
Structure-Aware Sampling on Data Streams

Edith Cohen
AT&T Labs–Research

180 Park Avenue
Florham Park, NJ 07932, USA
edith@research.att.com

Graham Cormode
AT&T Labs–Research

180 Park Avenue
Florham Park, NJ 07932, USA
graham@research.att.com

Nick Duffield
AT&T Labs–Research

180 Park Avenue
Florham Park, NJ 07932, USA
duffield@research.att.com

ABSTRACT
The massive data streams observed in network monitoring, data
processing and scientific studies are typically too large to store. For
many applications over such data, we must obtain compact sum-
maries of the stream. These summaries should allow accurate an-
swering of post hoc queries with estimates which approximate the
true answers over the original stream. The data often has an un-
derlying structure which makes certain subset queries, in particular
range queries, more relevant than arbitrary subsets. Applications
such as access control, change detection, and heavy hitters typi-
cally involve subsets that are ranges or unions thereof.

Random sampling is a natural summarization tool, being easy to
implement and flexible to use. Known sampling methods are good
for arbitrary queries but fail to optimize for the common case of
range queries. Meanwhile, specialized summarization algorithms
have been proposed for range-sum queries and related problems.
These can outperform sampling giving fixed space resources, but
lack its flexibility and simplicity. Particularly, their accuracy de-
grades when queries span multiple ranges.

We define new stream sampling algorithms with a smooth and
tunable trade-off between accuracy on range-sum queries and arbi-
trary subset-sum queries. The technical key is to relax requirements
on the variance over all subsets to enable better performance on the
ranges of interest. This boosts the accuracy on range queries while
retaining the prime benefits of sampling, in particular flexibility and
accuracy, with tail bounds guarantees. Our experimental study in-
dicates that structure-aware summaries drastically improve range-
sum accuracy with respect to state-of-the-art stream sampling algo-
rithms and outperform deterministic methods on range-sum queries
and hierarchical heavy hitter queries.

Categories and Subject Descriptors
E.2 [Data Storage Representations]: Miscellaneous; G.3 [Probability
and Statistics]: Statistical Computing

General Terms
Algorithms,Measurement,Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’11, June 7–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0262-3/11/06 ...$5.00.

Keywords
Structure-aware sampling, VarOpt, Data Streams, Approximate query
processing

1. INTRODUCTION
Many applications, such as high speed networks, transaction pro-

cessing, and scientific experiments, generate large quantities of data
in the form of high-volume streams. These streams of ephemeral
observations are too large to store in their entirety, so instead we
must create a compact summary that captures the core properties
of the data. These summaries must enable a variety of post hoc
analyses of the data, to identify structure, patterns and anomalies.

As a motivating example, consider the massive transient data that
arises in IP networks. Each network element observes a huge num-
ber of events, in the form of packets traveling across the network.
Certainly, no router keeps a copy of the packets that it sees, but
modern devices can maintain aggregate records of the traffic they
have routed, in the form of NetFlow logs. These describe flows, in
terms of the source and destination addresses, ports, duration and
size. For a high speed link, these logs themselves represent high-
volume streams, and across a large network add up to a vast amount
of data. The network operator needs to collect summaries of these
logs to enable analysis of the network health and operation, and
to detect anomalies, misconfigurations or attacks in near-real time.
These high-level analyses rely on being able to accurately estimate
volumes of traffic in various projections of the data: from particu-
lar sources, to collections of subnetworks, between particular port
combinations and so on. Importantly, the summaries should give
high accuracy in small space, so that the cost of collecting, trans-
porting, storing and analyzing them is minimized.

The state of the art for these tasks are techniques based on ran-
dom sampling. The problem is abstracted as receiving a stream
of multi-dimensional keys (the identifying addresses, ports, times-
tamps) each associated with a weight (the size of the flow). The
sample enables estimating the total weight associated with an arbi-
trary subset of keys. This primitive is the basis of higher-lever anal-
ysis: extracting order statistics (quantiles), heavy hitters, patterns
and trends. The estimates produced from the samples are unbiased,
have low variance, and are subject to well-understood exponential
tail bounds (Chernoff bounds). This ensures that they have good
properties for the composition of several samples and queries, and
so the relative estimation error decreases for queries that span mul-
tiple samples or larger subsets.

There are many other advantages to working with sampled data:
the sampled keys are drawn from the original data (so, for example,
within a subnetwork identified as generating an unusual volume of
traffic, full details of typical flows from this subnet are captured),
and these keys can be further examined or analyzed as needed. The

sample itself resembles a smaller (reweighted) snapshot of the orig-
inal data, and so can be directly manipulated with existing tools.

But a limitation of existing techniques is their failure to use the
inherent structure that is present in the space of the keys. In our
network data example there is significant structure in several forms.
There is order across the timestamps, durations, and other attributes
which have a natural total order. There are multiple hierarchies: on
geographic locations, on network addresses, and on time values.
Lastly, the keys are formed as the product of multiple attributes,
each of which has certain (one-dimensional) structure. This struc-
ture fundamentally determines the kind of queries which are most
important to the users: the class of range queries are those which
are structure respecting, where the ranges correspond to contigu-
ous keys in the ordered case, nodes in the hierarchy, or products
of ranges in the multi-dimensional case (i.e. axis-parallel boxes, or
hyper-rectangles).

Almost all queries posed to data are range queries, or collections
of ranges. But existing stream sampling techniques are completely
oblivious to this structure! They treat each key independently, and
so consider any query as a subset-sum query: an arbitrary collection
of keys. The guarantees for these samples assume that any subset
is equally likely. But, on one-dimensional data, there are exponen-
tially many possible subsets, while at most quadratically many of
these are the more important ranges. By assuming uniformity over
this larger space of queries, existing methods are missing the op-
portunity to optimize for the more common case of range queries.

The prior work on sampling has shown how to draw a sample
from a stream of keys to build unbiased estimators with low vari-
ance. For particular classes of queries, such as subset-sum queries,
the goal is variance optimality: achieving variance over the queries
that is provably the smallest possible for any sample of that size.
Classic sample-based summaries are based on Poisson sampling,
where keys are sampled independently. Choosing inclusion prob-
abilities which are proportional to the weight of a key (IPPS) [10]
and using Horvitz-Thompson estimators [11] is known to minimize
the sum of per-key variances. “VAROPT” summaries [2, 17, 4] im-
prove on Poisson sampling by having a fixed sample size and better
accuracy on subset-sum queries. STREAM VAROPT [4] efficiently
computes VAROPT summaries over a data stream and is a weighted
generalization of reservoir sampling [18].

