to show that the convergence in Theorem 1 is uniform for b in bounded sets.

This means that predictions of the shape of I will follow the shape of the loss curve for �nite L arbitrarily

closely (out to any b) for su�ciently large L. Moreover, a �ner analysis of the convergence for superpositions

of independent sources shows that the the error I(b) � L

�1

logP[Q > Lb] is O(L

�1

logL) as L!1 [28].

The relation between �(x) and ~�(x). We have seen that (trivially) � = ~�. We now examine the relation

between the conditioned o�sets �(x) and ~�(x). As before let (X;W ) the backward MAP, with transformed

kernel

^

P

t

(�) and (maximal) right eigenvector r(�) and left eigenmeasure `(�). The same symbols, with a

tilde, are used to denote the corresponding quantities for the forward process. We abbreviate r(�) and `(�)

by simply r and `.

Proposition 7 (i) ~r = d`=dq and hence r = d

~

`=dq

(ii) For a reversible MAP, r = d`=dq and hence �(x) = ~�(x).

(iii) E[e

��(X

0

)�~�(X

0

)

] = e

��

.

(iv) E[e

��(X

0

)

] = e

��

.

Proof: (i) Let A;B 2 E . Then

E[e

�W

t

;X

t

2 A;X

0

2 B] =

Z

dq(x)I

B

(x)

^

P

t

(x;A; �) =

Z

dq(x)I

A

(x)

~

^

P

t

(x;B; �): (3.20)

Thus

~

^

P

t

(y;B; �) =

d

R

dq(x)I

B

(x)

^

P

t

(x; �; �)

dq

(y); (3.21)
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and so

Z

~

^

P

t

(y; dz; �)

d`

dq

(z) =

d

R

d`(x)

^

P

t

(x; �; �)

dq

(y) = e

t�(�)

d`

dq

(y): (3.22)

The second relation follows by symmetry.

(ii) r = d`=dq is a trivial consequence of (i) and

^

P =

~

^

P in the reversible case. Use 1 to indicate the identity

function, and (`; r) for

R

`(dx)r(x). Since in the general

e

��(x)

=

r(x)(`;1)

(`; r)

; (3.23)

e

�~�(x)

=

~r(x)(

~

`;1)

(

~

`; ~r)

=

d`

dq

(x)(q; r)

(`; r)

; (3.24)

then specializing to the reversible case with r = d`=dq the result obtains.

(iii) From (3.23)

E[e

��(X

0

)�~�(X

0

)

] =

(q; r

d`

dq

)(q; r)(`;1)

(`; r)

2

=

(q; r)(`;1)

(`; r)

= e

��

: (3.25)

(iv)

E[e

��(X

0

)

] = E[ lim

t!1

e

t�

t

(�;X

0

)

] = lim

t!1

E[e

t�

t

(�;X

0

)

] = lim

t!1

e

t�

t

(�)

= e

��

(3.26)

Here, the second step follows by dominated convergence, since by Prop. 3(ii,iii), E[e

t�

t

(�;x)

] is bounded

uniformly for x 2 E and t > 1.

4 Heuristics for the time dependent behavior

Theorem 2 shows that for �xed large u there is a shift in I

u

(b)� �b between its value for smaller b and that

for larger b. Theorem 3 suggests that in describing the shape of I

u

(b) we use the following:

Rough Heuristic.

I

x;u

(b) �

�

�b+ � b < u�

0

(�)

�b+ �(x) + ~�(x) b > u�

0

(�)

(4.1)

The heuristic is speci�ed by four parameters: the o�sets �; �(x); ~�(x) and the speed �

0

(�). This gives consid-

erable simpli�cation of description as compared with the full conditioned shape function. The parameters can

be found using the formulas in Theorem 3 based on the eigenfunction and eigenmeasure of the transformed

kernel

^

P

t

(�). Examples of explicit calculations of these can be found in [14].

