
Stream sampling for variance-optimal estimation of subset sums

Edith Cohen∗ Nick Duffield∗ Haim Kaplan† Carsten Lund∗ Mikkel Thorup∗

Abstract

From a high volume stream of weighted items, we want

to maintain a generic sample of a certain limited size

k that we can later use to estimate the total weight of

arbitrary subsets. This is the classic context of on-line

reservoir sampling, thinking of the generic sample as a

reservoir. We present an efficient reservoir sampling scheme,

VarOptk, that dominates all previous schemes in terms

of estimation quality. VarOptk provides variance optimal

unbiased estimation of subset sums. More precisely, if we

have seen n items of the stream, then for any subset size

m, our scheme based on k samples minimizes the average

variance over all subsets of size m. In fact, the optimality is

against any off-line scheme with k samples tailored for the

concrete set of items seen. In addition to optimal average

variance, our scheme provides tighter worst-case bounds on

the variance of particular subsets than previously possible. It

is efficient, handling each new item of the stream in O(log k)

time, which is optimal even on the word RAM. Finally, it

is particularly well suited for combination of samples from

different streams in a distributed setting.

1 Introduction

In this paper we focus on sampling from a high volume
stream of weighted items. The items arrive faster and
in larger quantities than can be saved, so only a sample
can be stored efficiently. We want to maintain a generic
sample of a certain limited size that we can later use to
estimate the total weight of arbitrary subsets.

This is a fundamental and practical problem. In [14]
this is the basic function used in a database system for
streams. Such a sampling function is now integrated in a
measurement system for Internet traffic analysis [8]. In
this context, items are records summarizing the flows of
IP packets streaming by a router. Queries on selected
subsets have numerous current and potential applica-
tions, including anomaly detection (detecting unusual
traffic patterns by comparing to historic data), traffic
engineering and routing (e.g., estimating traffic volume
between Autonomous System (AS) pairs), and billing

∗AT&T Labs—Research, 180 Park Avenue, NJ 07932, USA
(email: (edith,duffield,lund,mthorup)@research.att.com).

†School of Computer Science, Tel Aviv University, Tel Aviv,
Israel (email: haimk@cs.tau.ac.il)

(estimating volume of traffic to or from a certain source
or destination). It is important that we are not con-
strained to subsets known in advance of the measure-
ments. This would preclude exploratory studies, and
would not allow a change in routine questions to be
applied retroactively to the measurements. A striking
example where the selection is not known in advance
was the tracing of the Internet Slammer Worm [16]. It
turned out to have a simple signature in the flow record;
namely as being udp traffic to port 1434 with a packet
size of 404 bytes. Once this signature was identified,
the worm could be studied by selecting records of flows
matching this signature from the sampled flow records.

We introduce a new sampling and estimation
scheme for streams, denoted VarOptk, which selects
k samples from n items. VarOptk has several impor-
tant qualities: All estimates are unbiased. The scheme
is variance optimal in that it simultaneously minimizes
the average variance of weight estimates over subsets
of every size m < n. The average variance optimality
is complemented by optimal worst-case bounds limiting
the variance over all combinations of input streams and
queried subsets. These per-subset worst-case bounds
are critical for applications requiring robustness and
for the derivation of confidence intervals. Furthermore,
VarOptk is fast. It handles each item in O(log k)
worst-case time, and O(1) expected amortized time for
randomly permuted streams.

In Section 5 (Figure 1) we demonstrate the esti-
mation quality of VarOptk experimentally via a com-
parison with other reservoir sampling schemes on the
Netflix Prize data set [18]. With our implementation
of VarOptk, the time to sample 1,000 items from a
stream of 10,000,000 items was only 7% slower than the
time required to read them.

Ignoring the on-line efficiency for streams, there
has been several schemes proposed that satisfy the
above variance properties both from statistics [2, 25]
and indirectly from computer science [21]. Here we
formulate the sampling operation VarOptk as a general
recurrence, allowing independent VarOptk samples
from different subsets to be naturally combined to
obtain a VarOptk sample of the entire set. The
schemes from [2, 25] fall out as special cases, and we get
the flexibility needed for fast on-line reservoir sampling

from a stream. The nature of the recurrence is also
perfectly suited for distributed settings.

Below we define the above qualities more precisely
and present an elaborate overview of previous work.

1.1 Reservoir sampling with unbiased estima-
tion The problem we consider is classically known as
reservoir sampling [15, pp. 138–140]. In reservoir sam-
pling, we process a stream of (weighted) items. The
items arrive one at the time, and a reservoir maintains
a sample S of the items seen thus far. When a new
item arrives, it may be included in the sample S and
old items may be dropped from S. Old items outside
S are never reconsidered. We think of estimation as
an integral part of sampling. Ultimately, we want to
use a sample to estimate the total weight of any subset
of the items seen so far. Fixing notation, we are deal-
ing with a stream of items where item i has a positive
weight wi. For some integer capacity k ≥ 1, we main-
tain a reservoir S with capacity for at most k samples
from the items seen thus far. Let [n] = {1, . . . , n} be
the set of items seen. With each item i ∈ S we store a
weight estimate ŵi, which we also refer to as adjusted
weight. For items i ∈ [n] \ S we have an implicit zero
estimate ŵi = 0. We require these estimators to be un-
biased in the sense that E[ŵi] = wi. A typical example
is the classic Horvitz-Thompson estimator [13] setting
ŵi = wi/ Pr[i ∈ S] if i ∈ S.

Our purpose is to estimate arbitrary subset sums
from the sample. For any subset I ⊆ [n], we let
wI and ŵI denote

∑
i∈I wi and

∑
i∈I ŵi, respectively.

By linearity of expectation E[ŵI] = wI . Since all
unsampled items have 0 estimates, we get ŵI∩S = ŵI .
Thus ŵI∩S , the sum of the adjusted weights of items
from the sample that are members of I, is an unbiased
estimator of wI .