Classic sample-based summaries are optimized for the uniform
workload of arbitrary subset-sum queries, and so do not adapt to
the structure in data. Instead, for specific applications, such as (hi-
erarchical) heavy hitters and quantiles, tailored solutions have been
proposed [1, 8, 19]. For example, the popular Q-digest gives de-
terministic guarantees for range queries, with error bounded by a
constant fraction of the total weight of all keys [14]. Such sum-
maries are less flexible than samples, since they target a particular
goal. Since they are not unbiased, combining the information for
multiple subranges (as happens for HHHs) quickly loses accuracy.
They cannot support non-range queries, and do not provide any
“representative” keys from the input. Lastly, adapting these sum-
maries to multiple dimensions is complex, and the size tends to
grow exponentially with the dimensionality.

In the context of the IP flow example, deterministic summaries
taken with respect to source IP addresses work well for captur-
ing the volume under all sufficiently large prefixes. But if we
are interested in a union of prefixes (say, associated with a cer-
tain geographic location or type of customer) or in gleaning from
daily summaries the total monthly volume of a certain prefix, er-
rors add up and the relative accuracy deteriorates. In contrast, un-
der unbiased sample-based summaries, the relative error can de-
crease. For similar reasons, in estimating the total amount of traffic

H IGDA B C E F

v2 v3v1

Figure 1: Hierarchy structure example.

of many low-volume addresses, deterministic summaries can per-
form poorly with no useful guarantee, while the unbiased sample
promises a good estimate if the total volume is large enough.

In recent work, we introduced offline structure-aware VAROPT
sampling, as an improvement to structure-oblivious VAROPT that
boosts accuracy on ranges. Our structure-aware summaries are
built on a choice of VAROPT sample distributions in the offline set-
ting to construct VAROPT samples with better accuracy on ranges [12].
Because the samples are VAROPT, they retain the desirable quali-
ties of traditional sample-based summaries: unbiasedness, tail bounds
on arbitrary subset-sums, and support for representative samples.

Our aim in this paper is to considerably extend this line of work,
to produce methods for structure-aware stream sampling. This re-
quires substantially different techniques to any that have been pro-
posed before. Stream sampling algorithms are constrained in that
the sample must include at most k keys from the prefix of the
stream seen so far. When a new key is added to the sample, one
key must be discarded. We refer to this (randomized) action by
the stream sampling algorithm as a pivot step. STREAM VAROPT
turns out to be inherently inflexible—there is a unique pivot at each
step that results in a VAROPT sample [2, 4]. Thus in contrast to the
offline setting, it is not possible to design stream sampling algo-
rithm that compute VAROPT and structure-aware samples. Instead,
we describe how to relax our requirements and find samples that
are approximately VAROPT.

We provide an example that illustrates the limitations of existing
sampling methods for range queries, and the potential for a better
solution.

EXAMPLE 1. Consider the hierarchy structure depicted in Fig-
ure 1. There are 9 leaf nodes (keys) with unit weights. In a hierar-
chy, the ranges correspond to the leaf descendants of any internal
node: here, they are the sets v1 = {A, B, C}, v2 = {D, E, F},
and v3 = {G, H, I}, as well the individual leaves themselves. We
may also be interested in querying other subsets, such as {A, E, H},
based on some selection criteria that is not captured by the struc-
ture, but such queries are considered less likely.

To obtain desired sample size is 3, since keys have uniform weights,
we include each key with probability 1/3. The summary S includes
the sampled keys and associates an adjusted weight of 3 with each
key – to estimate the weight of a query set Q, we add up the ad-
justed weights of keys in S ∩ Q. In our example, the estimate is
3|Q ∩ S|. The expected number of samples from each of v1, v2, v3

is 1. When there is exactly one sample, the estimate is exact.
Poisson sampling (which for unit weights is Bernoulli sampling)

picks each leaf independently. The sample size |S| is Binomial,
with mean 3, and clearly, has no relation to the structure. The
probability that S will include exactly one key from v1, yielding an
exact value of 3 for the estimate on the weight of v1, is 4/9.

Reservoir sampling [18] (which in our case of uniform weights
is the same as STREAM VAROPT), uniformly selects a subset of
size 3. The probability that v1 contains exactly one sample is the
same as for any other subset of size 3, i.e. 15/28.

A deterministic summary such as Q-digest associates values with
both leaf and internal nodes which allow to obtain estimates with
given absolute error. But when ranges are combined, errors add
up.

There is an optimal structure-aware VAROPT sample distribu-
tion for any hierarchy [12]—the number of samples at each inter-
nal node is between the floor and ceiling of its expectation. Since
the sample is VAROPT, estimates on arbitrary queries are at least
as good as with Poisson sampling in terms of variance and tail
bounds. In our example, one key is selected uniformly from each of
v1, v2, and v3, yielding a sample that is optimal for ranges – exact
estimates of 3 on the weights of v1, v2, and v3. As explained above,
however, this sample can not be realized under stream constraints.

1.1 Our Contributions
We present a class of stream sampling schemes with a parametrized

tradeoff between accuracy on ranges and tightness of tail bounds on
arbitrary subsets. VAROPT summaries form one end of this trade-
off, being optimal for arbitrary subset-sums but structure-oblivious.

The first component of our solution is the introduction of weight-
bounded summaries, which generalize VAROPT summaries via a
tunable tightness parameter. This generalization facilitates a choice
of pivots in stream summarization. The tightness parameter con-
trols a tradeoff: the choice of pivots increases with tightness param-
eter while accuracy on arbitrary subset queries degrades. Specifi-
cally, the degradation is tightly controlled: we establish analytically
that variance and tail bounds of weight-bounded summaries are at
least as good as those of VAROPT summaries of a smaller sample
size. The size of that smaller sample is determined by the value
of the tightness parameter. In the context of Example 1, a weight-
bounded summary, just like STREAM VAROPT summary, contains
3 keys and the expected value of each adjusted weight is 1. Ad-
justed weights values, however, may vary, but may not exceed a
value determined by the tightness parameter.

The second component of our solution is methods and heuristics
for structure aware choice of pivots. We propose various local op-
timality criteria for this selection. For applications where each new
update must be processed quickly, we present fast heuristics with a
more limited search space for the best structure-aware step.

Practicality. We perform an experimental study of the tradeoffs
between performance on ranges and on arbitrary subsets of our
structure-aware summaries and various heuristics. We find that
our new structure-aware summaries can be dramatically more ac-
curate than STREAM VAROPT or tailored deterministic summaries
(Q-digest) on range queries. This makes the new approach highly
suited for summarizing large streaming data. On arbitrary subset
queries, which are poorly supported by deterministic summaries,
the accuracy is similar to that of VAROPT and exceeds theoretical
guarantees.

