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ABSTRACT
Sampling is crucial for controlling resource consumption by
internet traffic flow measurements. Routers use Packet Sam-
pled NetFlow [9], and completed flow records are sampled in
the measurement infrastructure [13]. Recent research, moti-
vated by the need of service providers to accurately measure
both small and large traffic subpopulations, has focused on
distributing a packet sampling budget amongst subpopula-
tions [26, 33, 40]. But long timescales of hardware develop-
ment and lower bandwidth costs motivate post-measurement
analysis of complete flow records at collectors instead. Sam-
pling in collector databases then manages data volumes,
yielding general purpose summaries that are rapidly queried
to trigger drill-down analysis on a time limited window of
full data. These are sufficiently small to be archived.

This paper addresses the problem of distributing a sam-
pling budget over subpopulations of flow records. Estima-
tion accuracy goals are met by fairly sharing the budget.
We establish a correspondence between the type of accu-
racy goal, and the flavor of fair sharing used. A streaming
Max-Min Fair Sampling algorithm fairly shares the sampling
budget across subpopulations, with sampling as a mecha-
nism to deallocate budget. This provides timely samples
and is robust against uncertainties in configuration and de-
mand. We illustrate using flow records from an access router
of a large ISP, where rates over interface traffic subpopula-
tions vary over several orders of magnitude. We detail an
implementation whose computational cost is no worse than
subpopulation-oblivious sampling.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network Monitoring ; G.3 [Probability and
Statistics]: Probabilistic Algorithms
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1. INTRODUCTION

1.1 Flow Records and Network Management
Passive traffic flow measurement plays a vital role in man-

aging communications networks [20]. Flow measurement is
performed by routers, most prominently by the NetFlow
[9] feature, and more flexibly by standalone measurement
devices [11] observing traffic via port replication or opti-
cal splitters. The measurement data are flow records, each
of which summarizes the protocol-level information of a set
of packets related by having a common key—comprising
IP address and TCP/UDP ports and other header fields—
observed locally in time. A flow record reports the flow
key and other quantities, e.g., the flow’s number of packets
and bytes, and timing information. Each measuring device
exports a stream of flow records—either directly or through
co-located mediation devices—to one or more collectors that
house a database whose functions include routine report-
ing (e.g., large scale traffic matrices and application mix)
real-time anomaly detection (of traffic patterns due to net-
work attacks or routing anomalies), and ad hoc retrospective
queries (for forensic studies or debugging); see e.g., [20, 12].

1.2 Measurement Costs and Summarization
Several architectures for flow record collection and analy-

sis currently are used, with differences according to relative
situational costs of transmission, storage, and processing the
flow records. The volume of flow records is immense; a major
ISP will carry 10’s of PetaBytes of user traffic per day [1], po-
tentially generating 100’s of TeraBytes of flow records daily.
Intelligent sampling has played, and, we argue, will continue
to play, an essential role in managing this data volume. In
recent practice, sampling functionality has been deployed at
or close to the measurement point, with sampling of packets
in routers prior to the formation of flow statistics [9], then
sampling of completed flow records in mediation devices [13]
that export the sampled flow records to a central collector.

The bandwidth for 100 TB of flow records daily is only
about 10Gb/s. The combined effects of decreasing band-
width costs [29] and the advent of relatively cheap stan-
dalone measurement devices that need not packet sample,
coupled with the increasing needs of network management
for protocol-level measurement of the complete traffic stream,
have made the collection of full sets of unsampled flow records



increasingly feasible and desirable for ISPs. Although much
ingenuity has been devoted to packet-level approaches to
measurement resource management [26, 33, 40], the rela-
tively long development times of hardware features makes
full collection of flow records a flexible and compelling ap-
proach for ISPs, since development of analysis capabilities
on the collector side is both flexible and rapid.

However, the volume of flow records remains a challenge.
While retaining flow records over a limited time window
(e.g., one or few days) is feasible in terms of storage cost,
it remains problematic both to store all flow records over
longer periods and to rapidly process arbitrary database
queries over even the limited time window. A solution to
both these problems is to summarize the flow records at
collectors through a combination of aggregation and sam-
pling. Although summarization incurs a loss of resolution
for analysis, the reduced data size enables more rapid auto-
mated identification of network events large enough to be re-
liably detected, potentially triggering (fast) drill-down anal-
ysis into the summary, or (slower) drill-down into the full
set of flow records available within the retention window.
Furthermore, the summaries can be retained to support fast
retrospective analysis over longer periods than it is feasible
to retain the full flow data1. This architecture can be real-
ized either entirely in a central collector, or in distributed
local collectors. These routinely transmit summaries to a
central location for global analysis and can initiate or re-
motely service queries on the limited window of full flow
records that they store. One hundred such collectors, each
equipped with a few TeraBytes of storage, could collectively
retain a day’s flow records from an entire major ISP network.

Aggregation and sampling are two complementary meth-
ods of summarization. Aggregation involves partitioning the
stream of flow records into disjoint subpopulations (SPs)
according to some explicit or derived property, and comput-
ing the aggregate flow, byte and/or packet counts within
each SP over successive time windows. Multiple aggrega-
tion schemes may be run in parallel, e.g., according to sin-
gle fields of the flow key, such as (i) source or destination
IP routing prefix; (ii) source or destination TCP/UDP port;
or (iii) router interface traversed. Time series of aggregates
are useful both for routine reporting and anomaly detec-
tion. But general drill-down queries concern subaggregates
over finer SPs of flows, and it is not feasible to compute and
store all possible subaggregates of interest due to the high
cardinality of the key space. Instead, sampling provides a
data summary unconstrained by the granularity of any flow
key aggregation scheme, and supports estimation of arbi-
trary subaggregates that need not specified at the time that
sampling takes place.

1.3 The Challenge of Rate Skewness
We abstract the space constraints to which any summary

must conform (either for storage or rapid query) as a sam-
pling budget, i.e., a maximum number of samples to be gath-
ered from data arriving in a specified time period. A feasible
sampling method for flow records must (i) control sample
size within a sampling budget; (ii) yield sufficiently accu-
rate estimates; and (iii) provide samples in a sufficiently
timely manner for applications. In particular, the sample
design must match the statistical distribution of flow fea-

1The analytic value of full data over summaries decreases
with age, which may in any case be curtailed by policy.

tures to the relevant accuracy measures for estimation. If
a numerical data feature has a heavily skewed distribution,
such as a Pareto or other heavy-tailed distribution, and is
used for selection and/or aggregation by a query, then it is
well-known that estimation from uniformly drawn samples
can be highly inaccurate [7]. An example comes from the
measured distribution of flow sizes in which a small frac-
tion of the flow records report a large fraction of the bytes
[19]. While uniform sampling is well adapted to estimating
subpopulation sizes (i.e., a number of flows in a subset), it
is poorly adapted to estimating subpopulation weight sums
(i.e., the total bytes of a subset of flows), since omission of a
single large flow can drastically impact estimation accuracy.
Instead, weighted sampling to preferentially select records
of large flows [14, 16] enables accurate byte estimation.

This paper addresses skewness of a different type, that of
the distribution of traffic rates over SPs. Drill-down queries
often are localized within a SP of flow records whose aggre-
gate timeseries triggered an anomaly. In many cases of inter-
est, the traffic rates across SPs are highly skewed. Mirroring
the general observation cited above, the basic problem that
we address is that estimation accuracy varies greatly across
SPs when sampling is undifferentiated in the sense that a
flow record’s sampling probability does not depend on the
SP of which it is a member, although it may still depend on
other attributes such as flow size.