By adding one further parameter we gain some more detail of the time dependent shape function I

x;u

(b) in

the region of the step at b = u�

0

(�). We can use the upper bound in Theorem 6 to give an approximation for

I

x;u

. We parameterize b as b = u�

0

(�) + c and set � (u) = u + c=�

0

(�). We now combine with (3.2). Taking

�rst the the case c < 0, i.e. t < u, then when u and hence t are large, e

t

~

�

t

(�;y)

will have settled down to

e

��(y)

. Likewise for c > 0, i.e. t > u, u

~

�

u

(�; x) will have settled down to e

��

. Thus we have the following:

Approximation.

I

u

(u�

0

(�) + c)� (u�

0

(�) + c)� �

�

� log

R

~

R

�c=�

0

(�)

(x; dy)e

�~�(y)

if c � 0

~�(x)� (c=�

0

(�))�

c=�

0

(�)

(�) if c � 0

(4.2)
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In this approximation, as c increases (or decreases) from 0 we see that the o�set I

u

(u�

0

(�)+c)��(u�

0

(�)+c)

relaxes to the extreme values as determined in Theorem 2. From (4.2) we see that the rate of convergence for

c < 0 is determined by that of c 7!

~

R

�c=�

0

(�)

. Thus for c < 0 relevant relaxation distance is B

�

:= �

0

(�)=v

�

where v

�

is the is the (negative of the) supremum of the spectrum of the generator of

~

R after the maximal

eigenvalue 0 has been removed.

Similarly, for c > 0 the relevant relaxation distance is B

+

:= �

0

(�)=v

+

where v

+

is the (negative logarithm

of the) second highest eigenvalue of

^

P

1

(�). Together, these yield the following:

Full Heuristic. For large u,

I

u

(b) �

�

�b+ � b < u�

0

(�)�MB

�

�b+ �(x) + ~�(x) b > u�

0

(�) +MB

+

; (4.3)

for some multiplierM � 1, and joins continuously between these extremes for b 2 [u�

0

(�)�MB

�

; u�

0

(�) +

MB

+

]

The multiplierM is somewhat arbitrary: in an exponential decay we might takeM = 3 in order to get within

about 5% of the limiting o�sets � and �(x)+ ~�(x) (measured as a proportion of the di�erence between them)

at b = u�

0

(�)�MB

�

. We can describe the full heuristic as saying that I

x;u

has a `step' which has a width

roughly equal to �

0

(�) times the relaxation distance M (B

�

+ B

+

) and which propagates along the shape

function, linearly with u at rate �

0

(�).

Estimation of tail probabilities for heterogeneous conditionings. The location and width of the

step are independent of the conditioning x. Consequently, given a limiting distribution � of conditionings at

time t = 0, such as appears in Theorem 1, we can adapt any of the theorems of section 3 or the heuristics

and approximations of the present section by integration of the conditioned o�sets �(x) or ~�(x) against �.

To estimate tail probabilities at large �nite L use the limit (1.3) to furnish the appropriate approximation

for a conditioning distribution �

L

. Thus, for example, the rough heuristic becomes:

P[Q

L

> Lb] � e

�L

R

d�

L

(x)I

u;b

(b)

�

�

e

�L(�b+�)

b < u�

0

(�)

e

�L(�b+�(�

L

)+~�(�

L

))

b > u�

0

(�)

(4.4)

5 Application to renewal and On-O� arrivals.

A special case of MAP's is furnished by renewal processes. Let (N

t

)

t2R

+

be a (possibly delayed) renewal

process with renewal epochs (T

n

)

n2Z

+

. Then (X

t

; N

t

) is a Markov Additive Process when X

t

= t�T

N

t

: the

time since the last arrival before time t. If we want to calculate the complete conditioned shape function

via the variational principle (1.6) then we can calculate �

t

(�;X

0

) within the MAP framework. On the other

hand, the rough heuristic (4.1) is characterized by a reduced set of quantities: �; �; �(x); �. In the remainder

of this section we show how, if one is content to use the rough heuristic rather than the full heuristic or

the shape function, the other quantities can be calculated fairly directly for renewal and alternating renewal

(on-off) processes without recasting them as MAP's.