Outline. Section 3 introduces weight-bounded summaries, and
Section 3.2 presents an iterative template algorithm for computing
weight-bounded summaries, where in each step a subset X ⊂ S
of the keys is selected and we sample out one key out of X . We
refer to X as the pivot set. Each pivot choice is associated with
some adjusted weight value, and we are restricted to pivots where
this value is below some weight bound.

In Section 4 we define a range-cost measure of each pivot choice
X , which captures average variance over ranges resulting from piv-

oting on X . Since finding a pivot with minimum range cost can be
computationally intensive, we propose in Section 5 various efficient
heuristics for pivot selection.

Finally, Section 6 contains an experimental evaluation, which
shows the effectiveness of range-aware stream sampling, both for
the basic problem of range queries, and in its application to more
complex data mining.

2. PRELIMINARIES
We review some central concepts from the sampling literature.

Given a set of keys [n], where each key i ∈ [n] has weight wi, a
sample-based summary is a random subset of keys S ⊂ [n], to-
gether with an adjusted weight ai assigned to each sampled key
i ∈ S (we define ai ≡ 0 for i 6∈ S). Using the summary, the
estimate of the weight w(J) =

∑
i∈J wi of a subset J of keys

is a(J) =
∑

i∈J ai =
∑

i∈S∩J ai, i.e., the sum of the adjusted
weights of sampled keys that are members of J . In particular, ai is
an estimate of wi. We use adjusted weights which are unbiased es-
timators of the original weights: for all i, E[ai] = wi. Hence, from
linearity of expectation, for all subsets J , E[a(J)] = w(J). Unbi-
asedness is important when estimates are combined (such as aggre-
gating across time periods or measurement points). If the combined
estimates are independent or non-positively correlated, the relative
error on the sum estimate decreases.

Stream Summarization: The input is an (unordered) stream of
distinct keys with weight values (w1, w2, . . .) (key labels are iden-
tified with their position in the stream). The algorithm maintains
a summary of (w1, . . . , wi) containing at most k keys from [i]:
when processing key i, the algorithm computes a size-k summary
of (w1, . . . , wi) using wi and the summary of (w1, . . . , wi−1).

Inclusion Probability Proportional to Size (IPPS) [10]: A weighted
sampling method where the inclusion probability of each key in the
sample is proportional to its weight, but truncated as not to exceed
1. Formally, when defined with respect to a parameter τ > 0,
the inclusion probability of i is pi = min{1, wi/τ}. The (ex-
pected) size of the sample is k =

∑
i pi. The relation between k

and τ ≡ τk is expressed by the equality
∑

i min{1, wi/τk} = k . (1)

The value of τk on the observed part of the stream can be main-
tained by an algorithm which uses O(k) storage: The algorithm
adjusts τk upwards on the go, maintaining all observed keys with
wi ≥ τk in a heap (there are at most k such keys), and tracking the
total weight of all other keys. From this information, we can also
compute the value τk′ for any k′ < k.

The Horvitz-Thompson (HT) estimator [11] assigns the adjusted
weight ai = wi/pi to a key i ∈ S with inclusion probability pi.
HT adjusted weights are optimal for the particular inclusion proba-
bility pi in that they minimize the variance Var[ai] over all assign-
ments of adjusted weights.

Under IPPS, the HT adjusted weight of i ∈ S is τ if wi ≤ τ
and wi otherwise. The variance is Var[ai] = w2

i (1/pi − 1) ≡
wi(τ − wi) if wi ≤ τ and 0 otherwise. HT adjusted weights with
IPPS inclusion probabilities are optimal in that they minimize the
sum

∑
i Var[ai] of per-key variances for a given expected sample

size, over all sample-based summaries.

Poisson sampling is such that inclusions of different keys are inde-
pendent. With HT adjusted weights we have Var[a(J)] =

∑
i∈J Var[ai]

for any subset J . A Poisson IPPS sample of a expected size k can
be computed by a simple stream algorithm. A drawback of Poisson

sampling is that the sample size varies, whereas we would prefer to
keep the sample size fixed to make the best use of the space avail-
able.

VAROPT summaries [2, 17, 4] use IPPS inclusion probabilities
(i.e. pi = min{1, wi/τ}) and HT adjusted weights (i.e. for i ∈ S,
ai = max{wi, τ}). The underlying sample distribution meets the
VAROPT criteria:

(a) The sample size is exactly k =
∑

i∈[n] pi.

(b) High-order inclusion and exclusion probabilities are bounded
by products of first-order probabilities: for any J ⊆ [n],

(I): E[
∏
i∈J

Xi] ≤
∏
i∈J

pi

(E): E[
∏
i∈J

(1−Xi)] ≤
∏
i∈J

(1− pi)

where Xi is the indicator variable for i being included in the sam-
ple: Xi = 1 if i ∈ S and Xi = 0 otherwise. The product

∏
i∈J Xi

is the joint inclusion probability of all keys i ∈ J and symmetri-
cally,

∏
i∈J(1−Xi) is the joint exclusion probability.

Poisson sampling satisfies (b) (with equalities) but does not sat-
isfy (a). VAROPT improves over Poisson IPPS by fixing the size
of the summary. Fixing τk, the variance of any subset-sum esti-
mate of a VAROPT summary is at most that of a Poisson IPPS sum-
mary. This is because for a VAROPT summary, for all subsets J ,
Var[a(J)] ≤ ∑

i∈J Var[ai], which is implied by the joint inclusion
property for subsets of size 2 (equivalently, covariances are non-
positive) whereas with Poisson IPPS, Var[a(J)] =

∑
i∈J Var[ai].

VAROPT summaries are optimal for arbitrary subset-sum queries
in that for any subset size, they minimize the expected variance
of the estimates [16, 4]. This follows from VAROPT minimizing
both

∑
i∈[n] Var[ai] (by using IPPS) and Var[

∑
i∈[n] ai] = 0, and

from [16] which established that the expected variance depends
only on these two quantities. The notation VAROPTk denotes a
VAROPT summary of size k.

The STREAM VAROPT method [4] efficiently computes a VAROPTk

summary of a data stream of weighted keys. The algorithm main-
tains a VAROPTk summary S of the processed prefix of the stream,
which we can view as a vector a with entry ai > 0 if and only if
i ∈ S. For each new key n, its adjusted weight is initialized to
its weight value an ← wn. The vector a now has k + 1 positive
entries, for keys S ∪ {n}. We apply a ← VAROPTk(a) to obtain
a summary of size k. In sampling terms, one of the k + 1 keys in
S ∪ {n} is ejected from the sample and weights of remaining keys
are adjusted. We refer to the operation of VAROPT sampling out of
a single key as a pivot. The pivot performed by STREAM VAROPT
is PIVOT(a, S ∪ {n}) (Algorithm 1).