Two examples of SP rate skewness are as follows. Firstly,
when flow records are partitioned according to TCP/UDP
port, a small number of ports account for a majority of the
traffic, due to the relative popularity of different user ap-
plications [4]. Secondly, for analysis of traffic at an access
router, flow records are implicitly partitioned according to
the interface that the flow traversed, in order to analyze dif-
ferent customers’ traffic. But line rates and corresponding
traffic rates can vary by several orders of magnitude over dif-
ferent interfaces on a large access router. In both examples,
the challenge for analysis is to return accurate responses
to queries on traffic in each SP regardless of the SP size.
For example, traffic monitoring for security must be able
to alert on and drill-down into significant traffic changes on
both small and large customer interfaces.

A simple analysis is illustrative. Consider a SP comprising
n flow records which are then sampled independently with
probability p. Now estimate from the samples the number
m of flows in some subset of flows within the population.
Whereas a“needle in a haystack”query might target a subset
of size m within any SP, queries often concern SPs whose
size m increases with the size n of the SP of which they are
part, e.g., application-level flows comprising a fraction of all
flows on each interface of an access router. The relative error
in estimating m is roughly 1/

√
mp; see eq. (4) following.

With fixed p, estimation accuracy decreases for smaller m
of typical interest in smaller n SPs. But if the sampling
probability p were differentiated by SP size n, it would be
possible to make accuracy uniform in n, redistributing some
of the sampling budget to SPs with small n.

1.4 Optimally Sharing The Sampling Budget
Moving beyond the example analyzed above, consider the

following static problem. Given a set of SPs of flow records
collected in a time window, and a sampling methodology
(e.g., flow size weighted), allocate a fixed total sampling
budget between the SPs in order to realize certain estima-



tion accuracy goals for subsets of traffic within each SP. This
budget allocation problem can be formulated in terms of fair
sharing: the allocation to any SP will depend not only on
its own flow records, but also on the demands of flow records
in other SPs. Each SP needs to receive sufficient budget to
realize its own accuracy goals; once these are met, any re-
maining sampling budget can be allocated to other SPs that
can use them. Several variants of fairness are in general use,
the best known being Max-Min Fairness and Proportional
Fairness; see [2, 24]. Which one should be used? In this pa-
per we will see that the type of accuracy measure employed
determines which variant of fairness should be used. Put
another way, fair sharing of sampling resources is motivated
by the need to realize specific accuracy goals.

A sampling scheme using this approach could be used of-
fline, batches of flow records being collected over successive
measurement windows, and each SP sampled at the end of
each window to fit within its fair share of the budget. How-
ever the lag between collection and summarization, being
the sampling processing time plus an amount as large as
the window duration, may be problematic for measurement
applications that must query summaries in real time. This
constraint favors online sampling in order to make samples
available at any time. Some type of reservoir sampling [39]
is well suited to this task: a reservoir of samples is pro-
gressively maintained throughout each window and is hence
available for query at any time. Each arriving flow record
must either be included in the reservoir (displacing a pre-
vious sample from that window if the reservoir is full) or
discarded permanently. Since the sampling budget is the
reservoir size, reservoir sampling also provides (i) robustness
against unexpectedly large sets of flow records that would
otherwise overflow storage, and (ii) the flexibility to sample
flow records at devices with limited storage budget.

The online scheme should not simply reservoir sample
with some fixed allocation of sampling budget amongst the
SPs, e.g., based on modeled or predicted flow record arrivals,
since these allocations would not in general be fair across the
actual flow record arrivals, and hence suboptimal for estima-
tion accuracy. Furthermore, the set of SPs represented in
the flow records (e.g., which TCP/UDP ports occur) may
not be known in advance. Instead, the online scheme must
adapt the allocation in response to the actual flows records.
Those that are sampled may subsequently be discarded, ei-
ther to make way for preferentially sampled records in the
same SP, or if the allocation to that SP is reduced.

1.5 Contribution: Fair Sampling
In our setting, there is a population of items (e.g., flow

records) each with a weight (flow bytes, packets or count),
and belonging to one set of subpopulations. Items are sam-
pled into a reservoir of finite capacity (the sampling budget),
and the sampled items are used to construct unbiased esti-
mators of weight sums over subsets within SPs. The popu-
lation is presented as a stream; each item must be either se-
lected into the reservoir or discarded permanently. Selected
items may later be discarded to make way for newer items.
A high-level statement of our problem is then: How should
a sampling scheme share the sampling budget amongst SPs
in order to best fulfill desired goals in estimation accuracy?

Our proposed method of Fair Sampling integrates ideas
from fair sharing, sampling and complexity analysis to solve
this problem in a provably optimal and demonstrably feasi-

ble manner. We now outline the content of the paper and,
in the list below, our main new contributions. We start in
Section 2 by reviewing the notions of fair allocation and the
sampling methodologies that we will employ.

◦ Section 3 relates different types of estimation accuracy to
the type of fair sharing used in an offline context. Propor-
tional Fair sharing minimizes the average estimation vari-
ance over SPs, and achieves the same accuracy as Undiffer-
entiated Sampling (i.e., sampling items without regard to
their SP membership). Max-Min Fair Sharing minimizes
average relative estimation variance over SPs, and the re-
sulting Fair Sampling increases accuracy for smaller SPs at
the expense of decreasing accuracy for larger SPs.

◦ Section 4.1 presents a Streaming Fair Allocation algorithm
that progressively and fairly allocates the sampling budget
amongst SPs, without advance knowledge of their demand.
The allocation is Lexicographic Max-Min Fair, which inher-
ently accommodates the discrete nature of flow records.

◦ Section 4.2 presents a Streaming Fair Sampling algorithm
that integrates sampling as a discard step when the Stream-
ing Fair Allocation to some SP must be decreased. The
VarOpt sampling algorithm [10] is variance optimal for es-
timation and can be implemented efficiently.

◦ Section 5 describes an implementation of Fair Sampling in a
single shared reservoir whose computational cost is no worse
than Undifferentiated VarOpt Sampling, i.e., O(log k) per
item for a reservoir of capacity k.

◦ Section 6 uses flow records of traffic at an access router to
evaluate the accuracy of Fair Sampling relative to other ap-
proaches, and its composite with Undifferentiated Sampling.
It improves estimation accuracy in 89% of cases.

◦ Section 7 analyzes the performance gains of Fair Sampling,
and provides measurement system design criteria that in-
clude the effects of any prior packet sampling.

We discuss related work in Section 8 and conclude in Sec-
tion 9. Theorems in Sections 3 & 4 are proved in Section 10.

2. REVIEW: FAIRNESS AND SAMPLING
Before presenting our contribution in Sections 3 and fol-

lowing, we review the notions of budget sharing that un-
derpin our work (Section 2.1), motivation in sampling and
estimation (Section 2.2), the specific sampling and estima-
tion algorithms that we employ (Section 2.3), and how dif-
ferent sample sets—in our case from Fair and Undifferen-
tiated Sampling—can be combined into a single estimator
(Section 2.4). Our setting employs the following notation
that is retained throughout the paper. We assume a pop-
ulation of n items, partitioned in disjoint subpopulations2

(SPs) labelled by d ∈ D, there being nd items in SP d,
hence

∑
d nd = n. The sampling budget k is the number of

items that can be sampled. Each subpopulation d is allo-
cated some non-negative integer amount kd ≤ nd such that∑

d kd ≤ k; such allocations are called feasible. Lastly, each
item i comes equipped a weight wi > 0 that determines
its sampling probability within each SP. For the motivating
case where items are flow records, examples of subpopula-
tion partitions were mentioned in Section 1.3; the weights

2The term subpopulation will refer to both its label d and
the set of items in the subpopulation



wi may be the flow’s recorded bytes, or its packets, or a unit
weight, depending on the estimation accuracy goals.

2.1 Fair Allocation
Following terminology common in resource sharing, we

consider the subpopulation sizes N = {nd ≥ 0 : d ∈ D} as a
set of demands over which the budget k is to be partitioned
according to the allocations K = {kd ≥ 0 : d ∈ D}.