Renewal Processes. For the renewal process (N

t

) with renewal epochs (T

n

) let F be the common distri-

bution of the interarrival times fT

n+1

� T

n

, n � 1g and G be the distribution of T

1

. We assume that F has

12



�nite mean m, and no atom at 0. Recall (see e.g. [30]) that (N

t

) is stationary when G = G

st

where G

st

has

Laplace transform (lt)

^

G

st

(r) = (1�

^

F (r))=(mr); (5.1)

where

^

F is the lt of F , etc.

Consider a backward arrival process A

t

= aN

t

, some a > 0, served at rate s. For the purposes of calculating

the parameters of the rough heuristic only, the following renewal theoretic calculation su�ces. Let e

t�

t

(�;G)

denote the expectation of e

�(A

t

�st)

when T

1

has distribution G. For stability we require ms > 1.

Theorem 4 (i) The Laplace Transform with respect to t of e

t�

t

(�;G)

is

^

Z(a�; s�) where

^

Z(!; �) =

1�

^

G(�)

�

+

e

!

^

G(�)(1�

^

F (�))

�(1� e

!

^

F (�))

; � >

^

F

�1

(e

�!

): (5.2)

(ii) �(�) = lim

t!1

�

t

(�;G) exists independent of G and is equal to

^

F

�1

(e

�a�

)� s�.

(iii) � is the non-zero root of

^

F (s�)e

a�

= 1 and �

0

(�) = �1 � ae

�a�

=

^

F

0

(s�).

(iv) e

��(G)

:= lim

t!1

e

t�

t

(�;G)

=

(e

�a�

� 1)

^

G(s�)

s�

^

F

0

(s�)

.

(v) e

��

= e

��(G

st

)

=

�1

m

^

F

0

(s�)

�

1� e

�a�

s�

�

2

:

Consistent with the notation of section 2, �(x) will denote �(G) in the case G is the measure with a single

atom at x.

Laplace transform methods. In identifying � and � for renewal and on-off models, we shall �nd it

convenient to adopt the following strategy. Consider for simplicity the homogeneous case with unit service

rate per source. De�ne Z(�; t) = E[e

�A

t

], and de�ne the Laplace transform of Z(�) with respect to t by

^

Z(�; r) =

R

1

0

Z(�; t)e

�rt

dt. Note that

e

t�

t

(�)

= e

��t

Z(�; t): (5.3)

Suppose now that some k(�) > 0 and �(�) we can demonstrate that

"

Z

1

0

e

t�

t

(�)

e

�("+�(�))t

dt = "

^

Z(�; � + �(�) + ")! k(�); ("! 0

+

): (5.4)

Then it follows from Karamata's Tauberian Theorem (see Theorem 1.7.6 in [3]) that

lim

t!1

e

t(�

t

(�)��(�))

= k(�): (5.5)

Thus �(�) = lim

t!1

�

t

(�) exists and is equal to �(�). We can identify �(�) by the requirement that

^

Z(�; � + �(�) + ") diverges as "! 0

+

, i.e.

�(�) = inff� :

^

Z(�; � + �) <1g: (5.6)

We identify � by the requirement that �(�) = 0. Since �

0

(�) > 0 this gives

� = supf� :

^

Z(�; �) <1g: (5.7)
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Finally choosing � = � in (5.5) we see that e

��

= lim

t!1

e

t�

t

(�)

exists and is equal to k(�).

Proof of Theorem 4: (i) Let Z(�; t) = E[e

�N

t

] and denote by Y (�; t) this expectation for the corresponding

non-delayed renewal process (i.e. with G = F )). By a standard renewal argument we have

Y (�; t) = 1� F (t) + e

�

(F � Y (�))(t) (5.8)

Z(�; t) = 1�G(t) + e

�

(G � Y (�))(t): (5.9)

Taking Laplace transforms with respect to t we obtain (5.2).

(ii) From (5.2) and (5.6) and taking into account now the arrival size a and service rate s, then �(�) is

de�ned by the requirement that the denominator of

^

Z(a�; s� + �(�)) be in�nite. Thus it is the the solution

� of the equation e

a�

^

F (s� + �) = 1, i.e., �(�) =

^

F

�1

(e

�a�

) � s�.