While VAROPTk is a family of sample distributions satisfying
some constraints, STREAM VAROPT is the unique way to main-
tain a VAROPTk sample of the prefix of the stream – the pivot
PIVOT(a, S ∪ {n}) is the only way to obtain a VAROPTk sum-
mary given a new key and a VAROPTk summary of previously-seen
keys. When keys have uniform weights, STREAM VAROPT is iso-
morphic to reservoir sampling [18] and the sample distribution is a
uniform selection of a k-tuple.

Chernoff bounds. Given a (query) subset J and a Poisson or
VAROPT sample S the size of J ∩ S, the number of samples from
J satisfies exponential tail bounds [3, 13, 15, 9, 5]. Let XJ =∑

i∈J Xi, where Xi is the indicator variable for i ∈ S as before.
Then let µ = E[X] =

∑
i∈J pi, and consider 0 < ν < k = |S|.

We state the basic form of Chernoff-type bounds (which other more
familiar forms are derivable from). For ν ≥ µ:

Pr[XJ ≥ ν] ≤
(

k − µ

k − ν

)k−ν (µ

ν

)ν [
≤ eν−µ

(µ

ν

)ν]
. (2)

If ν ≤ µ, then

Pr[XJ ≤ ν] ≤
(

k − µ

k − ν

)k−ν (µ

ν

)ν [
≤ eν−µ

(µ

ν

)ν]
. (3)

For VAROPT samples, the joint inclusion bound implies the upper
bound (2) and the joint exclusion bound implies the lower one (3).

When inclusion probabilities are IPPS and we use HT adjusted
weights, these bounds translate to bounds on a(J): Observe that
it suffices to consider J such that ∀i ∈ J, pi < 1 (as we have the
exact weight of keys with pi = 1). For such a J , the estimate is
aJ = τXJ = τ |J ∩ S| which is bounded by

Pr[a(J) ≤ v], Pr[a(J) ≥ v] ≤ e(v−w(J))/τ (w(J)/v)v/τ . (4)

3. WEIGHT-BOUNDED SUMMARIES
We introduce the concept of weight-bounded (WB) summaries

which facilitates our streaming algorithms.

DEFINITION 1 (WEIGHT-BOUNDED SUMMARY). A random
weight vector a ≥ 0 is an M -bounded summary of weight vector
w=(w1 . . . wn) ≥ 0 if:

1. ∀i ∈ [n], E[ai] = wi.

2.
∑

i∈[n] ai =
∑

i∈[n] wi

3. ∀i ∈ [n], if wi ≥ M then ai ≡ wi, otherwise ai ≤ M .

4. For any J ⊆ [n] and an upper bound M ≥ maxi∈J ai (over
all possible outcomes).

(I): E[
∏
i∈J

ai] ≤
∏
i∈J

wi (5)

(E): E[
∏
i∈J

(M − ai)] ≤
∏
i∈J

(M − wi) (6)

The size of a weight-bounded summary is said to be k if there
are k non-zero weights in it, i.e. a set of keys S with |S| = k.

3.1 WB Summary Properties
The property of being a weight-bounded summary is transitive:

LEMMA 2. If a(1) is an M (1)-bounded summary of a(0) and
a(2) is an M (2)-bounded summary of a(1), then a(2) is an M∗-
bounded summary of a(0), where M (∗) is the maximum value of
M (1) and M (2) over all outcomes.

Weight-bounded summaries generalize VAROPT summaries: A
VAROPTk summary is a τk-bounded summary where a has exactly
k positive entries, so all positive entries in a with wi < τk have
ai = τk. From Section 2, τk for a given set of input keys and
weights is the threshold such that the corresponding IPPS probabil-
ities sum to k.

Let k∗(M) be the maximum k′ such that τk′ ≥ M . In other
words, M is approximately the threshold that would give an VAROPT
sample of size k∗(M). We show that the quality of an M -bounded
summary of size k > k∗(M), in terms of tail bounds and average
variance measures, is at least that of a VAROPTk∗(M) summary.
Average-case variance is determined by V Σ = Var[

∑
i ai] and

ΣV =
∑

i Var[ai]. Like VAROPT summaries, weight-bounded
summaries have optimal V Σ = 0, and therefore it suffices to bound
ΣV . We state the results below; full proofs are in the Appendix.

Algorithm 1 PIVOT(a, X)

Require: |X| ≥ 2

1: function CAND(a, X)
2: return X ′ ⊂ X such that ∀i ∈ X \ X ′, ai ≥

∑
j∈X′ aj

|X′|−1

and ∀i ∈ X ′, ai <
∑

j∈X′ aj

|X′|−1

3: end function

4: A ← CAND(a, X)

5: M ←
∑

i∈A ai

|A|−1

6: Select i ∈ A with probability qi = 1− ai
M

. IPPS probability for excluding i
7: ai ← 0;
8: for all j ∈ A \ {i} do
9: aj ← M

10: end for
11: return a

THEOREM 3. For any key i, the variance in the adjusted weight
of i under an M -bounded summary is at most the variance under
VAROPTk∗(M).

THEOREM 4. For any subset J of keys, the estimate a(J) of
w(J) under an M -bounded summary satisfies the tail bounds ob-
tained for VAROPTk∗(M).

In the evaluations we find that in practice we get much smaller
errors than suggested by these worst-case bounds. When k∗(M) =
k/2, the performance is closer to VAROPTk than to VAROPTk∗(M).
This is because the adjusted weight of most included keys in an M -
bounded summary is usually much smaller than M .

3.2 Computing WB summaries
We first define an (offline) iterative randomized process that ma-

nipulates a weight vector a, initialized with the original weight
vector w. The number of non-zero entries decreases by one each
iteration—after n− k iterations we have a summary of size k.

In each iteration we select a subset X ⊂ [n] of the positive en-
tries, chosen so that X satisfies some conditions we expand on later,
and apply Algorithm 1: PIVOT(a, X). The algorithm computes a
VAROPT summary of X of size |X| − 1, replacing the input aX

by the adjusted weights in the summary. The algorithm essentially
implements the IPPS procedure to pick one key to exclude from
X . Recall from Section 2 that for any set of weighted keys there
is a unique threshold τk which produces a sample of size k. Keys
with weights above this threshold are automatically retained, while
those below are included with probability wi/τk. PIVOT(a, X) ef-
fectively computes τ|X|−1(X): the subroutine CAND find the can-
didate keys A ⊂ X which are the keys with weight that falls below
the (implicit) threshold M = τ|X|−1(X). The keys CAND(a, X)
have IPPS inclusion probabilities pi = wi/M < 1 and are candi-
dates for ejection from the sample. The remaining keys in X have
sufficient weight to ensure that they will not be removed in this
pivot step. Note that CAND(a, X) is unique and of size at least 2
when |X| ≥ 2: starting with the two smallest weight keys, we can
include keys in order of weight until the first condition is satisfied.