A feasible allocation K0 is said to be Max-Min Fair (MMF)
[18] if for any other feasible allocation K, then for all SPs
d such that kd > k0

d, there exists some SP d′ such that
kd′ < k0

d′ ≤ k0
d. In other words, allocating more than the

MMF allocation to any SP, can only be done at the expense
of reducing the allocation to some smaller SP.

If the allocations were not constrained to be integers, the
well known progressive filling algorithm could be used to
construct the MMF allocation [2]. Starting with all kd = 0,
all allocations are increased at the same rate until one or
more of the SPs d are satisfied (kd = nd). Then the pro-
cedure repeats, dividing the remaining budget amongst the
unsatisfied SPs, and so on, until either all SPs are satisfied
or the budget is used up. However, the MMF allocation is
not generally integral. This is problematic in our motivat-
ing example since flow records are indivisible. A possible
workaround would be to use an integral allocation close to
the MMF allocation. However, when allocating to a dynamic
stream of demands, we must deal systematically with each
discrete arrival (each flow record) rather than accumulate
unfairness through successive uncontrolled approximations.
Therefore, we will work with a more general notion of fair-
ness, namely, Lexicographic Max-Min Fairness (see [3, 32]),
that naturally accommodates discreteness.

Let T (K) denote the elements of an allocation K sorted
in non-decreasing order. K is said to be lexicographically
greater than K′, written K Â K′, if the first non-zero com-
ponent of T (K)−T (K)′ is positive. We say K is lexicograph-
ically equal to K′ if T (K) = T (K′). We write K º K′, if
either K Â K′ or T (K) = T (K′). With these definitions,
the feasible allocation K0 is Lexicographically Max-Min Fair
(LMMF) if K0 º K for any other feasible allocation K.
LMMF enables handling the case where integer constraints
prevent the MMF solution from existing, but several feasi-
ble allocations are close to it. As a simple example, con-
sider a single unit budget that must accommodate two unit
demands. The MMF allocation K = (1/2, 1/2) is not al-
lowed by the integer constraints, but the allocations (1, 0)
and (0, 1) are both LMMF.

2.2 Skewness, Sampling and Estimation
Because of the observed heavy-tailed distribution of flow

bytes, several streaming weighted sampling algorithms cur-
rently are used for flow record sampling, using byte size as
the sampling weight. Threshold Sampling [14] performs in-
dependent weighted sampling. The related Priority Sam-
pling [16] samples into a fixed size reservoir, and VarOpt
[10]—described more completely below—does so with opti-
mal estimation variance that is as good as any offline sam-
pling scheme, and with computational cost smaller than pre-
vious related methods [6, 38]. All these methods can provide
uniform sampling as a special case using unit weights.

All the schemes mentioned provide unbiased estimates
of the sums of weights over any subset of items using the
Horwitz-Thompson approach [21]. Let item i of weight wi

be sampled with marginal probability pi. Each sampled wi

is replaced with its unbiased estimate (or adjusted weight)
ŵi = wi/pi; non-sampled items have adjusted weight 0. A
generic query is to find the total weight of a subset S of items
that satisfy some predicate, e.g., the total bytes of flows that
use a specified protocol, The weight sum W (S) =

∑
i∈S wi,

has an unbiased estimator

Ŵ (S) =
∑
i∈S

ŵi =
∑

i∈Ŝ

wi/pi (1)

where Ŝ is the intersection of S with the random sample.
This is a powerful construction because S need not be known
at the time of sampling, enabling retrospective analysis.

2.3 Variance Optimal Sampling
Our methods use sampling to control the reservoir occu-

pancy. Once the reservoir contains k items, any new item
is provisionally added, then one random item is removed to
return the occupancy to k. The weights of the surviving
items are adjusted as above. This paper uses the VarOpt
sampling primitive [10]. Its action VarOptk on a set Ω of
k+1 weights wi is recorded as Algorithm 1 below. Sampling
is IPPS (Inclusion Probability Proportional to Size), item i
being sampled with probability pi = min{1, wi/τ}, where
τ is the unique value for which

∑
i pi = k, i.e., k items are

selected. Thus all large items (those i with wi ≥ τ) are sam-
pled with probability 1, while the remaining small items are
sampled with probability proportional to size. This embod-
ies the requirement from Section 2.2 to sample larger items.
(Unit weights are used when uniform sampling is required).
Sampling proceeds by picking one item i for discard with
probability 1−pi. This is achieved by dividing up the unit in-
terval into subintervals of length 1−pi, (note

∑
i(1−pi) = 1),

and discarding the item whose interval contains a random
point chosen uniformly. Each of the k remaining weights
are adjusted to their new value wi/pi = max{wi, τ}. Note
that VarOpt works with the item weights presented to it.
It does not use or require any assumptions concerning the
statistical distribution of item weights.

Used recursively, VarOpt samples exactly k out of any
n > k items. In addition to the estimate for individual
weights being unbiased, the estimate of the total is exact
and VarOpt minimizes the average estimation variance over
weight subsets of a given size with respect to any unbiased
estimator, including even offline algorithms. Furthermore,
it has efficient implementation; its computational cost is no
worse that O(log k) for any single new item, and in fact
O(log log k) when amortized over k items.

Algorithm 1: VarOptk(Ω) where |Ω| = k + 1.

find τ be such that
∑k+1

i=1 min{1, wi/τ} = k
for i = 1, . . . , k + 1 do pi ← min{1, wi/τ},
wi ← max{τ, wi}
generate uniformly random r ∈ U(0, 1)
maximize j such that

∑
1≤i<j(1− pi) ≤ r.

delete element wj from Ω

2.4 Combined Estimation
In current network management practice, multiple sam-

pling schemes are applied to flow records in support of differ-
ent measurement applications; see e.g., [28]. Our proposed



Fair Sampling is not expected to supplant Undifferentiated
Sampling; rather, it extends the applicability of measure-
ment applications. Undifferentiated Sampling will remain
important for applications that must focus on the largest
traffic subpopulations. Thus it is natural to ask: If both fair
and undifferentiated sampling are performed, can the sam-
ples be combined to form an estimator that is better than
either individually? We will investigate this question exper-
imentally in Section 6 using a combined estimator, proposed
in general from in [15], that we now describe.

Given different unbiased estimates {Xi} of some X, with
associated estimation variances {Vi}, any convex combina-
tion

∑
i λiXi, λi ≥ 0,

∑
i λi = 1, is also an unbiased esti-

mate of X. Choosing λi = 1/Vi/(
∑

j 1/Vj) minimizes es-
timation variance. But naively substituting estimated vari-
ances leads to pathologies. For VarOpt, an unbiased esti-
mate of the variance in estimating a weight w is

v = w max{0, τ − w} (2)

where τ is the sampling threshold. But large items (of weight
w ≥ τ) have zero associated variance, while some small items
may be missed, yielding a small or zero estimated variance
which causes the associated estimate Xi to dominate.

Regularized variance estimators proposed in [15] avoid
these pathologies. The bounded variance estimator exploits
that, from (2), Var(Xi) bounded above by τiX, where τi is
the sampling threshold in force for Xi. This bound is tight in
the limit of small weights. Approximating Vi by τiX results
in the convex combination estimate

X(reg) =
∑

i

Xiτ
−1
i /

∑
i

τ−1
i (3)

This extends to uniform sampling with probability p, using
an effective τ of 1/p times the maximum observed weight.

3. FAIR SAMPLING AND ACCURACY

3.1 Estimation Accuracy Goals
Our first contribution is to determine the relationship be-

tween the desired type of accuracy goal for estimation and
the type of method used to share the sampling budget across
SPs. We show that the choice between goals of controlling
relative vs. absolute error in estimation leads naturally to
a corresponding choice between Max-Min Fair vs. Propor-
tional Fair sharing of the sampling budget. Furthermore,
Proportional Fair Sharing offers little or no advantage over
undifferentiated sampling. We first establish the result for
uniform independent sampling (i.e., unit weights), then show
how it extends to weighted VarOpt sampling. To be spe-
cific, we express our motivation in terms of estimation from
subpopulations of flow records.