(iii) Follows from (ii) by the requirement that �(�) = 0, so that � is the positive root (unique by convexity

of log

^

F ) of

e

a�

^

F (s�) = 1: (5.10)

(We remark that it is possible to obtain this equation for � from (5.2) directly within the framework of

transient renewal theory: see XI.6 of [22]). The formula for �

0

(�) is obtained by di�erentiation of the result

in (ii).

(iv) Follows by evaluation of k(�):

e

��

= lim

"!0

+

"

^

Z(a�; s� + ") (5.11)

=

(e

a�

� 1)

^

G(s�)

s�

lim

"!0

+

"

1� e

a�

^

F (s� + ")

(5.12)

=

(e

�a�

� 1)

^

G(s�)

s�

^

F

0

(s�)

: (5.13)

(v) then follows from (iv) by inserting (5.1) into (5.13).

Alternating renewal (on-off) processes. The above methods can be extended to treat alternating

renewal (on-off) processes in the case the the on-duration has �nite moment generating function in some

neighborhood of the origin. For simplicity we treat the case that all on and o� periods are mutually

independent. The on periods have distribution F , the o� periods distribution H. We let m

F

and m

H

denote

the mean of F and H respectively. Initially, the process is on with probability p

0

, in which case the time

till the start of the next off period has distribution F

0

; it is o� with probability 1 � p

0

, in which case the

time till the start of the next on period has distribution H

0

. In the stationary case

p

0

= p

st

:=

m

F

m

F

+m

H

;

^

F

0

(r) =

^

F

st

(r) :=

1�

^

F (r)

rm

F

; and

^

H

0

(r) =

^

H

st

(r) :=

1�

^

H(r)

rm

H

: (5.14)

In the on periods, uid arrives at rate a. Finally, as usual, we consider the superposition of L such sources,

served at rate sL.

Let T

t

denote the amount of time a source is on during the interval [�t; 0), and set Z(�; t) = E[e

�T

t

], with

Y (�; t) denoting the corresponding expectation conditioned on an on period starting at time 0. Then

Z(�; t) = p

�

e

�t

(1� F

0

(t)) + (F

0

(�; �) � (1�H))(t) + (F

0

(�; �) �H � Y (�; �))(t)

�

(5.15)
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+(1� p) (1�H

0

(t) + (H

0

� Y (�; �))(t)) (5.16)

Y (�; t) = e

�t

(1� F (t)) + (F (�; �) � (1�H))(t) + (F (�; �) �H � Y (�; �))(t) (5.17)

where dF (�; t) = e

�t

dF (t) and likewise for F

0

. Thus, taking the lt with respect to t, we obtain

^

Z(�; r) =

p

r � �

(1�

^

H

0

(r � �)) +

p

r

^

F

0

(r � �)(1 �

^

H(r)) +

1� p

r

(1�

^

H

0

(r)) (5.18)

+

�

p

^

F

0

(r � �)

^

H(r) + (1 � p)

^

H

0

(r)

�

^

Y (�; r) (5.19)

where

^

Y (�; r) =

(r � �)

�1

(1�

^

F (r � �)) + r

�1

^

F (r � �)(1 �

^

H(r)

1�

^

F (r � �)

^

H(r))

: (5.20)

We are now in a position to prove:

Theorem 5 Suppose the stability condition p

st

a < s is satis�ed. Then

(i) �(�) is the unique root � of the equation

^

F ((s � a)� + �)

^

H(s� + �) = 1: (5.21)

(ii) � is the unique positive root of the equation

^

F ((s � a)�)

^

H(s�) = 1: �

0

(�) is given through

(s � a+ �

0

(�))

^

F

0

((s � a)�)

^

F ((s � a)�)

+ (s+ �

0

(�))

^

H

0

(s�)

^

H(s�)

: (5.22)

(iii) Conditioned on p

0

, H

0

and F

0

, the o�set �(p

0

;H

0

; F

0

) is given by

e

��(p

0

;H

0

;F

0

)

= �

p

0

^

F

0

((s � a)�) + (1� p

0

)

^

H

0

(s�)

^

F

0

((s � a)�)

^

H(s�) +

^

F ((s � a)�)

^

H

0

(s�)

 

1�

^

F ((s � a)�))

(s � a)�

+

^

F ((s � a)�)

s�

!