Then we have to pick one key from A ≡ CAND(a, X) to elim-
inate, based on the IPPS probabilities. One can verify that the ex-
clusion probabilities in line 6 sum to 1.

Algorithm 2 STREAMWBSUMMARY(c, w1, w2, . . .)

1: S ← ∅ . Initialize
2: for i = 1, . . . do . Process key i
3: S ← S ∪ {i}
4: ai ← wi

5: if i > k then
6: Select X ⊂ S such that: . Pivot selection

• M(a, X) ≤ τk/c(S);
• X satisfies some structure-aware selection criteria

7: a ← PIVOT(a, X),
8: S ← {i : ai > 0}
9: end if

10: end for

After the pivot operation, one of the candidate keys has adjusted
weight 0 and the others have their new adjusted weight set to

M(a, X) ≡ M(a, CAND(X)) =

∑
i∈CAND(X) ai

|CAND(X)| − 1
. (7)

LEMMA 5. The output of PIVOT(a, X) is an M(a, X)-bounded
summary of a.

Consider such a process with input weight vector a(0) = w.
For ` ≥ 1, the `th iteration has input (a(`−1),X(`−1)) —a weight
vector and a pivot set—and outputs weight vector a(`). Let M (`) =

M(a(`−1), X(`−1)). Define M (`) to be the maximum of maxh≤` M (h)

in all possible outcomes of the first ` iterations. From Lemma 2 and
Lemma 5, we obtain:

THEOREM 6. ∀`, a(`) is an M
(`)

-bounded summary of w.

3.3 Stream WB summarization
In the streaming setting, we must ensure that the total number

of stored keys at any time is small enough to fit in the available
memory. The keys that must be stored when the `th element is
processed are those amongst the first ` elements (the elements seen
so far) that have positive adjusted weights.

Therefore for stream weight-bounded summarization, we apply a
pivot operation after each arrival following the kth stream element.
The `th pivoting iteration is performed after the k + `th stream
arrival and the stored keys are S(`) = {i|a(`)

i > 0∧ i ≤ `+k}. As
each iteration sets the adjusted weight of one key to zero, the total
number of stored keys is kept to k.

Algorithm 2 takes as input a data stream with weights w1, w2, . . .
and a tightness parameter c ≥ 1. This parameter controls the flex-
ibility with which the algorithm can deviate from strict VAROPT
and is described in more detail below. The algorithm maintains
a set S of (at most k) keys and adjusted weights aS . It has the
property that at any point, a is a weight-bounded summary of the
processed prefix of the data stream:

LEMMA 7. Defining ai ≡ 0 for i 6∈ S, a is a τk/c(w1, . . . , w`)-
bounded summary of (w1, . . . , w`)

The smaller c is, the less flexibility we have in choosing the pivot
set X . Since τk is decreasing in k, as c decreases, τk/c decreases,
providing less scope for choosing X . At the extreme, if c = 1,
every X with M(a, X) ≤ τk must include all of CAND(a, S)
and the algorithm becomes identical to STREAM VAROPT [4].
STREAM VAROPT also minimizes the “local” variance cost, which

STREAM VAROPT:
A D E G B C H I F τ

3 1 1 1 1
4 4

3
0 4

3
4
3

4
3

5 0 0 5
3

5
3

5
3

5
3

6 0 0 2 2 2 0 2
7 0 0 7

3
7
3

0 0 7
3

7
3

8 0 0 8
3

8
3

0 0 8
3

0 8
3

9 0 0 3 3 0 0 3 0 0 3

STREAMWBSUMMARY:
X A D E G B C H I F τ

3 1 1 1 1
4 {D, E} 1 0 2 1 4

3
5 {A, B} 0 0 2 1 2 5

3
6 {B, C} 0 0 2 1 3 0 2
7 {G, H} 0 0 2 0 3 0 2 7

3
8 {H, I} 0 0 2 0 3 0 3 0 8

3
9 {E, F} 0 0 3 0 3 0 3 0 0 3

Figure 2: Selecting a sample of size 3 from a stream of 9 unit
weight keys. Each row corresponds to a new arrival (starting
with the 4th arrival). The table entries are adjusted weights at
the end of the iteration. The rightmost column shows the IPPS
threshold τ3 on the prefix of the stream. The tables show possi-
ble execution of the randomized algorithms. STREAM VAROPT
(top): The pivot set is always of size 4, containing the 3 par-
ticipants in the current summary S and the new arrival. The
final summary contains the keys S = {E, G, H}, all with ad-
justed weights 3. STREAMWBSUMMARY with c = 3/2 (bot-
tom): According to the structure (Figure 1), we prioritize pivot
sets with lower LCA. This pivot selection rule is intuitively
structure aware as it tends to preserve the weight under inter-
nal nodes. In this particular case, all outcomes constitute an
optimal structure-aware sample, containing exactly one sam-
ple from each of v1, v2, and v3.

is the variance of a(`) with respect to a(`−1):

ΣV (X) ≡
∑
i∈X

Var[a
(`)
i] =

∑
i∈X

a
(`−1)
i

(∑
i∈X a

(`−1)
i

|X| − 1
−a

(`−1)
i

)
.

(8)
When we set c > 1, we have greater freedom in choosing the

pivot set X meeting the constraints on M(a, X). We will use this
flexibility to make a “structure-aware” selection (we formalize this
notion in the next section). That is, we can choose a subset of
keys on which to pivot such that the keys are “close” under the as-
sumed structure (e.g. close in the hierarchy). This way, by keeping
the necessary shifting of weight due to pivoting localized, crossing
fewer range boundaries, we are more likely to end up with a sum-
mary such that the adjusted weight of ranges is closer to their ac-
tual weight. Figure 2 compares the actions of STREAM VAROPT
(which is structure oblivious) and STREAMWBSUMMARY (with
an intuitive structure-aware pivot selection) on a stream of keys
from the example hierarchy structure of Figure 1.

An alternative to constraining pivot selection is to compute the
effective tightness for a chosen pivot, i.e., the value of c that yields
equality in line 6 of Algorithm 2. Tail bounds for estimation are
then governed by the maximum effective tightness over the stream.