Reservoir sampling thus addresses two issues:

• The streaming issue [17] where with limited memory
we want to compute a sample from a huge stream
that passes by only once.

• The incremental data structure issue of maintaining
a sample as new weighted items are inserted. In our
case, we use the sample to provide quick estimates of
sums over arbitrary subsets of the items seen thus far.

Reservoir versions of different sampling schemes are
presented in [3, 5, 10, 12, 11, 27].

1.2 Off-line sampling When considering the qual-
ities of the sample, we compare our on-line scheme,
VarOptk, with a powerful arbitrary off-line sampling
scheme which gets the n weighted items up front, and
can tailor the sampling and estimation freely to this

concrete set, not having to worry about efficiency or
the arrival of more items. The only restriction is the
bound k on the number of samples. More abstractly,
the off-line sampling scheme is an arbitrary probability
distribution Ω over functions ŵ : [n] → R from items i to
weight estimates ŵi which is unbiased in the sense that
Eŵ←Ω[ŵi] = wi, and which has at most k non-zeros.

1.3 Statistical properties of target The sampling
scheme we want should satisfy some classic goals from
statistics. Below we describe these goals. Later we will
discuss their relevance to subset sum estimation.

(i) Inclusion probabilities proportional to size
(ipps). To get k samples, we want each item i to be
sampled with probability pi = kwi/w[n]. This is not
possible if some item j has more than a fraction k of
the total weight. In that case, the standard is that
we include j with probability pj = 1, and recursively
ipps sample k− 1 of the remaining items. The included
items are given the standard Horvitz-Thompson esti-
mate ŵi = 1/pi.

Note that ipps only considers the marginal distribu-
tion on each item, so many joint distributions are pos-
sible and in itself, it only leads to an expected number
of k items.

(ii) Sample contains at most k items. Note that
(i) and (ii) together implies that the sample contains
exactly min{k, n} items.

(iii) No positive covariances between distinct ad-
justed weights.
From statistics, we know several schemes satisfying the
above goals (see, e.g., [2, 25]), but they are not efficient
for on-line reservoir sampling. In addition to the above
goals, VarOptk estimates follow standard Chernoff
bounds, and we will elaborate on that in the full version
of this paper.

1.4 Average variance optimality Below we will
discuss some average variance measures that are auto-
matically optimized by goal (i) and (ii) above.

When n items have arrived, for each subset size
m ≤ n, we consider the average variance for subsets
of size m ≤ n:

Vm = EI⊆[n],|I|=m [Var[ŵI]] =

∑
I⊆[n],|I|=m [Var[ŵI]](

n
m

) .

Our VarOptk scheme is variance optimal in the follow-
ing strong sense. For each reservoir size k, stream prefix
of n weighted items, and subset size m, there is no off-
line sampling scheme with k samples getting a smaller
average variance Vm than our generic VarOptk.

The average variance measure Vm was introduced

in [23] where it was proved that

Vm =
m

n

(
n−m

n− 1
ΣV +

m− 1
n− 1

V Σ
)

,(1.1)

Here ΣV is the sum of individual variances while V Σ is
the variance of the estimate of the total, that is,

ΣV =
∑

i∈[n]

Var[ŵi] = nV1

V Σ = Var[
∑

i∈[n]

ŵi] = Var[ŵ[n]] = Vn.

It follows that we minimize Vm for all m if and only if
we simultaneously minimize ΣV and V Σ, which is what
VarOptk does. The optimal value for V Σ is 0, meaning
that the estimate of the total is exact.

Let Wp denote the expected variance of a random
subset including each item i independently with some
probability p. It is also shown in [23] that Wp =
p ((1− p)ΣV + pV Σ). So if we simultaneously minimize
ΣV and V Σ, we also minimize Wp. It should be
noted that both ΣV and V Σ are known measures from
statistics (see, e.g., [20] and concrete examples in the
next section). It is the implications for average variance
over subsets that are from [23].

With no information given about which kind of
subsets are to be estimated, it makes most sense to
optimize average variance measures like those above
giving each item equal opportunity to be included in the
estimated subset. If the input distributions are not too
special, then we expect this to give us the best estimates
in practice, using variance as the classic measure for
estimation quality.

Relation to goals (i) and (ii) It is standard
knowledge from statistics that the ipps from goal (i) are
the unique inclusion probabilities that minimize ΣV .
(see, e.g., [20, p. 86] for the case of no dominant items,
or [10] for the general case). It is also easy to verify
that conditioned on (i), goal (ii) is equivalent to V Σ = 0
(again this appears to be standard, but we couldn’t find
the general statement, The argument is trivial though.
Given the (i), the only variability in the weight estimates
returned is in the number of sampled estimates of value
τ , so the estimate of the total is variable if and only if
the number of samples is variable). The classic goals (i)
and (ii) are thus equivalent to minimizing the average
variances of this subsection.

1.5 Worst-case robustness In addition to minimiz-
ing the average variance, VarOptk has some compli-
mentary worst-case robustness properties, limiting the
variance for every single (arbitrary) subset. We note
that any such bound has to grow with the square of a

scaling of the weights. This kind of robustness is im-
portant for applications seeking to minimize worst-case
vulnerability. The robustness discussed below is all a
consequence of the ipps of goal (i) combined with the
non-positive covariances of goal (iii).