:

(5.23)

(iv) In the stationary case the o�set � is given by

e

��

=

1

(m

F

+m

H

)(�

2
^

H

0

(s�) +

^

F

0

((s � a)�))

�

(�� 1)a

�(a� s)

�

2

; (5.24)

where � =

^

F ((s � a)�).

Proof: (i) As in Theorem 4, �(�) must make

^

Z(a�; s� + �(�)) in�nite. So from (5.20), �(�) is the root � of

(5.21), when this exists. (If it does not then we take set �(�) =1). One sees that @�=@� is negative, so the

root is unique when it exists.

(ii) e

t�

t

(�)

= E[e

a�T

t

]e

�s�t

=

^

Z(a�; t)e

�s�t

, so as in the case of renewal processes we �nd � = supf� :

^

Z(a�; s�) <1g to be the unique positive root of the equation

^

F ((s � a)�)

^

H(s�) = 1: (5.25)

A familiar convexity argument shows that the unique positive solution exists if the derivative of the left hand

side w.r.t � at � = 0 is positive. This condition reduces to p

st

a < s. Note that the root is independent of the
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initial distribution speci�ed by F

0

;H

0

and p

0

. Setting � = �(�) (5.21) and di�erentiating w.r.t. � at � = �

yields (5.22).

(iii,iv) Similarly, by the above Laplace transform methods e

��(p

0

;

^

F

0

;

^

G

0

)

= lim

"!0

+
"

^

Z(a�; s� + "), which

yields (5.23). Substituting the stationary distributions in (5.14) yields (5.24) after some algebra.

6 Comparison of heuristics, approximation, and shape function.

We illustrate the e�ects of conditioning on the shape function in a renewal model: the interrupted Poisson

process. Although the model is quite simply formulated [27], existing results for distributions appear limited

to obtaining the Laplace transform of the stationary distribution of the remaining work; this using matrix

methods in L+ 1 dimensions for L-fold superpositions [24]. The value of � can be obtained by using matrix

methods as in, for example, [21, 32]. Fortunately, we may fairly readily go further and calculate the full time

dependent shape function in order to test the heuristics against it. First de�ne the interrupted Poisson process

as a Markov Modulated Poisson Process (X

t

; N

t

)

t2R

+

. Here X

t

is a Markov process f0; 1g, with transitions

0! 1 occurring at rate �, the reverse transition at rate �. In state 1, the increments of N

t

are Poissonian at

rate r; in state 0 N

t

remains unchanged. We set the arrival process to be A

t

= aN

t

: each arrival is of �xed

size a. It is not di�cult to see that N

t

is a renewal process; this is established in [27] and the interarrival

time distribution derived. From this we could determine the parameters entering into the rough heuristic

(4.1) using Theorem 4. However, to make a comparison of this with the full shape function, conditioned on

X

0

, requires that we calculate the full transient conditioned cgfwithin the Markovian formulation.

We now derive (2.5) for this model. Let F

i

denote the distribution of the time till next renewal given the

modulated process is in state i. Then an elementary argument shows that

F

0

= E

�

� F

1

(6.1)

F

1

=

r

r + �

E

r+�

+

�

r + �

E

r+�

� F

0

; (6.2)

where E

�

denote the exponential distribution with mean �

�1

and � denotes convolution of distributions.

Upon taking the lt and eliminating F

0

we obtain

^

F (�) =

^

F

1

(�) =

r(�+ �)

�

2

+ �(�+ �+ r) + r�

: (6.3)

Let �

t

(�; fig) denote the workload cgf conditioned on being in state i. The corresponding initial distribution

G is F

i

. Upon substitution of F and the appropriate G into (5.2) and inversion of the lt, one obtains (after

some algebra):

e

�st�

e

t�

t

(�;f0g)

=

c

+

(�)

c

+

(�) � c

�

(�)

e

c

�

(�)t

�

c

�

(�)

c

+

(�) � c

�

(�)

e

c

+

(�)t

(6.4)

e

�st�

e

t�

t

(�;f1g)