4. RANGE COST
In this section, we formalize “structure-awareness” by associat-

ing a “range cost” with each possible choice, and striving to select

a pivot with low range cost. Our range cost ρ(X) of a pivot X
measures the variance local to the iteration, averaged over “range
boundaries.” By local we mean that we consider the variance of
the adjusted weights a′ at the end of the iteration with respect to
the adjusted weights a that are the input to the iteration. This local
view follows from restrictions imposed by the streaming context
and is inspired by STREAM VAROPT, where the selected pivot lo-
cally minimizes the “structure oblivious” variance ΣV (8).

For a range R ∈ R, the change in its estimated weight following
a pivot step is the random variable ∆R = |a′(R)−a(R)|. Because
both sets of weights are unbiased, E[∆R] = 0 and the variance
of this change is E[∆2

R]. Generally, there is no one pivot which
simultaneously minimizes variance for all ranges in R. Next we
propose ways to measure the overall impact of a pivot in different
types of structure, and to pick pivots with minimum impact.

4.1 Partition
When the structure is a partition of keys, the ranges are parts in

this partition and are disjoint. We define range cost as the sum of
variances over individual ranges:

ρ(X) =
∑
R∈R

E[∆2
R] = E[

∑
R∈R

∆2
R] .

Defining LR =
∑

i∈CAND(X)∩R ai−M(a, X)

⌊∑
i∈CAND(X)∩R ai

M(a,X)

⌋
,

the portion of the weight in range R that will be rounded up to
M(a, X) or down to 0 when pivoting on X , we get

ρ(X) =
∑
R∈R

LR(M(a, X)− LR) .

In the degenerate case when each range contains a single key,
ρ(X) ≡ ΣV (X) (see (8)) and therefore minimizing the range cost
is equivalent to VAROPT sampling.

For the general case, ρ(X) = 0 if and only if X ⊂ R for some
range R (i.e. X is fully contained in some range R). Between pivot
choices with ρ(X) = 0, we propose to use a pivot with minimum
M(a, X), which must be of the form S ∩ R for some range R. In
summary, we propose to pick X = S∩R with minimum M(a, X)
if M(a, X) ≤ τk/c. Otherwise, pick X = S.

4.2 Order
When there is a natural total order over the keys in the data,

we define the range cost to be a weighted average of the variance
over prefixes (a.k.a. 1-d halfspaces). Apropriate weighting of pre-
fixes prevents regions with many small weights from dominating
those with few larger weights. Considering the linearly many pre-
fixes rather than the quadratically many intervals simplifies analysis
and prevents smaller intervals from dominating fewer larger ones.
Since the weight of an interval (range of contiguous keys) is the
difference of the weights of two prefixes, the (additive) estimation
error on an interval is at most the sum of estimation errors over two
prefixes.

To analyze the range cost, we study how a pivot changes the
distribution of weights in the sample. Formally, for 0 ≤ q ≤ 1,
the q-quantile point of the sample S is the prefix of ordered points
that contains a q fraction of the total adjusted weight, a(S). Key
i from the ordered universe has adjusted weight ai, and if i ∈ S,
this key covers a range of quantile points. We write iq to denote the
index of the key which includes the q-quantile, i.e. the index i that
satisfies

q ∈
(∑

j<i aj

a(S)
,
ai +

∑
j<i aj

a(S)

]
.

Algorithm 3 RANGE-COST(X)

Require: |X| ≥ 2
1: X ← CAND(X)
2: M ← M(a, X)

Require: X = {i1, . . . , i|X|}, i1 < i2 < · · · < i|X|

3: W0 ← 0
4: for j = 1, . . . , |X| do
5: wj ← aij . weight of key ij .
6: Wj ← Wj−1 + wj . weight of j smallest keys in X
7: end for
8: for j = 1, . . . , |X| − 1 do
9: yj ←

∑
h∈S\X|ij<h<ij+1

ah

. Weight of keys in S that are between ij and ij+1.
10: end for
11: R ← 0 . Initialize
12: for ` = 0, . . . , |X| − 1 do
13: R ← R + y`(M`−W`)(W` − (`− 1)M)

. contribution of q when iq ∈ S \X is between i` and i`+1.

14: R ← R + w`+1(`M −W`)(W`+1 − `M) +
w2

`+1
3

(M −
w`+1) . contribution of q such that iq = i`+1.

15: end for
16: return R/a(S)

For a subset X and q, let ∆q be the random variable correspond-
ing to the (absolute value) of the weight that “moves” across the
half-space induced by iq as a result of a′ ←PIVOT(a, X).

If iq 6∈ X , then this is just the difference in weight below the key
before and after the pivot:

∆q =
∣∣ ∑

i∈S|i<iq

ai −
∑

i∈S|i<iq

a′i
∣∣ .

If iq ∈ X , we treat the distribution as a continuous one with the
weight of each key spread across an interval (the cost is invariant
to the size of the interval). The fraction of the weight aiq of iq that
lies “below” the quantile point is

δq =
qa(S)−∑

i∈S|i<iq
ai

aiq

,

and so the change in weight across q is

∆q =

∣∣∣∣
(
δqaiq +

∑

i∈S|i<iq

ai

)
−

(
δqa

′
iq

+
∑

i∈S|i<iq

a′i
)∣∣∣∣

The range cost is defined as the sum (integral) of variances E[∆2
q]

across all half-spaces, i.e. all quantiles 0 ≤ q ≤ 1 of S.

ρ(X) = E[

∫ 1

0

∆2
qdq] ≡

∫ 1

0

E[∆2
q]dq .

In Appendix B we show that this cost is minimized when the pivot
set X is a pair of keys (i.e. X = {i1, i2}) and that the range cost is

ρ({i1, i2}) = ai1ai2

(ai1 + ai2

3
+ a(SM)

)
, (9)

where SM = {i : i1 < i < i2} is the subset of all keys in S that
lie strictly between i1 and i2.

The range cost can be computed efficiently: Algorithm 3 presents
pseudocode of an algorithm which finds ρ(X) in O(|X|) time. It
first computes prefix sums Wj of the weights of keys in X (line 6),
and values yj which are the sums of weights between the jth and
j + 1th keys in X (line 9): computing each takes constant time,

assuming that we have access to the prefix sums of weights in S.
Then lines 13 and 14 use these values to compute the range cost,
following the analysis in Appendix B. Consequently, we can find
the range cost of every pair i1, i2 in time O(|S|2), and pick the
best to pivot on. Section 5 discusses choices which compromise on
picking the best pair to reduce this time cost.