With the Horvitz-Thompson estimate, the vari-
ance of item i is w2

i (1/pi − 1). With ipps sampling,
pi ≥ min{1, kwi/w[n]}. This gives us the two bounds
Var[ŵi] < wiw[n]/k and Var[ŵi] < (w[n]/(2k))2 (for the
second bound note that pi < 1 implies wi < w[n]/k).
Both of these bounds are asymptotically tight in that
sense that there are instances for which no sampling
scheme can get a better leading constant. More pre-
cisely, the bound Var[ŵi] < wiw[n]/k is asymptotically
tight if every i has wi = o(w[n]/k), e.g., when sam-
pling k out of n units, the individual variance we get is
(n/k) − 1. The bound (w[n]/(2k))2 is tight for n = 2k
unit items. In combination with the non-positive co-
variances of goal (iii), we get that every subset I has
weight-bounded variance Var[ŵI] ≤ wIw[n]/k, and car-
dinality bounded variance Var[ŵI] ≤ |I|(w[n]/2k)2.

1.6 Efficient for each item With VarOptk we
can handle each new item of the stream in O(log k)
worst-case time. In a realistic implementation with
floating point numbers, we have some precision ℘ and
accept an error of 2−℘. If the stream is viewed as a
random permutation of the items, we will show that
the expected cost per item is only constant.

In the full version of this paper, for worst-case
streams, we will include a matching Ω(log k) lower
bound on the worst-case time on the word RAM for any
floating point implementation of a reservoir sampling
scheme with capacity for k samples which minimizes
ΣV . Complementing that we will show that it is
possible to handle each item in O(log log k) amortized
time.

1.7 Known sampling schemes We will now discuss
known sampling schemes in relation to the qualities of
our new proposed scheme:

• Average variance optimality of Section 1.4 following
from goal (i) and (ii).

• The robustness of Section 1.5 following from goal (i)
and (iii).

• Efficient reservoir sampling implementation with ca-
pacity for at most k samples; efficient distributed im-
plementation.

The statistics literature contains many sampling
schemes [20, 26] that share some of these qualities, but
then they all perform significantly worse on others.

Uniform sampling without replacement In
uniform sampling without replacement, we pick a sam-
ple of k items uniformly at random. If item i is sam-
pled it gets the Horvitz-Thompson weight estimate ŵi =
win/k. Uniform sampling has obvious variance prob-
lems with the frequently-occurring heavy-tailed power-
low distributions, where a small fraction of dominant
items accounts for a large fraction of the total weight
[1, 19], because it is likely to miss the dominant items.

Probability proportional to size sampling
with replacement (ppswr) In probability propor-
tional to size sampling (pps) with replacement (wr),
each sample Sj ∈ [n], j ∈ [k], is independent, and
equal to i with probability wi/w[n]. Then i is sampled
if i = Sj for some j ∈ [k]. This happens with probabil-
ity pi = 1 − (1 − wi/w[n])k, and if i is sampled, it gets
the Horvitz-Thompson estimator ŵi = wi/pi. Other es-
timators have been proposed, but we always have the
same problem with heavy-tailed distributions: if a few
dominant items contain most of the total weight, then
most samples will be copies of these dominant items. As
a result, we are left with comparatively few samples of
the remaining items, and few samples imply high vari-
ance no matter which estimates we assign.

Probability proportional to size sampling
without replacement (ppswor) An obvious im-
provement to ppswr is to sample without replacement
(ppswor). Each new item is then chosen with proba-
bility proportional to size among the items not yet in
the sample. With ppswor, unlike ppswr, the probabil-
ity that an item is included in the sample is a compli-
cated function of all the item weights, and therefore the
Horvitz-Thompson estimator is not directly applicable.
A ppswor reservoir sampling and estimation procedure
is, however, presented in [5, 4, 6].

Even though ppswor resolves the “duplicates prob-
lem” of ppswr, we claim here a negative result for any
ppswor estimator: in the full version of this paper,
we will present an instance for any sample size k and
number of items n such that any estimation based on
up to k + (ln k)/2 ppswor samples will perform a fac-
tor Ω(log k) worse than VarOptk for every subset size
m. This is the first such negative result for the classic
ppswor besides the fact that it is not strictly optimal.

Ipps Poisson sampling It is more convenient to
think of ipps sampling in terms of a threshold τ . We
include in the sample S every item with weight wi ≥ τ ,
using the original weight as estimate ŵi = wi. An
item i with weight wi < τ is included with probability
pi = wi/τ , and it gets weight estimate τ if sampled.

For an expected number of k samples, we use τ = τk

satisfying
∑

i

pi =
∑

i

min{1, wi/τk} = k.(1.2)

This τk is unique if k < n. For k ≥ n, we define τk = 0
which implies that all items are included. This threshold
centric view of ipps sampling is taken from [9].

If the threshold τ is given, and if we are satisfied
with Poisson sampling, that is, each item is sampled in-
dependently, then we can trivially perform the sampling
from a stream. In [10] it is shown how we can adjust
the threshold as samples arrive to that we always have
a reservoir with an expected number of k samples, satis-
fying goal (i) for the items seen thus far. Note, however,
that we may easily violate goal (ii) of having at most k
samples.

Since the items are sampled independently, we have
zero covariances, so (iii) is satisfied along with the all
the robustness of Section 1.5. However, the average
variance of Section 1.4 suffers. More precisely, with
zero covariances, we get V Σ = ΣV instead of V Σ = 0.
From (1.1) we get that for subsets of size m, the average
variance is a factor (n − 1)/(n − m) larger than for a
scheme satisfying both (i) and (ii). Similarly we get that
the average variance W 1

2
over all subsets is larger by a

factor 2.
Priority sampling Priority sampling was intro-

duced in [10] as a threshold centric scheme which is tai-
lored for reservoir sampling with k as a hard capacity
constraint as in (ii). It is proved in [22] that priority
sampling with k + 1 samples gets as good ΣV as the
optimum obtained by (i) with only k samples. Priority
sampling has zero covariances like the above ipps Pois-
son sampling, so it satisfies (iii), but with V Σ = ΣV it
has the same large average variance for larger subsets.