(i) What to estimate: The weight sum of subsets of flows
that constitute at least some fraction β < 1 of the flows
in a SP. Motivation: Analysis thresholds for both short-
term management (e.g., anomaly detection) and long-term
management (e.g., capacity planning) are both commonly
expressed in terms of relative usage or changes thereof.

(ii) Estimation accuracy: two alternative measures of error

estimating a fraction β of traffic: (ii[abs]) the mean square

absolute error; or (ii[rel]) the mean square relative error.
The importance of relative error when estimating over SPs
of different sizes has been emphasized in [26].

(iii) Balance across SPs: to balance goals (i) and (ii) by min-
imizing the average error across SPs.

3.2 Fairness/Accuracy in Uniform Sampling
Consider an SP d of nd items from which kd on average

are sampled uniformly and independently. Suppose we wish
to estimate the size md of a subset of items satisfying some
predicate. Using Horwitz-Thompson [21], an unbiased esti-
mate for md is m̂dnd/kd, where m̂d is the number of the md

items that are sampled. The estimation variance is

V (nd, kd, md) = md

(
nd

kd
− 1

)
(4)

Note the variance for undifferentiated sampling of the ag-
gregate of n flows with sampling budget k is V (n, k, md).

Theorem 1. Consider the problem of estimating the size
md = βnd of a fraction β of items in each SP d.

(i) The average across all SPs d of the absolute estimation

variances V (nd, kd, βnd) is minimized by k
[abs]
d = knd/n.

With this allocation, the ratio of the corresponding variance
to that for undifferentiated sampling from SP d is

V (nd, k
[abs]
d , md)

V (n, k, md)
= 1. (5)

(ii) The average across all SPs d of the relative estimation
variances V (nd, kd, βnd)/(βnd)2 is minimized by the Max-

Min Fair Allocation k
[rel]
d of the budget k over the SPs {nd}.

The ratio of the corresponding variance to that for undiffer-
entiated sampling from SP d is

V (nd, k
[rel]
d , md)

V (n, k, md)
≤ max{0, |D|nd − k}

n− k
, (6)

with V (nd, k
[rel]
d , md) = 0 if d is fully satisfied.

We draw two conclusions from Theorem 1. Firstly, from
(5), proportional sharing does no better in terms of accuracy
than undifferentiated sampling. Secondly, (6) tells us that
for SPs contributing smaller than average offered load (nd <
n/|D|), allocating equal sampling budget to each SP yields
lower variance than undifferentiated sampling, while for SPs
carrying larger than average load (nd > n/|D|) the reverse
may be true.

3.3 Fairness/Accuracy in Weighted Sampling
Although Theorem 1 was proved for independent sam-

pling with uniform weights, its conclusions extend to size-
weighted sampling with a fixed budget. It is shown in [36]
that in weighted VarOpt sampling of kd from nd items, the
estimation variance of the weight of md ≤ nd, averaged over
all subsets of md items, is bounded above by

U(nd, kd, nd, Xd) =
md(nd −md)X2

d

nd(nd − 1)kd
(7)

where Xd is the total weight of the subpopulation. This
bound is asymptotically tight when each item weight is o(Xd/k).
Assuming a common distribution of weights over items, take
Xd proportional to nd, and find U(nd, kd, nd, Xd) =
a(β)V (nd, kd, md) + b where a(β) is constant up to a term
O(1/nd) and b is independent of kd. Thus the analysis of
Theorem 1 holds in the same approximation.



4. STREAMING FAIR SAMPLING
Section 3 has shown how fair allocation of the sampling

budget uniformizes relative estimation variance over differ-
ent subpopulations. The choice of sampling method is left
open. For example, each subpopulation could be sampled
offline using VarOpt to select a sample of size equal to its
fair allocation. We now realize Fair Sampling as a reservoir
sampling algorithm when the population is presented as a
stream, and hence the demands (subpopulation sizes) are
not known in advance. Section 4.1 describes a streaming
fair allocation algorithm that adaptively allocates the sam-
pling budget, while Section 4.2 uses sampling as a discard
mechanism when the allocation to a SP is reduced.

4.1 Streaming Fair Allocation
Adapting our previous notation, we now assume that items

arrive in a stream labeled by i = 1, 2, . . . , n, with item i
belonging to subpopulation di ∈ D. From the stream we
wish to select k items in total, with each SP d obtaining
its fair allocation kd of the total slots k. The allocations
are computed progressively as items arrive, so that, after k
initial items have arrived, the allocations at any time will
be exactly consumed by the sampled items; only a single
pass through the data is performed. Our Algorithm 2 can
be summarized as follows: Allocate budget to SPs until ex-
hausted; thereafter accommodate new SPs by decrementing
the allocation of a SP with maximal current allocation.

Algorithm 2: Stream Fair Allocation of a Budget of
Size k

D ← ∅;
while new item in SP d do

if d /∈ D then
include d in D
kd ← 0

kd ← kd + 1
if

∑
d∈D kd > k then

select d∗ ∈ D that maximizes kd∗
kd∗ ← kd∗ − 1

K = {kd : d ∈ D} will denote the generic allocation. Let
X (N, k) denote the feasible allocations of the budget k to
demands N = {nd : d ∈ D} of the subpopulations, and
let Xd(N, k) ⊂ X (N, k) denote those feasible allocations in
which the demand nd is fully satisfied, i.e., kd = nd. Let 1d

denote the unit demand from SP d. N i is the cumulative
demand due to the first i arrivals, i.e., ni

d = #{j ≤ i : dj =
d}. Let Ki = {ki

d : d ∈ D} denote any allocation provided
by Algorithm 2 from the first i items. Notationally, it will be
convenient for D to be the fixed set of all possible demands,
so ki

d = 0 for demands d not represented in the first i items.
Of course, actual implementations need only retain labels
for demands currently represented in the reservoir.

Theorem 2. For each i, Ki is LMMF for the demands
N i = {ni

d : d ∈ D}.
In Algorithm 2, Ki+1 is generated from Ki by composing

two steps. Firstly, the arriving increment to demand nd

is added, then the allocation to one of the largest current
demand nd∗ is decremented. We write these steps as

K 7→ K + 1di+1 7→ K + 1di+1 − 1d∗ (8)

The proof of Theorem 2 proceeds by demonstrating that
each of these two steps, subject to the conditions of our
problem, maintains lexicographic order, as we now state.
We will need the notation ΣK =

∑
d∈D kd. The proofs of

all the theorems are deferred to Section 10.

Theorem 3. Suppose K º K′ and kd ≤ k′d. Then K +
1d º K′ + 1d.

Theorem 4. Let ΣK ≥ ΣK′, K º K′ and d∗ maximize
kd. Then K − 1d∗ º K′ − 1d for all d ∈ D.

4.2 Stream Sampling and Budget Deallocation
Algorithm 2 extends to Stream Fair Sampling by main-

taining a reservoir of size k of selected items. Each arriv-
ing item is added to the reservoir; when an allocation kd∗
is decremented, an item from subpopulation d∗ is deleted
from the reservoir. Although any method that deletes a sin-
gle item could be used, sampling is a natural choice because
the statistical consequences of deletion for estimation can be
controlled. We use VarOpt sampling because it can delete
exactly one item, can be efficiently implemented, and has
minimal average variance for estimation of subset sums of
a given size. For estimating bytes from flow records, the
reported bytes should be used as a sampling weight. Other
applications may be better served by a different assignment
of weight, e..g. uniform weights for estimating flow counts.