4.3 Hierarchy
We use the above analysis of order to analyze the hierarchy case.

There are many possible ways to linearize a hierarchy to produce
an order. Here we consider all possible linearizations, and take
the average of the range costs of the corresponding order structure.
When the pivot set X is two leaf nodes u, v we use (9) and obtain

ρ({u, v}) = auav

(
au + av + a(SM)

3
+

a(SC)

2

)
. (10)

To define these terms, we let r = LCA(u, v) be the lowest com-
mon ancestor of u and v. Then SM is the set of leaf nodes in
the subtree of r but which share no other ancestors below r, i.e.
y ∈ S \ {u, v} such that y is a descendant of r and LCA(u, y) ≡
LCA(v, y) ≡ r. Any y ∈ SM is placed between u and v in ex-
actly a 1/3 fraction of all possible linearizations. SC corresponds
to the remaining leaf nodes in the same subtree of r: the keys
y ∈ S \{u, v} such that y is a descendant of LCA(u, v) and either
LCA(u, y) 6= r or LCA(v, y) 6= r. In this case, the probability,
over linearizations, that y lies between u and v is 1/2.

We use these costs (10) to guide our selection of a pivot set X .
Below we discuss how to do so efficiently.

4.4 Product space
Our results extend to the case when we have a multi-dimensional

key space and each dimension is itself a partition, order and/or hi-
erarchy. For such product spaces, we define the range cost as the
average over dimensions of the 1-dimensional range costs. This
corresponds to averaging over all axis-parallel halfspaces, treating
all dimensions as equally important. The expressions for range cost
rapidly become complex, and the search for an optimal pivot set at
each step becomes costly, so we omit detailed analysis and instead
identify fast heuristics to find pivot sets.

5. PIVOT SELECTION
In the previous section, we showed that the range cost of a sub-

set X is well-defined and, given X , can be computed efficiently.
However, naively searching over all 2|S| subsets to find an applica-
ble pivot X ⊂ S with minimum range-cost is clearly prohibitive;
we must find a pivot for every new key in the stream: this does
not scale to high-volume streaming environments. The range cost
ρ(X) is non-decreasing with the size of X , while M(a, X) is
non-increasing. Thus, although we might find an X which mini-
mizes ρ(X), it may not be a valid pivot given the requirement on
M(a, X) in Algorithm 2. This strict upper bound on M(a, X)
forces us to consider a broader range of possible pivots. Here, we
propose and evaluate heuristics for finding valid pivots with good
range cost, and compare them empirically in our experiments.

5.1 Pair heuristics
Our analysis (see Appendix B) suggests that range cost on order

structures is minimized for a pair of keys. A pair {i1, i2} is appli-
cable if and only if wi1 + wi2 ≤ τk/c. However, when c ≥ 2,
we can guarantee that there are always applicable pairs of keys in
the sample (below, we show a stronger result, that there are always
applicable pairs which are close together). Inspired by this, we
propose some heuristics to choose pairs to pivot on.

Best pair: Select the applicable pair {i1, i2} with least range cost.
For an order, Eq. (9) allows quick elimination in finding such

a pair: to identify an applicable pair with minimum range cost, it
suffices to consider pairs i1 < i2 such that

∀i3 such that i1 < i3 < i2, wi3 > max{wi1 , wi2} (11)

To see that this is a necessary condition, consider a triple i1, i2, i3
for which this does not hold. By replacing the heavier key among
i1, i2 with i3, we obtain an applicable pair with a lower range cost
that i1, i2. Consequently, any range of keys in the sample must
be either disjoint or in a containment relation, and so there are at
most O(|S|) pairs that satisfy (11). We can find them quickly by
initializing the set of candidate with all adjacent pairs. We then try
to extend each candidate it turn by merging with its left or right
neighbor (at most one is possible). This finds all possibilities with
O(|S|) work.

For a hierarchy, we maintain for each internal node the total ad-
justed weight under the node, and the two smallest weight keys in
the subtree. In general there are many nodes in the hierarchy, but
we only need to monitor those subtrees with at least two keys in
the sample, and can also ignore nodes where only one descendant
tree is populated. On receiving each new key, we update the stored
data to meet the requirements, and pivot on the pair with lowest
range cost. Updating subsequent to a pivot is fast, since the cost is
proportional to the depth of the hierarchy.

For a product space, it suffices to consider only those pairs such
that both keys have smaller weight than any other key in the bound-
ing box containing them. A key is in the bounding box of two keys
if on order dimensions, it lies between them, and in a hierarchy
dimension, it is a descendant of their LCA. In the worst case, how-
ever, there can still be Ω(|S|2) such pairs even for d = 2, so other
heuristics are needed to more quickly find pivots.

Simple Nearest Neighbors heuristic (SNN). Typically, the struc-
tures we consider have a natural notion of proximity: the number of
intervening keys in an order, distance to a lowest common ancestor
in a hierarchy. The SNN heuristic considers one pivot pair for each
sampled key i, which is its nearest neighbor in the sample. This is a
good heuristic, but does not necessarily find the pair with smallest
range cost. Pivoting on NN pairs gives intuitive structure aware-
ness because the movement of weight is localized. Specifically, for
order we consider the neighbors of each key; for hierarchy, the key
in the same subtree as i with smallest weight; for product spaces,
we maintain a KD-tree and treat it as a hierarchy. When c ≥ 2,
there must exist an applicable pair X of NN keys. To see this under
order, assume k is odd, and consider the pairs of keys in the sample
with non-zero weights, indexed i1, i2 . . . ik+1. Consider their IPPS
probabilities under τk/2 in adjacent non-overlapping pairs:

max{wi2j−1

τk/2
, 1}+ max{wi2j

τk/2
, 1}

Observe that over all (k + 1)/2 pairs, these sums total k/2, and
hence the mean is less than 1. Therefore there must be an applicable
pair of some key and its left or right NN.

Among applicable NN pairs we can select one (i) arbitrarily (ii)
with minimum range cost (iii) with minimum a1a2 (which mini-
mizes the ΣV variance cost), or (iv) with minimum M(a, X) =
a1 +a2 (which automatically ensures that c ≤ 2). These variations
have differing costs, and we compare their cost and quality in our
experimental study.

5.2 Span cost approximation

2

b

d

a

2

3

3

3

2

e

f

c
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

d

e

a

b

3

2

2

2

3

3

c

f

pivot M L(X) ΣV (X) M min ρ∗ ρ
{a, b} 4 11 8 8 88 22.67
{a, c} 4 13 8 8 104 30.67
{b, d, e} 4 20 10 8 200 43.33
{b, e} 5 20 12 10 240 80
{a, b, d} 3.5 16 7.5 7 120 22.25
{a, b, c} 3 18 6 6 108 24

Figure 3: 5 keys with structure that is the product of two or-
ders. Right: Span of {b, e}: keys b, d, e are counted twice in
the span weight, keys a, c are counted once. The span of {b, e}
and {b, d, e} is the same and the span weight is L({b, e}) ≡
L({b, d, e}) = 20. The table shows for pivot sets the weight-
bound, span weight, ΣV , M(a, X)mini∈X a(i), and (unnor-
malized, multiplied by 2a(S)) span cost and range cost.