Satisfying the goals but not with efficient
reservoir sampling As noted previously, there are
several schemes satisfying all our goals [2, 25, 21],
but they are not efficient for reservoir sampling or
distributed data. Chao’s scheme [2] can be seen as a
reservoir sampling scheme, but when a new item arrives,
it computes all the ipps probabilities from scratch in
O(n) time, leading to O(n2) total time. Tillé [25]
has off-line scheme that eliminates items from possibly
being in the sample one by one (Tillé also considers
a complementary scheme that draws the samples one
by one). Each elimination step involves computing
elimination probabilities for each remaining item. As
such, he ends up spending O((n − k)n) time (O(kn)
for the complementary scheme) on selecting k samples.
Srinivasan [21] has presented the most efficient off-line
scheme, but cast for a different problem. His input are
the desired inclusion probabilities pi that should sum

to k. He then selects the k samples in linear time by
a simple pairing procedure that can even be used on-
line. However, to apply his algorithm to our problem,
we first need to compute the ipps probabilities pi, and to
do that, we first need to know all the weights wi, turning
the whole thing into an off-line linear time algorithm.
Srinivasan states that he is not aware of any previous
scheme that can solve his task, but using his inclusion
probabilities, the above mentioned older schemes from
statistics [2, 25] will do the job, albeit less efficiently.
We shall discuss our technical relation to [2, 25] in more
detail in Section 2.3. Our contribution is a scheme
VarOptk that satisfies all our goals (i)–(iii) while being
efficient reservoir sampling from a stream, processing
each new item in O(log k) time.

2 VarOptk

By VarOptk we will refer to any scheme satisfying our
goals (i)–(iii) that we recall below.

(i) Ipps. The sampling probabilities pi are thus defined
via τk from (1.2), referred to as the threshold when k
and the weights are given.

(ii) At most k samples.

(iii) No positive covariances.

Recall that these properties imply all variance qualities
mentioned in the introduction. As mentioned in the
introduction, our concrete VarOptk scheme will also
admit standard Chernoff bounds even though these are
not implied by (i)–(iii). We will elaborate on this in the
full version of this paper.

As mentioned in the introduction, a clean design
that differentiates our VarOptk scheme from preced-
ing schemes is that we can just sample from samples
without relying on auxiliary data. To make sense of
this statement, we let all sampling scheme operate on
some adjusted weights, which initially are the original
weights. When we sample some items with adjusted
weight, we use the resulting weight estimates as new
adjusted weights, treating them exactly as if they were
original weights.

2.1 A general recurrence Our main contribution is
a general recurrence. Let I1, ..., Im disjoint non-empty
sets of weighted items, and k1, ..., km be integers each
at least as large as k. Then

VarOptk(
⋃

x∈[m]

Ix) = VarOptk(
⋃

x∈[m]

VarOptkx(Ix))

(2.3)
This general recurrence is useful in, say, a distributed
setting, where the sets Ix are at different locations and

only local samples VarOptkx(Ix) are forwarded to the
take part in the global sample.

2.2 Specializing to reservoir sampling To make
use of (2.3) in a streaming context, first as a base case,
we assume an implementation of VarOptk(I) when I
has k +1 items, denoting this procedure VarOptk,k+1.
This is very simple and has been done before in [2, 25].
Specializing (2.4) with m = 2, k1 = k2 = k, I1 =
{1, ..., n− 1} and I2 = {n}, we get

VarOptk([n]) = VarOptk,k+1(VarOptk([n−1])∪{n}).
(2.4)
With (2.4) we immediately get a VarOptk reservoir
sampling algorithm: the first k items fill the initial
reservoir. Thereafter, whenever a new item arrives, we
add it to the current reservoir sample, which becomes of
size k+1. Finally we apply VarOptk,k+1 sample to the
result. In the application of VarOptk,k+1 we do not
distinguish between items from the previous reservoir
and the new item.

2.3 Relation to Chao’s and Tillé’s procedures
When we use (2.4), we generate exactly the same
distribution on samples as that of Chao’s procedure
[2]. However, Chao does not use adjusted weights.
Instead, when a new item n arrives, he computes the
new ipps probabilities using the iterative formulation
from statics: if some item contains more than a fraction
1/k of the total weight, we include it and sample k − 1
of the remaining items. This iterative computation
involves all the original weights even if we are only want
the inclusion probability of a given item. Comparing
the new and the previous probabilities, he finds the
distribution for which item to drop. Our recurrence with
adjusted weights is simpler and more efficient because
we can forget about the past: the original weights and
the inclusion probabilities from previous rounds.

We can also use (2.3) to derive the elimination
procedure of Tillé [25]. To do that, we set m = 1 and
k1 = k + 1, yielding the recurrence

VarOptk(I) = VarOptk,k+1(VarOptk+1(I))

This tells us how to draw k samples by eliminating the
n − k other items one at the time. Like Chao, Tillé
[25] computes the elimination probabilities for all items
in all rounds directly from the original weights. Our
general recurrence (2.3) based on adjusted weights is
more flexible, simpler, and more efficient.

2.4 Relation to previous reservoir sampling
schemes It is easy to see that nothing like (2.4) works
for any of the other reservoir sampling schemes from the

introduction. E.g., if Unifk denotes uniform sampling
of k items with associated estimates, then

Unifk([n]}) 6= Unifk,k+1(Unifk([n− 1]) ∪ {n}).
With equality, this formula would say that item n
should be included with probability k/(k+1). However,
to integrate item n correctly in the uniform reservoir
sample, we should only include it with probability k/n.
The standard algorithms [12, 27] therefore maintain the
index n of the last arrival.

We have the same issue with all the other schemes:
ppswr, ppswor, priority, and Poisson ipps sampling. For
each of these schemes, we have a global description of
what the reservoir should look like for a given stream.
When a new item arrives, we cannot just treat it like the
current items in the reservoir, sampling k out of the k+1
items. Instead we need some additional information
in order to integrate the new item in a valid reservoir
sample of the new expanded stream. In particular,
priority sampling [10] and the ppswor schemes of [5, 4, 6]
use priorities/ranks for all items in the reservoir, and the
reservoir version of Poisson ipps sampling from [9, 10]
uses the sum of all weights below the current threshold.