We incorporate VarOpt as the discard step for Algo-
rithm 2 as follows. We represent each item in the stream
as a pair (d, w) where d is the subpopulation the item be-
longs to, and w is the weight. D is the set of subpopulations
observed and Ωd is the multiset of weights selected from sub-
population d. The sizes |Ωd| in Algorithm 3 play the same
role as the allocations kd in Algorithm 2. Here we store only
the weights w; obviously, one could store the (d, w) plus any
other information carried by the item.

Algorithm 3: Stream Fair Sampling into a Reservoir of
Size k

D ← ∅;
while new item (d, w) arrives do

if d /∈ D then
include d in D
Ωd ← ∅

include w in Ωd

if
∑

d∈D |Ωd| > k then
select d∗ ∈ D that maximizes |Ωd∗ |
VarOpt|Ωd∗ |−1(Ωd∗)

if |Ωd∗ | = 0 then
remove d∗ from D

Online and offline fair sampling are equivalent in a statis-
tical sense we now discuss. Concerning solely the sampling
aspects, it was shown in [10] that progressively VarOpt
sampling a stream of n items into a reservoir of capacity
k is statistically equivalent to single VarOpt sampling of k
out of n items. It should now be clear the Fair Allocation Al-
gorithm 2 enjoys a similar recurrence property; after n items
have been processed, the final allocations Kn are LMMF for
the demands N . From this it is largely a matter of formalism
to show that the Stream Fair Sampling Algorithm 3 satis-
fies an analogous property. The final sample is equivalent to



Figure 1: Data Structures for allocations kd (in Q0)
and samples (in Q′). Thick arrows map from flow
record demand d to allocation kd in Q0 and onward
to large and small item sets Qd,l, Qd,s ⊂ Q′. Parent to
child mappings within BSTs shown as thin arrows.

one obtained by (i) finding LMMF allocations {kd} for the
demands {nd}, then (ii) making a VarOpt selection of kd

out of nd items for each subpopulation d. The equivalence
is that the distribution of sampled items is the same when
conditioned on obtaining the same LMMF allocations.

5. IMPLEMENTATION AND COSTS
This section describes data structures that can support

Stream Fair Sampling Algorithm 3, and their associated
computational costs per item. Although the collector and
mediator environments are less resource stringent than on a
router, in view of the high arrival rate of flow records, it is
important to demonstrate that Stream Fair Sampling does
not add per item time complexity above that of existing
Undifferentiated Stream Sampling algorithms.

We first review the maintenance of a single VarOptk sam-
ple set from [10]. k +1 storage locations are required, i.e., k
for the items stored, plus 1 for the new item. Each location
stores an item weight, associated properties, and address
pointers needed to maintain the data structure. Summa-
rizing from [10], the data structure comprises two Binary
Search Trees (BSTs) of total size k + 1: Ql which stores
large items (with weight greater than the current threshold
τ) and Qs for the remaining small items. The VarOptk

sampling operation involves refreshing the τ value, selecting
an item for deletion, and transferring any items that change
order with respect to the new threshold, between Ql and
Qs, as appropriate. These operations cost at most O(log k)
per arriving item, amortizing to O(log log k) over k items.

For Fair Sampling, we require a data structure Q0 that
maintains the current allocations {kd : d ∈ D}; see Figure 1.
Q0 is organized as a kd-descending order priority queue Q0

of size |D|, implemented, e.g., as a self-balancing BST. The
computation time for budget allocation is no worse than
O(log |D|) per arriving item. The subpopulation member-
ship represented in each arriving stream item must be mapped
to the associated location in Q0. For a fixed set D of known
subpopulations (e.g., interface identifiers), this mapping can

be generated at initialization. Otherwise, a collision free
hash of the subpopulation label d into Q0 is used.

Finally, we describe the storage of the samples themselves
in a data structure Q′ which maintains VarOpt samples
for all SPs in k + 1 locations. The entry in Q0 for SP d
includes its current sampling threshold τd and two pointers
to the roots of two BSTs, Qd,l and Qd,s, within Q′ that
maintain the large and small items for SP d. A pointer u to
the unused location in Q′ also is maintained. The operation
of Algorithm 3 is then the following:

◦ Insertion: An arriving item with weight w from SP d is
mapped to an the appropriate location in Q0 based on its
SP label d, where the item count is incremented. The item
is then inserted the empty location in Q′, and incorporated
in either Qd,l or Qd,s, depending on the order of its weight
w relative to τd.

◦ Allocation: When storage is full, the SP d∗ whose alloca-
tion is to be decremented is the next item in the priority
queue of Q0. The allocation kd∗ then is decremented.

◦ Sampling: One item from SP d∗ is removed by operation
of VarOpt using the priority queues Qd∗,l and Qd∗,s. The
threshold τd∗ is updated.

◦ Cleanup: The unused-location pointer u is updated. If
kd∗ = 0, the SP label d∗ can be removed from Q0.

Since at most k items are stored from each SP, the operation
of Algorithm 3 on Q′ has the same cost as VarOptk.

To summarize: The allocation cost is O(log |D|), which
is no worse than O(log k) even when then set of SPs D is
not known in advance. The sampling cost is no worse than
O(log k) per item. In a setting where no SP demand is fully
satisfied, each has about k/|D| samples, so the sampling cost
is in fact no worse than O(log k/|D|).

6. EVALUATION: ACCESS ROUTER FLOWS
Access routers are situated at the edge of the ISP net-

work where they provide customer access to the network,
in some cases supporting hundreds of interfaces. Interface
speeds can be diverse, ranging from, e.g., Gigabit Ethernet
(109 bps) down to T1 (1.5×106 bps), i.e., roughly 3 orders
of magnitude. The aim of this section is to illustrate the
relative advantages of Fair Sampling and Undifferentiated
Sampling in serving a generic class of traffic queries over the
different rate interfaces. Actually, this is already determined
by the performance analysis of Theorem 5 in Section 7 fol-
lowing. That result can be used to practically dimension
measurement systems, relating traffic rates, sampling bud-
get, and accuracy goals. Nevertheless, we will confirm its
prediction on our data; see Figure 4 in Section 7.

6.1 Interface Flow Data & Heterogeneity
The evaluation used passive flow measurements on traffic

traversing an access router of a major ISP. Each flow record
summarized a flow that entered the router through one of
240 active customer-facing interfaces and egressed on a sin-
gle uplink into the network core. The flow records, approx-
imately 28.4 Million in all, were compiled without packet
sampling by a standalone device observing the uplink dur-
ing a 24-hour period in 2011. Since the flow records were
not compiled at the access router, they did not report which
router interfaces were traversed. Instead, this was inferred
during preprocessing by longest prefix matching against the
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Figure 2: Byte Relative Estimation Error, Byte
Weighting and average 1 in 24 flow sampling, for
US, PS, FS and CS. 10 minute granularity, spatial
granularity B = 10. Median, 10%-ile, 90-%ile.

forwarding table downloaded periodically from the access
router. This preprocessing stage created a working set of
derived flow records for subsequent use, that contained only
anonymized versions of the IP addresses and interfaces.

The router interface line speed varied over more that three
orders of magnitude. Utilization varied considerably over
time and interfaces, with (non-zero) hourly utilizations vary-
ing over 5 orders of magnitude. Furthermore, large varia-
tions occurred within subsets of equal-speed interfaces. Hence,
line speed is not an effective proxy for actual traffic rates,
instead motivating the distribution of budget according to
actual traffic demands.

This data does not represent all traffic on each access
router interface, since traffic that passes directly between
interfaces on the access router was not measured. However,
the 5 minute average rate of interface traffic derived from
SNMP polling of the access router exhibited similar vari-
ability. Furthermore, substituting forwarding tables from
adjacent time periods during preprocessing scarcely changed
the inferred traffic distribution, so potential staleness of the
interface mapping was not an issue.