=

c

+

(�) � r(e

a�

� 1)

c

+

(�) � c

�

(�)

e

c

�

(�)t

�

c

�

(�) � r(e

a�

� 1)

c

+

(�) � c

�

(�)

e

c

+

(�)t

; (6.5)

where

2c

�

(�) = r(e

a�

� 1)� (� + �)�

q

(� + �+ r(e

a�

� 1))

2

� 4�r(e

a�

� 1): (6.6)
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Finally, for the stationary renewal process we have

e

t�

t

(�)

=

�

� + �

e

t�

t

(�;f0g)

+

�

� + �

e

t�

t

(�;f1g)

; (6.7)

i.e. a sum of the e

t�

t

(�;fig)

weighted by the stationary probabilities of each of the modulating states. The

reader should note that the derivation of (6.4) to (6.7) is just a derivation of the spectral decomposition of the

transformed kernel

^

P

t

(�) which leads to (2.5): factorization of the denominator in (6.3) �nd the eigenvalues,

and the consequent partial fraction decomposition �nd the eigenvectors.

We can use the variational expression (1.6) to determine the corresponding shape functions I(b; fig) nu-

merically. We have chosen a service rate s = 1. We can determine the parameters of the rough heuristic

as follows. � is found by numerical location of the root of the equation got by combining (5.10) and (6.3).

(Alternatively, the requirement that c

+

(�) = s� yields the same equation). Comparing (6.4) to (6.7) with

(2.5) then e

��

; e

��(f0g)

and e

��(f1g)

can be read of as the coe�cients of e

c

+

(�)t

in the appropriate cgf. A

renewal process is reversible, so by Proposition 7(ii) �(x) = ~�(x).

We have performed some calculations for the case � = � = 1=10 and r = s = 1, and have displayed the

results as follows. In Figure 2 we show, at time zero, the (negative of the) shape function conditioned by the

on state, the off state, and also the unconditioned version. The �rst two of these represent the asymptotic

loss curve in the extremes of superpositions with all state on or all states off: the loss curves for mixed

superpositions will lie between these. Observe (a) the asymptotic parallelism of the curves|they share the

same asymptotic slope �; and (b) the variation in the o�set: �(f1g) < 0 < � < �(f0g).

In Figure 3 we have displayed the di�erence I

f1g;u

(b)��b for the shape function run forward to time u = 100,

conditioned on all the sources being initially on. We also display the approximation (4.2) together with the

rough heuristic (4.1). The latter is indicated by the horizontal lines for the upper limit � and the lower

limit �(f1g) + ~�(f1g) = 2�(f1g). The parameters for the rough heuristic are � = 0:352, 2�(f1g) = �0:296,

� = 0:372, �

0

(�) = 0:389. The step is predicted to be located around u�

0

(�) � 38:9.

For the full heuristic, we must invoke the MAP formulation of the model. The generator of the modulating

process is the matrix

�

�� �

�� ��

�

=

1

10

�

�1 1

1 �1

�

(6.8)

so that v

�

= 1=10. Thus with the multiplierM = 3 we expect the half-step width on the left hand side of

roughly M�

0

(�)=v

�

� 12. From (6.5) we have v

+

= � � c

�

(�) = 0:494, yielding the half-step width on the

right hand side of M�

0

(�)=v

+

� 2:4. To summarize, in the full heuristic, the step extends, roughly, from

b = 27 to b = 41. This is close agreement with both the full shape function and the approximation from

which the full heuristic was derived. The di�erence of the calculated and approximating curves, which lies

mostly within the step, was investigated further. It turns out that in this region, t 7! (t�

f1g;u;t

)

�

(b) has two

local minima. The larger of these is essentially that which is used in the approximation, for it is located very

close to � (u). Outside the step, the two minima coalesce.

Finally, in Figure 4 we illustrate the propagation of the step in �I

f0g;u

(b) as u increases. This is done using

the approximation (4.2) for the same model but in this instance with all sources initially off.
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Figure 2: Conditioned and unconditioned shape functions.
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Figure 3: I(b) � �b at u = 100, calculated, approximated, and by rough heuristic.
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Figure 4: Evolution of shape function at times u = 20; 40; 60; 80 after conditioning: approximation
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