Generalizing from unit weights The standard
scheme [12, 27] for sampling k unit items is variance
optimal and we can see VarOptk as a generalization to
weighted items which produces exactly the same sample
and estimate distribution when applied to unit weights.
The standard scheme for unit items is, of course, much
simpler: we include the nth item with probability n/k,
pushing out a uniformly random old one. The estimate
of any sampled item becomes n/k. With VarOptk,
when the nth item arrives, we have a k old adjusted
weights of size (n − 1)/k and a new item of weight 1.
We apply the general VarOptk,k+1 to get down to k
weights. The result is ends up the same: the new item is
included with probability 1/n, and all adjusted weights
become n/k.

However, VarOptk is not the only natural gener-
alization of the standard scheme for unit weights. The
ppswor schemes from [5, 4, 6] also produce the same
results when applied to unit weights. However, ppswor
and VarOptk diverge when the weights are not all the
same. The ppswor scheme from [6] does have exact to-
tal (V Σ = 0), but suboptimal ΣV so it is not variance
optimal.

Priority sampling is also a generalization in that it
produces the same sample distribution when applied to
unit weights. However, the estimates vary a bit, and
that is why it only optimizes ΣV modulo one extra
sample. A bigger caveat is that priority sampling does
not get the total exact as it has V Σ = ΣV .

Our VarOptkscheme is the unique generalization

of the standard reservoir sampling scheme for unit
weights to general weights that preserves variance opti-
mality.

3 The recurrence

We will now establish the recurrence (2.3). Recall that
we have disjoint non-empty sets I1, ..., Im of weighted
items, and integers k1, ..., km each at least as large as k.
We want to prove

VarOptk(
⋃

x∈[m]

Ix) = VarOptk(
⋃

x∈[m]

VarOptkx
(Ix))

Let I =
⋃

x∈[m] Ix. We use wi to denote the original
weights. For each x ∈ [m], set I ′x = VarOptk(Ix),
and use w′i for the resulting adjusted weights. Set
I ′ =

⋃
x∈[m] I

′
x. Finally, set S = VarOptk(I ′) and

use the final adjusted weights as weight estimates ŵi.
Let τx,kx

be the threshold used in VarOptk(Ix), and
let τ ′k be the threshold used by VarOptk(I ′). We need
to prove that the right hand side of (2.3) is a VarOptk

scheme of I provided the correctness of each internal
use of VarOptk.

Since an unbiased estimator of an unbiased estima-
tor is an unbiased estimator, it follows that the final ŵi

are unbiased estimators of the original weights wi. Since
the outer call to VarOptk returns at most k samples,
we have (ii) satisfied. It remains to prove (i) and (iii).
First we consider some trivial degenerate cases.

Lemma 3.1. (2.3) is satisfied if |I ′| = ∑
x∈[m] |I ′x| ≤ k.

Proof. If |I| =
∑

x∈[m] |Ix| ≤ k, then there is no active
sampling and then we get the full set I on both sides
of the equality. Thus we may assume

∑
x∈[m] |I ′x| =∑

x∈[m] min{kx, |Ix|} ≤ k <
∑

x∈[m] |I|. This implies
that |I ′x| = kx ≥ k for some x. We conclude that m = 1,
x = 1, and k1 = k. Then (2.3) degenerates to the trivial
VarOptk(I1) = VarOptk(VarOptk(I1)). ¤

In the rest of the proof, we assume |I ′| > k.

Lemma 3.2. We have that τ ′k > τx,kx for each x ∈ [m].

Proof. Since we have assumed |I ′| > k, we have τ ′k > 0.
The statement is thus trivial for x if |Ix| ≤ k implying
τx,kx = 0. However, if |Ix| ≥ k, then from (i) and (ii) on
the call VarOptkx(Ix), we get that the returned I ′x has
kx items of weight at least τx,kx . These items are all in
I ′. Since |I ′| > k, it follows from (1.2) that τ ′k > τx,kx .
¤

Lemma 3.3. The final sample S includes all i with
wi > τ ′k. Moreover, each i ∈ S has ŵi = max{wi, τ

′
k}.

Proof. Since τ ′k > τx,kx , and since (i) hold for each
internal VarOptk it follows that i ∈ I has ŵi > τ ′k if
and only if wi > τ ′k. It also follows from the correctness
of VarOptk(I ′) that no estimate in the sample can be
below τ ′k. ¤

Lemma 3.4. The threshold τ ′k depends only on I.

Proof. From Lemma 3.3 it follows that the final total
estimate is a growing function of τ ′k, but since this total
is exact, it follows that τ ′k depends only on I. ¤

Lemma 3.5. The probability that i ∈ S is
min{1, wi/τ ′k}.

Proof. Lemma 3.3 gives the result if wi ≥ τ ′k. Suppose
wi < τ ′k. We know from the correctness of VarOptk(I ′)
that ŵi = τ ′k if i is in S. Since ŵi is unbiased, we
conclude that it is included with probability wi/τ ′k. ¤

Lemma 3.6. τ ′k is equal to the threshold τk defined
directly for I by (1.2).

Proof. With pi the probability that item i is included in
S, we know that

∑
pi = k since we ended with k items.

Hence by Lemma 3.5, we have
∑

i min{1, wi/τ ′k} = k.
However, we defined τk as the unique value such that∑

i min{1, wi/τk} = k, so we conclude that τ ′k = τk. ¤

From Lemma 3.3, 3.5, and 3.6, we conclude that (i) is
satisfied. Finally, we have to prove (iii).

Lemma 3.7. The final sample has no positive covari-
ances as in (iii).