6.2 Comparisons and Reference Methods
Our principal comparison of Fair Sampling (FS) is with

the state-of-the-art stream sampling method for completed
flow records, namely Undifferentiated Sampling (US), in
which VarOpt sampling is applied to the whole population
of flow records oblivious of SP membership3. Two other
variants are also considered. Firstly, in Partitioned Sam-
pling (PS), each interface is assigned a fixed-size sampling
budget in a private reservoir. The purpose of this compari-
son is to examine the benefits of differentially allocating the
sampling budget amongst interfaces in isolation from the
benefits of redistributing unused budget between interfaces.

3We restrict comparison to US since it is the method of
flow record sampling on which we wish to improve in prac-
tice. Related methods described in Section 8 instead con-
cern packet sampling, or do not allow direct expression of
balanced accuracy goals over SPs, or address skewness in
flow size rather than in subpopulation size.

Such an approach might conceivably be used if flow records
were sampled separately at each interface. Secondly, the
likely coexistence of FS and US in deployments motivates
using Combined Sampling (CS)—see Section 2.4—to com-
bine the two sample sets obtained from FS and US. This
shows the merits of using both FS and US as opposed to
using only one method but with increased budget.

6.3 Subset Sum Queries and Accuracy
Computing weight sums over subsets of flow records forms

the basis of many complex database queries. One cost of
sampling is reduced accuracy in estimating smaller sums.
Following the accuracy goals stated in Section 3, we frame
our evaluation in terms of the ability to estimate the weight
of subsets of flows representing a fraction β of flows on each
interface. Multiple such subsets were formed by assigning
each occurring anonymized IP local address at random to
one of B bins associated with the interface traversed, i.e.,
with B = 1/β. Let Sd,b denote the subset of flows assigned
to bin b ∈ {1, . . . , B} at interface d. Let Wd,b = W (Sd,b)
denote the corresponding subset sum of flow weights, and

Ŵd,b its unbiased estimator. For occupied bins, the associ-

ated accuracy is the relative error ρd,b = |1− Ŵd,b/Wd,b|.
Rather than focus on particular measurement applica-

tions, we abstract a detection problem: How reliably can
it be detected that a weight sum Wd′,b′ (within a SP d′ of
aggregate weight Wd′) exceeds a weight sum Wd,b (within
a SP d of aggregate weight Wd) by a factor r > 1, i.e.,

Wd′,b′ = rWd,b. We say detection fails when Ŵd′,b′ ≤ Ŵd,b.
We now compute some target detection rates for evalua-

tion, using two bounds. Firstly, variance bounds from Sec-

tion 1.5. of [10] yield Var Ŵd,b ≤ Wd · Wd,b/kd, and sim-
ilarly for (d′, b′). Secondly, Chebyshev’s inequality states
Pr[|Y −E[Y ]| ≥ a] ≤ Var(Y )/a2 for a random variable Y and
a > 0. Combining these, the tail distribution of the relative
errors is bounded as Pr[ρd,b ≥ ε] ≤ q := Wd/(Wd,bkdε2),
while the probability of detection failure is bounded as

Var Wd,b + Var Wd′,b′

(Wd,b −Wd′,b′)2
≤

Wd
kdWd,b

W 2
d,b +

Wd′
kd′Wd′,b′

W 2
d′,b′

(Wd,b −Wd′,b′)2

= p(q, ε, r) := qε2(r2 + 1)/(r − 1)2

Treating for simplicity the tail bound on ρd,b as an approx-
imation, then requiring at most a fraction q of the relative
errors to exceed ε for all d, results in detection failure with
probability roughly p(q, ε, r). As illustrative values, we take
q = 0.1 and ε = 0.5 (the 90%-ile of the relative error is to be
0.5 or less), yielding a detection failure rate of 6% for r = 3.

6.4 Evaluation Parameters

◦ Sample Weighting: Three variants of flow weight for VarOpt
were used: byte, packet, and uniform.

◦ Temporal Granularity: 24 hours data was divided into mea-
surement periods using either 144 windows of 10 minutes,
or 24 windows of 1 hour.

◦ Subset Query Granularity: We report experiments with
B = 10; we found the same qualitative relations amongst the
performance of the sampling methods at B = 100, although
accuracy was generally poorer.

◦ Reservoir Size: We use a constant reservoir size equivalent
to a daily average flow sampling rate of 1 in 24 flows. This is
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Figure 3: Packet Sampling. Relative Estimation Er-
ror for US, PS, FS, and CS. 1/100 packet sampling,
1/16 flow sampling. Packet weighting. Temporal
Granularity 1 hour; Spatial: B = 10. Median, 10%-
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in line with operational values and corresponds to significant
reduction in both storage required and execution time for
flow selection operations in database queries.

6.5 Evaluation Results
The evaluation results are presented as follows: In each

parameter configuration, the experiments generated a collec-
tion of relative error statistics ρd,b over all interfaces d. To
break out the dependence of accuracy on subpopulation size,
the errors ρd,b are grouped according to true weight on their
interfaces represented by the group index g(d) = blog10 Wdc.
We plot the median, 10%-ile, and 90%-ile of the ρd,b values
within each such weight group. In the resulting Rangeplot
the absolute sizes are obfuscated through the adjustment
g(d) 7→ 1 + g(d) − mind′ g(d′). A further comparison mea-
sure between sampling methods is the Improvement Ratio,
the fraction of relative errors ρd,b that are reduced, by a
given sampling method, compared to another.

Figure 2 shows rangeplots of ρd,b for US, PS, FS and CS
under the same total budget. We see immediately:

(i) US is not able to furnish any useful estimates for medium
and smaller weight groups (group 5 and lower).

(ii) FS yields negligible errors (< 10−3) for small weight
groups (2 and below) with error climbing greater than US
for the largest groups, but still within target (i.e., 90%-ile
relative error less than 0.5).

(iii) PS is uniformly worse than FS with error roughly twice
as large for weight groups 4 and above.

(iv) CS provides a good compromise between FS and US,
meeting or nearly meeting accuracy goals in all weight groups.

In terms of improvement ratios, FS improved on US in 84%
of {d, b}, while the reverse held true in only 15% of cases.
CS provided another 5% improvement against US mainly
for a relatively small number of high weight estimates.

Space limitations preclude graphical results on two further
parameter configurations. Firstly, the same general relative

performance between the methods was found for uniformly
weighted (as opposed to byte weighted) sampling. Secondly,
the performance of CS is relatively insensitive to small to
medium changes in the allocation of total budget between
FS and US because (3) de-emphasizes estimates with higher
thresholds τ corresponding to smaller sampling budgets.

7. ANALYSIS & PACKET SAMPLING
In our motivating example from network measurement,

routers often compile flow records from a sampled packet
stream, e.g., in Packet Sampled NetFlow [9]. For this rea-
son, it is important to determine how much packet sampling
offsets the advantages of downstream fair sampling of flow
records for smaller SPs. To this end, we compute the relative
estimation variance for a fraction β of the flows under the
composition of 1 in M packet sampling followed by VarOpt
flow record sampling. This extends some previous work from
[13] which applied to the simpler case of threshold sampling.

Theorem 5. Let S be a subset of flows comprising at
least a fraction β of both bytes and packets in SP d, sub-
ject to 1 in M packet sampling, then VarOpt sampling of
kd flows with byte weighting. Assume Nd total packets from
all original flows in the SP. Then the relative estimation
variance of the total bytes in S is bounded above by:

R2
d(M) = β−1

(
k−1

d + (1 + k−1
d )

(1 + r2)(M − 1)

Nd

)
(9)

with r2 the relative variance of the packet size distribution.

For system dimensioning, bounds on the relative variances
of Undifferentiated (resp. Fair) Sampling are obtained by

inserting k
[abs]
d (resp. k

[rel]
d ) from Theorem 1 into (9). In

fact, for Fair Sampling, using k/|D| in place of k
[rel]
d suffices.