Proof. Since (iii) is satisfied for each internal call, we
know that there are no positive covariances in the
adjusted weights w′i from I ′x = VarOptk(Ix). Since
these samples are independent, we get no positive
covariances in w′i of all items in I ′ =

⋃
x∈[m] I

′
x. Let

(I0, w0) denote any possible concrete value of (I ′, w′).
Then

E[ŵiŵj]

=
∑

(I0,w0)

(
Pr[(I ′, w′) = (I0, w0)]
· E[ŵiŵj | (I ′, w′) = (I0, w0)]

)

≤
∑

(I0,w0)

(
Pr[(I ′, w′) = (I0, w0)] w0

i w0
j

)

= E[w′iw
′
j] ≤ wiwj . ¤

We have now shown that the sample S we generate
satisfies (i), (ii), and (iii), hence that it is a VarOptk

sample. Thus (2.3) follows.

4 Dropping an item

We will now show how to implement VarOptk,k+1.
First we give a basic implementation equivalent to
the one used in [2, 25]. Later we will tune our
implementation for use on a stream.

The input is a set I of n = k + 1 items i with
adjusted weights w̃i. We want a VarOptk sample
of I. First we compute the threshold τk such that∑

i∈[n] min{1, w̃i/τk} = k. We want to include i with
probability pi = min{1, w̃i/τk}, or equivalently, to drop
i with probability qi = 1−pi. Here

∑
i∈I qi = n−k = 1.

We partition the unit interval [0, 1] into a segment of
size qi for each i with qi > 0. Finally, we pick a random
point r ∈ [0, 1]. This hits the interval of some d ∈ I,
and then we drop d, setting S = I \ {d}. For each i ∈ S
with w̃i < τk, we set w̃i = τk. Finally we return S with
these adjusted weights.

Lemma 4.1. VarOptk,k+1 is a VarOptk scheme.

Proof. It follows directly from the definition that we
use threshold probabilities and estimators, so (i) is
satisfied. Since we drop one, we end up with exactly
k so (ii) follows. Finally, we need to argue that there
are no positive covariances. We could only have positive
covariances between items below the threshold whose
inclusion probability is below 1. Knowing that one
such item is included can only decrease the chance that
another is included. Since the always get the same
estimate τk if included, we conclude that the covariance
between these items is negative. This settles (iii). ¤

4.1 An O(log k) implementation We will now im-
prove VarOptk,k+1 to handle each new item in O(log k)
time. Instead of starting from scratch, we want to main-
tain a reservoir with a sample R of size k for the items
seen thus far. We denote by Rj the a reservoir after
processing item j.

In the appendix we show how to process each item
in O(1) expected amortized time if the input stream is
randomly permuted.

Consider round j > k. Our first goal is to identify
the new threshold τ = τk,j > τk,j−1. Then we
subsample k out of the k+1 items in Rpre

j = Rj−1∪{j}.
Let w̃(1), ..., w̃(k+1) be the adjusted weights of the items
in Rpre

j in sorted order, breaking ties arbitrarily. We
first identify the largest number t such that w̃(t) ≤ τ .
Here

w̃(t) ≤ τ ⇐⇒ k + 1− t + (
∑

x≤t

w̃(x))/w̃(t) ≥ k

⇐⇒ (
∑

x≤t

w̃(x))/w̃(t) ≥ t− 1 .(4.5)

After finding t we find τ as the solution to

(
∑

x≤t

w̃(x))/τ = t− 1 ⇐⇒ τ = (
∑

x≤t

w̃(x))/(t− 1) .(4.6)

To find the item to leave out, we pick a uniformly
random number r ∈ (0, 1), and find the smallest d ≤ t
such that

∑

x≤d

(1− w̃(x)/τ) ≥ r ⇐⇒ dτ −
∑

x≤d

w̃(x) ≥ rτ .(4.7)

Then the dth smallest item in Rpre
j , is the one we drop

to create the sample S = Rj .
The equations above suggests that we find t, τ , and

d by a binary search. When we consider an item during
this search we need to know the number of items of
smaller adjusted weight, and their total adjusted weight.

To perform this binary search we represent Rj−1

divided into two sets. The set L of large items with
wi > τk,j−1 and w̃i = wi, and the set T = Rj−1 \ L
of small items whose adjusted weight is equal to the
threshold τk,j−1. We represent L in sorted order by
a balanced binary search tree. Each node in this tree
stores the number of items in its subtree and their total
weight. We represent T in sorted order (here in fact the
order could be arbitrary) by a balanced binary search
tree, where each node in this tree stores the number of
items in its subtree. If we multiply the number of items
in a subtree of T by τk,j−1 we get their total adjusted
weight.

The height of each of these two trees is O(log k)
so we can insert or delete an element, or concatenate or
split a list in O(log k) time [7]. Furthermore, if we follow
a path down from the root of one of these trees to a node
v, then by accumulating counters from roots of subtrees
hanging to the left of the path, and smaller nodes on
the path, we can maintain the number of items in the
tree smaller than the one at v, and the total adjusted
weight of these items.

We process item j as follows. If item j is large, that
is wj > τk,j−1, we insert it into the tree representing L.
Then we find t by searching the tree over L as follows.
While at a node v we compute the total number of items
smaller than the one at v by adding to the number of
such items in L, |T | or |T |+ 1 depending upon whether
wj ≤ τk,j−1 or not. Similarly, we compute the total
adjusted weight of items smaller than the one at v by
adding |T |τk,j−1 to the total weight of such items L, and
wj if wj ≤ τk,j−1. Then we use Equation (4.5) to decide
if t is the index of the item at v, or we should proceed
to the left or to the right child of v. After computing
t we compute τ by Equation (4.6). Next we identify
d by first considering item j if wj < τk,j−1, and then
searching either the tree over T or the tree over L in

a way similar to the search for computing t but using
Equation (4.7). Once finding d our subsample becomes
Rj = S = Rpre

j \ {d}. All this takes O(log k).
Last we update our representation of the reservoir,

so that it corresponds to Rj and τk,j . We insert wj into
T if wj ≤ τk,j−1 (otherwise it had already been inserted
into L). We also delete d from the list containing
it. If w(t) was a large weight we split L at w(t) and
concatenate the prefix of L to T . Our balanced trees
support concatenation and split in O(log k) time, so this
does not affect our overall time bounds. Thus we have
proved the following theorem.