We now establish the regime in which Fair Sampling is
advantageous even after packet sampling. Recall from The-
orem 1 the relative variance for flow record sampling alone
is about R2

d(1) = 1/(βkd). Assuming for simplicity that all
demands can use their allocation, then Fair Sampling sets
kd = k/|D| while Undifferentiated Sampling has kd = knd/n
on average, leading to lower relative variance for Fair Sam-
pling when nd ≤ n/|D|, or equivalently taking Nd propor-
tional to nd, when Nd ≤ Ntot/|D|, where Ntot =

∑
d Nd is

the total number of packets on all subpopulations.
But unless, due to packet sampling, the second term in

(9) is smaller than the first for kd = k
[rel]
d , then estimation

variance of packet sampling will dominate that of flow sam-
pling for all d where Fair Sampling has lower variance than
Undifferentiated Sampling. Summarizing, SPs d for which

(1 + r2)Mk/|D| < Nd < Ntot/|D| (10)

can expect to see a benefit from Fair Sampling. (Here we
have simplified for k, M À 1). This requires the range of
possible Nd be non-empty, i.e., (1 + r2)k < Ntot/M . To
conclude: For Fair Sampling to benefit after packet sam-
pling, the aggregate number of packets sampled in packet
sampling must exceed (1 + r2) times the capacity for flows
in the sampling reservoir.

To confirm the impact of packet sampling on estimation
accuracy, we repeated the experiments of Section 6 but simu-
lating 1 in M=100 packet sampling prior to flow sampling at
an average rate on 1 in 16. Since the flow data did not con-
tain the byte sizes of individual packets, estimation focused
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instead on the number of packets in each subset Sd,b, using
the number of sampled packets reported in a flow record as
its sampling weight. Figure 3 compares US, PS, FS, and CS,
with relative errors computed w.r.t. to the original stream
before packet sampling. All methods perform badly (with
relative error around 1 or greater) for small weights (groups
1–3), where only a few flows survive packet sampling. FS
is more accurate than US for medium weight groups (4–6).
Only CS and FS retain acceptable or near acceptable per-
formance over weight groups 4 and higher. Estimation with
FS improved on US in 46% of cases.

We now relate this behavior to the analysis of the useful
regime for FS above. There were approximately N = 20
Million packets per hour, distributed over |D| = 240 active
interfaces, with k = 10, 000 sampled flows per hour after 1 in
M = 100 packet sampling. Thus from (10), using r = 1, we
expect FS to improve accuracy for interface d if its hourly
packet arrival rate Nd obeys: 8.4 × 103 < Nd < 8.7 × 105.
There were 80 such interfaces, comprising 1/3 of the total.

As a check on the predictive utility of (9) we computed the
ratio ρd,b/Rd over all sets Sd,b, using the actual fraction β
rather than the targets 1/B. The ratio should be distributed
around or less than 1. This is confirmed in Figure 4 with
boxplots of ρd,b/Rd for FS and US in the configurations of
Figure 2 and 3.

8. RELATED WORK
The general problem of fair resource allocation has at-

tracted much attention in the networking context and be-
yond. There is extensive literature involving fairness in
scheduling algorithms; see e.g., [2, 24, 30]. More recently,
this approach has focused on developing areas of network
management, including bandwidth allocation in wireless tech-
nologies, see e.g., [37], routing policy [31, 25], and ramifica-
tions of the choice of fairness criteria bandwidth sharing and
congestion in the internet; see e.g., [23]. Some recent work
that examines fairness properties of packet discard mecha-
nisms seem somewhat suggestive of our approach [22, 27];
likewise for a recent approach to resource allocation in sen-

sor networks [8]. However, these appear not to be directly
applicable to our problem domain.

A number of papers have dealt with the differential allo-
cation of packet sampling resources over individual flows. A
starting point for these is Sample and Hold [17] in which
packets are uniformly sampled, but a packet with a cur-
rent cached key always is selected. Sketch Guided Sampling
[26] and more recent implementations [40] counteract the in-
herent tendency of Sample and Hold to preferentially select
longer flows, by decreasing the probability that a packet is
sampled according to the currently measured flow length.
The probability is chosen to uniformize the relative estima-
tion error of different length flows. Our work is reminiscent
of this general idea but different: We seek to minimize the
average relative estimation error from general purpose sam-
ples of flow records of drawn from SPs of different volumes.

FlexSample [33] is a system for allocating a per-packet
sampling budget over traffic SPs, including low-volume SPs,
that match criteria set via a configuration language. Al-
though the high-level motivation similar to ours, the de-
tailed aims and context are different and lead to differ-
ent approaches, as we now explain. Targeting the tight
storage constraints of the router context, FlexSampling is
bufferless—both packet selection and discard are final—with
SP sampling probabilities dynamically adjusted according to
smoothed past traffic rates. Unlike Fair Sampling, FlexSam-
pling does not express quantitative accuracy goals for SP
estimation; rather, these would depend on the SP sizes and
whatever sampling probabilities the user specifies. Fair Sam-
pling aims to yield general purpose SP flow summaries in the
more resource relaxed environment typical of mediators and
collectors. It does not sample packets. Working with a reser-
voir of provisional samples, Fair Sampling probabilities are
determined by actual arrivals as a function of estimation ac-
curacy goals. Being rate adaptive, FlexSampling distributes
it budget allocation non-uniformly over the packets within
a given SP, an effect which will be more pronounced after
bursts of arrivals within the smoothing timescale. In con-
trast, Fair Sampling is uniform per unit of flow weight within
each SP. Finally, the implementation of Fair Sampling is rel-
atively simple compared with FlexSampling because it does
not estimate SP rates.

Three other recent papers have dealt with broader issues
of distributing sampling budget for network measurement
over multiple locations. [35] and [5] considered the problem
of setting rates for independent sampling in order to maxi-
mize a total utility of packets being sampled at least once.
cSamp [34] uses a hash-based selection on flow keys to im-
plicitly coordinate sampling over multiple locations in order
to both partition resources over SPs and avoid duplicate
measurement at different observation points.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed Fair Sampling as a new ap-

proach to sampling flow records derived from rate heteroge-
neous subpopulations of traffic, e.g., across different inter-
faces of an access router, or different applications. Max-Min
Fair Allocation of the sampling budget was shown to be op-
timal for minimizing average relative estimation error over
SPs of flow records generated by the different traffic compo-
nents. Fair Sampling is simple, flexible and performs better
than a fixed partitioning of the reservoir. Compared with
undifferentiated sampling, it greatly improves estimation ac-



curacy for all but the largest traffic components while being
no more computationally complex. A combined estimator
reduced relative error in 89% of cases.

General collection and analysis infrastructures can have
a complex structure in which selection of an item can, in
conjunction with other items, trigger downstream usage of
limited resources for analysis or even further measurements.
This motivates a methodological extension of fair sampling
to a network of budget nodes shared by subpopulations, with
items subject to resampling at multiple nodes.