Theorem 4.1. With the above implementation, our
reservoir sampling algorithm processes each new item
in O(log k) time.

In the above implementation we have assumed constant
time access to real numbers including the random r ∈
(0, 1). Real computers do not support real reals, so in
practice we would suggest using floating point numbers
with precision ℘ À log n, accepting a fractional error of
order 1/2℘.

We do have an alternative implementation based
on a standard priority queue, but it is only efficient
in the amortized sense. Using the priority queue from
[24], it handles k items in O(k log log k) time. For space
reasons, we defer this alternative to the journal version
of this paper.

4.2 Faster on randomly permuted streams We
will now discuss some faster implementations in amor-
tized and randomized settings. First we consider the
case where the input stream is viewed as randomly per-
muted.

We call the processing of a new item simple if it is
not selected for the reservoir and if the threshold does
not increase above any of the previous large weights.
We will argue that the simple case is dominating if
n À k and the input stream is a random permutation
of the weights. Later we get a substantial speed-up by
reducing the processing time of the simple case to a
constant.

Lemma 3.5 implies that our reservoir sampling
scheme satisfies the condition of the following simple
lemma:

Lemma 4.2. Consider a reservoir sampling scheme
with capacity k such that when any stream prefix I has
passed by, the probability that i ∈ I is in the current
reservoir is independent of the order of I. If a stream of
n items is randomly permuted, then the expected number
of times that the newest item is included in the reservoir
is bounded by k(ln(n/k) + O(1)).

Proof. Consider any prefix I of the stream. The average
probability that an item i ∈ I is in the reservoir R is
|R|/|I| ≤ k/|I|. If I is randomly permuted, then this is
the expected probability that the last item of I is in R.
By linearity of expectation, we get that the expected
number of times the newest item is included in R is
bounded by k +

∑n
j=k+1 k/j = k(1 + Hn − Hk+1) =

k(ln(n/k) + O(1)). ¤

As an easy consequence, we get

Lemma 4.3. When we apply our reservoir sampling
algorithm to a randomly permuted stream, the expected
number of times that the threshold passes a weight in
the reservoir is bounded by k(ln(n/k) + O(1)).

Proof. Since the threshold is increasing, a weight in the
reservoir can only be passed once, and we know from
Lemma 4.2 that the expected number of weights ever
entering the reservoir is bounded by k(ln(n/k) + O(1)).
¤

We now show how to perform a simple case in constant
time. To do so, we maintain the smallest of the large
weights in the reservoir in a variable w`.

We now start the processing of item j, hoping for it
to be a simple case. We assume we know the cardinality
of the set T of items in Rj−1 with weight no higher than
τk,j−1. Tentatively as in (4.6) we compute

τ = (wj + |T |τk,j−1)/|T |.

If wj ≥ τ or τ ≥ w`, we cannot be in the simple case,
so we revert to the original implementation. Otherwise,
τ has its correct value, and we proceed to generate the
random number r ∈ (0, 1) from the original algorithm.
If

(τ − wj) > rτ ,

we would include the new item, so we revert to the
original algorithm using this value of r. Otherwise, we
skip item j setting τk,j = τ . No further processing is
required, so we are done in constant time. The reservoir
and its division into large and small items is unchanged.

Theorem 4.2. A randomly permuted stream of length
n is processed in O(n + k(log k)(log n)) time.

Proof. We spend only constant time in the simple cases.
From Lemma 4.2 and 4.3 we get that the expected
number of non-simple cases is at most 2k(ln(n/k) +
O(1)) = O(k(log(n/k)), and we spend only O(log k)
time in these cases. ¤

5 Some experimental results on Netflix data

We illustrate both the usage and the estimate quality
attained by VarOptk through an example on a large
real-life data set. The Netflix Prize [18] data set con-
sists of reviews of 17,770 distinct movie titles by 5×105

reviewers. The weight we assigned to each movie title
is the corresponding number of reviews. We experimen-
tally compare VarOpt to state of the art reservoir sam-
pling methods. All methods produce a fixed-size sample
of k = 1000 titles along with an assignment of adjusted
weights to included titles. These summaries (titles and
adjusted weights) support unbiased estimates on the
weight of subpopulations of titles specified by arbitrary
selection predicate. Example selection predicates are
“PG-13” titles, “single-word” titles, or “titles released
in the 1920’s”. An estimate of the total number of re-
views of a subpopulation is obtained by applying the
selection predicate to all titles included in the sample
and summing the adjusted weights over titles for which
the predicate holds.

We partitioned the titles into subpopulations and
computed the sum of the square errors of the estimator
over the partition. We used natural set of partitions
based on ranges of release-years of the titles (range sizes
of 1,2,5,10 years). Specifically, for partition with range
size r, a title with release year y was mapped into a
subset containing all titles whose release year is y mod r.
We also used the value r = 0 for single-titles (the finest
partition).

The methods compared are priority sampling
(pri) [10], ppswor (probability proportional to size
sampling with replacement) with the rank-conditioning
estimator (ws RC) [4, 6], ppswor with the subset-
conditioning estimator (ws SC) [4, 6], and VarOpt.
We note that ws SC dominates (has smaller variance
on all distributions and subpopulations) ws RC, which
in turn, dominates the classic ppswr Horvitz-Thomson
estimator [4, 6]. Results are shown in Figure 1.