10. PROOFS OF THEOREMS
Proof of Theorem 1. (i) minimize

∑
d V (nd, kd, βnd)/|D|

= |D|−1 ∑
d β(n2

d/kd − 1/nd) under the constraints on the
kd. This is equivalent to

min :
∑

d n2
d/kd

such that : 0 ≤ kd ≤ nd,
∑

d kd ≤ k
(11)

Since k → 1/k is convex, an elementary convex optimization
yields that kd is proportional to nd, and hence kd = knd/n.
The statement concerning the ratio of variance follows be-

cause V (nd, k
[abs]
d , md) = md(nd/k

[abs]
d −1) = md(n/k−1) =

V (n, k, md).
(ii) We minimize |D|−1 ∑

d V (nd, kd, βnd)/(βnd)2 =
(|D|β)−1 ∑

d(1/kd − 1/nd) under the constraints on the kd.
This is equivalent to

min :
∑

d 1/kd

such that : 0 ≤ kd ≤ nd,
∑

d kd ≤ k
(12)

In the absence of the constraint kd ≤ nd, an elementary con-
vex optimization would yield the solution the kd is indepen-
dent of |D| and hence kd = k/|D|. But when k/|D| > nd′

for the d′ of minimal nd′ , this would result in a sampling
probability pd′ > 1, Instead we instead set kd′ = nd′ , the
repeat the optimization after removing the “small” interface
d′ from the sum and depleting the sampling resources from k
to k−nd′ . We repeat until no small interfaces remain. (This
must happen since n > k). Finally observe that the proce-
dure we have described is just the usual progressive filling
algorithm to compute the Max-Min Fair allocation of total
resources k over the demands {nd}. For “small” interfaces
j whose demand is fully satisfied, the estimation variance is
zero (all flows are sampled). The remaining interfaces are
allocated at least k/|D|, hence the bound follows.

Proof of Theorem 5. Let Φd denote the flows on in-
terface d, and S ⊂ Φd the subset of interest. wi is the byte
size of flow i, ŵi its estimate after packet sampling, and ŷi

the estimate of ŵi after flow sampling. By Lemma 1 in [13]:

Var(ŷi) ≤ E[ŵiτ̂ ] + Var(ŵi) (13)

where τ̂ is now a random threshold for VarOpt that de-
pends on all {ŵi : i ∈ Φd}. Setting Ŵd =

∑
i∈Φd

wi:

kd =
∑
i∈Φd

min{1, ŵi/τ̂} ≤ Ŵd/τ̂ (14)

Thus E[ŵiτ̂ ] ≤ k−1
d E[ŵiŴd] = k−1

d (wiWd + Var(ŵi)). Thus
so far Var(ŷi) ≤ k−1

d wiWd + (1 + k−1
d ) Var ŵi.

A standard argument (see [13]) yields Var(ŵi) = (M −
1)

∑
j x2

j , summing over the sizes xj of packets j in flow i.

From the negative covariance property of VarOpt:

R2
d =

Var(
∑

i∈S ŷi)

W (S)2
≤ k−1

d

Wd

W (S)
+ (1 + k−1

d )

∑S
j x2

j

W (S)2

with
∑S

j the sum over all N(S) packets from S. The result

follows since
∑S

j x2
j/W (S)2 = N(S)−1x2/(x)2.

Proof of Theorem 2. Trivially Ki = N i is LMMF for
i = 1, . . . , k since it majorizes elementwise any feasible allo-
cation of k. Henceforth we consider i ≥ k and proceed by
induction. We first show that Ki+1 º Ki. Write the non-
decreasing ordered elements of T (Ki) as ki

(1), ..., k
i
(|D|). The

index of an element k of K will refer to its position in the
vector K. The rank r(k) of the element k is the lowest index
of all elements with the same value k. Let Di

∗ denote the set
of demands that maximize d 7→ ki

d + (1di+1)d. If di+1 ∈ Di
∗

then T (Ki+1) = T (Ki) and we are done.
Assume now that di+1 /∈ Di

∗. Write a for rank of ki
(di+1)

in T (Ki), and b for the rank of 1 + ki
di+1 is T (Ki+1). Then

T (Ki+1)(j) = ki
(j+1) ≥ ki

(j) for j = a, . . . b−1 while T (Ki+1)(b) =

1 + k(a) ≥ ki
(b), all lower index elements being unchanged.

Because ki+1
b = 1+ki

a, the strict inequality ki+1
a′ > ki

a′ must

hold for some a′ ∈ {a, . . . , b} and hence Ki+1 Â Ki. Now
X (N i, k) ⊂ X (N i+1, k) since ni

d ≤ ni+1
d for all d ∈ D. Hence

for each K ∈ X (N i, k) we have shown that Ki+1 Â Ki º K.
It remains only to show that Ki+1 º K′ for all K′ ∈

X (N i+1, k) \ X (N i, k). Any such K′ must be an element
of Xdi+1(N i+1, k), since, if not, k′di+1 ≤ ni+1

di+1 = ni
di+1 − 1

which would mean K′ ∈ X (N i, k). Hence K′ = K +1di+1 −
1d for some K ∈ Xdi+1(N i, k) and d 6= di+1 ∈ D. Thus it
suffices to show that:

(i) Ki + 1di+1 º K + 1di+1 for any K ∈ Xdi+1(N i, k).
This follows from Theorem 3 since we assume Ki º K
for any K ∈ X (N i, k).

(ii) Ki + 1di+1 − 1d∗ º K + 1di+1 − 1d for any K ∈
Xdi+1(N i, k), d∗ ∈ Di

∗ and d ∈ D. Given (i), this
follows from Theorem 4

Proof of Theorem 3. Let a = min{i : k(i) > k′(i)}, so

that k(j) = k′(j) for j < i. Case: k(a) < kd. Since k(a) <

kd ≤ kd′ , then T (K + 1d)(i) = k(i) and T (K′ + 1d)(i) = k′

for i ≤ a. Hence K + 1d º K′ + 1d.
Case: k(a) = kd. Since k′d ≥ kd = ka > k′(a) ≥ k′(i) for

i < a, d is not one of the a lowest ranked demands of K′.
Hence T (K′ + 1d)(i) = T (K′)(i) for i ≤ a and K + 1d º
K′ + 1d.

Case: k(a) > kd. Since k′d ≥ kd, and k(i) = k′(i) for

i < a, the rank r′ of k′d in T (K′) is no less than the rank r
of kd in T (K). If k′d = kd then r = r′, and T (K + 1d)(i) =
T (K +′ 1d)(i) for all i < a, except for the possible boundary
case k′d = k′(a−1) = k′(a). In this case T (K+1d)(i) = T (K′)(i)
for all i < a, the addition of 1d to K′ yielding an increment
of the a-ranked item. The corresponding increment to K
is located at its (a − 1)-ranked item since k(a) > k′(a) =

k′(a−1) = k(a−1) and so T (K + 1d)(i) = T (K′ + 1d)(i) for

i < a − 1 while T (K + 1d)(a−1) > T (K′ + 1d)(a−1). Hence
K +1d º K′+1d. A similar argument holds if k′d > kd.

Proof of Theorem 4. Case: k(a) < kd∗ .. Subtract-
ing 1d∗ from K leaves its a lowest ranked elements un-
changed, and hence K − 1d∗ º K′ º K′ − 1d.



Case: k(a) = kd∗ .. The effect of subtracting 1d∗ from
K is to decrement the rank a element. Thus if the rank of k′d
in K′ is ≤ a, then T (K′− 1d)(i) < T (K)(i) = T (K − 1d∗)(i)
for one i ∈ {1, . . . , a − 1} and possibly also for i = a, with
equality for all other i ∈ {1, . . . , a−1} and the result follows.

If the rank of k′d in K′ is > a, we are done except if possibly
k′(a) takes the maximum value compatible with K Â K′,
namely kd∗ − 1, for then the first k elements of T (K − 1d∗)
and T (K′ − 1d) are equal. But then the assumption ΣK ≥
ΣK′ implies Σj>ak′(j) ≤ 1 + Σj>akd∗ . We consider the case

of equality first; the unequal case follows easily. Since k′(a′) ≥
k′(a) = kd∗ − 1 for a′ > a, either k′(a′) = kd∗ − 1 < k(a) holds

for a′ in some set {a + 1, a + 2, . . . , ã}, in which case we are
done, or it holds for no such a′. In this latter case, k′(a′) =

kd∗ for all a′ > a except for k′(|D| = kd∗ + 1. Decrementing

the largest of these yields T (K + 1d∗) = T (K′ + 1d) while
decrementing any other yields K + 1d∗ Â K′ + 1d.
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