The pri and ws RC estimators have zero covari-
ances, and therefore, as Figure 1 shows1, the sum of
square errors is invariant to the partition (the sum of
variances is equal to ΣV).

The ws SC and ws RC estimators have the same
ΣV and pri [22] has nearly the same ΣV as the optimal
VarOpt. Therefore, as the figure shows, on single-titles
(r = 0), ws RC performs the same as ws SC and
pri performs (essentially) as well as VarOpt. Since
VarOpt has optimal (minimal) ΣV , it outperforms all
other algorithms.

We next turn to larger subpopulations. Figure 1

1The slight increase disappears as we average over more and
more runs.

illustrates that for VarOpt and the ws SC, the sum
of square errors decreases with subpopulation size and
therefore they have significant benefit over pri and
ws RC. We can see that VarOpt, that has optimal
average variance for any subpopulation size outperforms
ws SC.

To conclude, VarOpt is the winner, being strictly
better than both pri and ws SC. We do have theoret-
ical examples where VarOptk has a variance that is a
factor Ω(log k) smaller than that of any ppswor scheme,
ws SC included, so the performance gains of VarOptk

can be much larger than on this particular real-life data
set.

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0 2 4 6 8 10

su
m

 o
f s

qu
ar

e
er

ro
rs

query range size (years)

k=1000 ws-rc (ppswor)
k=1000 ws-sc (ppswor)
k=1000 priority
k=1000 varopt

Figure 1: Sum of the square errors of the estimates
over each partition, averaged over 500 repetitions of the
respective summarization method.

References

[1] R.J Adler, R.E. Feldman, and M.S. Taqqu. A Practical
Guide to Heavy Tails. Birkhauser, 1998.

[2] M. T. Chao. A general purpose unequal probability
sampling plan. Biometrika, 69(3):653–656, 1982.

[3] S. Chaudhuri, R. Motwani, and V.R. Narasayya. On
random sampling over joins. In Proc. ACM SIGMOD
Conference, pages 263–274, 1999.

[4] E. Cohen and H. Kaplan. Bottom-k sketches: Better
and more efficient estimation of aggregates (poster). In
Proc. ACM SIGMETRICS/Performance, pages 353–
354, 2007.

[5] E. Cohen and H. Kaplan. Summarizing data using
bottom-k sketches. In Proc. 26th ACM PODC, 2007.

[6] E. Cohen and H. Kaplan. Tighter estimation using
bottom-k sketches. In Proceedings of the 34th VLDB
Conference, 2008.

[7] Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. MIT Press,
McGraw-Hill, 2nd edition, 2001.

[8] C. Cranor, T. Johnson, V. Shkapenyuk, and
O. Spatcheck. Gigascope: A stream database for net-
work applications. In Proc. ACM SIGMOD, 2003.

[9] N.G. Duffield, C. Lund, and M. Thorup. Learn more,
sample less: control of volume and variance in network
measurements. IEEE Transactions on Information
Theory, 51(5):1756–1775, 2005.

[10] N.G. Duffield, C. Lund, and M. Thorup. Priority
sampling for estimation of arbitrary subset sums. J.
ACM, 54(6):Article 32, December, 2007. Announced
at SIGMETRICS’04.

[11] P. S. Efraimidis and P. G. Spirakis. Weighted ran-
dom sampling with a reservoir. Inf. Process. Lett.,
97(5):181–185, 2006.

[12] C.T. Fan, M.E. Muller, and I. Rezucha. Development
of sampling plans by using sequential (item by item)
selection techniques and digital computers. J. Amer.
Stat. Assoc., 57:387–402, 1962.

[13] D. G. Horvitz and D. J. Thompson. A generalization
of sampling without replacement from a finite universe.
J. Amer. Stat. Assoc., 47(260):663–685, 1952.

[14] T. Johnson, S. Muthukrishnan, and I. Rozenbaum.
Sampling algorithms in a stream operator. In Proc.
ACM SIGMOD, pages 1–12, 2005.

[15] D.E. Knuth. The Art of Computer Programming, Vol.
2: Seminumerical Algorithms. Addison-Wesley, 1969.

[16] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Stani-
ford, and N. Weaver. Inside the slammer worm. IEEE
Security and Privacy Magazine, 1(4):33–39, 2003.

[17] S. Muthukrishnan. Data streams: Algorithms and
applications. Foundations and Trends in Theoretical
Computer Science, 1(2), 2005.

[18] The Netflix Prize. http://www.netflixprize.com/.
[19] K. Park, G. Kim, and M. Crovella. On the relationship

between file sizes, transport protocols, and self-similar
network traffic. In Proc. 4th IEEE Int. Conf. Network
Protocols (ICNP), 1996.

[20] C-E. Särndal, B. Swensson, and J. Wretman. Model
Assisted Survey Sampling. Springer, 1992.

[21] A. Srinivasan. Distributions on level-sets with appli-
cations to approximation algorithms. In Proc. 41st
FOCS, pages 588–597. IEEE, 2001.

[22] M. Szegedy. The DLT priority sampling is essentially
optimal. In Proc. 38th STOC, pages 150–158, 2006.

[23] M. Szegedy and M. Thorup. On the variance of subset
sum estimation. In Proc. 15th ESA, LNCS 4698, pages
75–86, 2007.

[24] M. Thorup. Equivalence between priority queues and
sorting. J. ACM, 54(6):Article 28, December, 2007.
Announced at FOCS’02.

[25] Y. Tillé. An elimination procedure for unequal prob-
ability sampling without replacement. Biometrika,
83(1):238–241, 1996.

[26] Y. Tillé. Sampling Algorithms. 2006.
[27] J.S. Vitter. Random sampling with a reservoir. ACM

Trans. Math. Softw., 11(1):37–57, 1985.