We define the span cost of a pivot X as an alternative to range
cost that is easier to compute. The span cost

ρ∗(X) = M(a, X)(min
i∈X

a(i))
L(X)

d · a(S)
. (12)

is a product of two components. The first one, the span-weight
L(X), is structure-sensitive—the more “spread out” X is, the larger
it is. It captures the halfspaces impacted by pivoting on X . The sec-
ond component M(a, X)(mini∈X a(i)) is oblivious to the struc-
ture. It is non increasing when keys are added to X . It captures the
maximum expected variance of the pivot over a subset of X .

We now show how we define the span-weight L(X): For order
structures, L(X) is the weight of all keys in X and all keys in S\X
that lie between keys in X , i.e. L(X) =

∑
j∈S:min(X)≤j≤max(X) a(j).

For a hierarchy, L(X) is the weight under LCA(X), i.e. L(X) =∑
j∈S:LCA(j)=LCA(X) a(j). For a product space, it is the sum over

dimensions of the 1-dimensional span weights. The normalized
span weight is

0 ≤ L(X)

d · a(S)
≤ 1 ,

where d is the dimension (d = 1 for a single order or hierarchy). It
upper bounds

L(CAND(X))

d · a(S)
,

the fraction of halfspaces impacted by pivoting on X .1 Similarly,
the range cost ρ(X), defined as the average variance over halfs-
paces, is also upper bounded by the span cost. An example span
cost computation in shown in Figure 3.

A helpful property in searching for an applicable pivot with min-
imum span cost is that amongst all pivots with same span L(X),

1However, if L(CAND(X)) < L(X), then there is a smaller range
containing CAND(X) with span weight L(CAND(X)). This range
will have the same variance component, and hence, lower span cost.
It is therefore not useful to replace L(X) by (the harder to compute)
L(CAND(X)) in the span cost formula.

both M(a, X) and the span cost are minimized by the most in-
clusive pivot. This pivot also minimizes ΣV (X). This is because
M(a, X), mini∈X a(i), and hence the product M(a, X)(mini∈X a(i))
can not increase when keys are added to X . Consequently, it suf-
fices to consider complete ranges: That is, in an order, we include
all keys between the least and greatest key in the pivot. For a hier-
archy, we consider only pivots that corresponds to all descendants
of a node in the hierarchy. In a product space, products of complete
ranges capture all keys within a box.

Approximate Span Cost. For product spaces, where searching
through all ranges can be prohibitive, we can further limit the search
space by settling for approximation. We can limit the number of 1-
dimension projections, considering a subset of those where a range
is included only if its weight is smaller by a factor of at least (1+ε)
from the weight of an included range that contains it. It also suf-
fices to consider “boxes” (products of 1-d ranges) where the span
weights of each dimension are within ε to 1/ε factor of each other.

6. EXPERIMENTAL EVALUATION
In this section we describe our experimental study of represen-

tative structure-aware sampling methods for summarization. We
consider datasets in the 1-dimensional case when the keys take val-
ues in a hierarchies, and the 2-dimensional case when keys take
values in a product of two hierarchies. We explore the behavior of
several heuristics described in Section 5. We compare their per-
formance against existing approaches, namely structure-oblivious
VAROPT sampling, and the deterministic Q-digest.

6.1 Data and Hierarchy Description
Our evaluations used IP flow statistics compiled from flows ob-

served at a router attached to network peering point. Each flow
record contains 32-bit source and destination IPv4 address, tak-
ing values in the natural binary IP address hierarchy. For the 1-
dimensional experiment, we projected the data set on the source
address, and used both source and destination for the 2-dimensional
experiments. There were 63K sources and 50K destinations, and a
total of 196K pairs active in the data. In our experiments, the keys
were the (distinct) 1- and 2- dimensional addresses, and the weights
were the total recorded bytes associated with each key.

6.2 Summarization Algorithms and Heuris-
tics

We next describe the set of summarization algorithms studied.
We first present the existing algorithms used as reference in the 1-
dim and 2-dim cases, then the structure-aware sampling heuristics
specific to each of those cases.

6.2.1 Issues of Computational Cost.
In choosing efficient heuristics to work with, we aim to pick

methods which are comparable to existing methods in terms of their
computational costs. The cost of VAROPTk is at worst O(log k)
per insertion, and an amortized O(log log k) implementation ex-
ists [4]. In order to be computationally competitive for large sample
sizes, we aim to have algorithms which are no worse than O(log k).
However, we also evaluate some heuristics with higher computa-
tional cost in order to determine the potential benefits in accuracy
which might be achievable.

6.2.2 Existing Algorithms
Q-digest. The Q-digest data structure [14] imposes a (conceptual)
binary tree over a domain of size U , and associates counts with a
subset of nodes in the tree. A top-down version of the maintenance

algorithm handles an update of weight w to key i by sharing the
weight among the path of nodes from root to i so that the prefix
of nodes all have count exactly bεN/ log Uc [7]. Here, N denotes
the sum of weights observed so far, and ε is an error parameter.
The algorithm guarantees (deterministically) that the frequency of
any key or node can be estimated from the stored counts with er-
ror at most εN . By periodically moving weight from nodes back
along their path to the root (while respecting the bεN/ log Uc con-
dition on weights), the algorithm guarantees that the space required
is O(1/ε log U) In comparison to randomized “sketch” algorithms,
the Q-digest has been observed to give much more accurate an-
swers given the same space allocation [6].

The Q-digest approach is closely related to other Heavy Hitter
focused summarization, as discussed in Section 1. For example, the
trie-based solution of Zhang et al. [19] is essentially identical, but
omits the rebalancing step since it is assumed that the total weight
of keys is known in advance. For this reason, we take Q-digest as
the sole representative of this class of methods.

In two dimensions (i.e. U × U), the data structure performs the
same algorithm on the data projected on the first dimension. But in
addition to updating the weight at nodes in the tree, it also keeps a
secondary Q-digest data structure at each node, and updates these
with the second dimension of the key and corresponding weight.
From these, it is possible to estimate the weight of any rectangle
with error εN in space O(1/ε log2 U).
VarOpt: We compared to an implementation of the structure obliv-
ious stream sampling scheme VAROPTk [4]. This keeps a summary
of k keys. Each key observed in the data stream is added to the sam-
ple, and then one is chosen for ejection to maintain the summary
size.

6.2.3 Structure Aware Sampling in One Dimension
Based on the discussion in Section 5, we compared a variety of

heuristics for pivot selection. Here, we describe how they were
implemented to ensure fast per-key processing.

SNN: Simple Nearest Neighbor. As described in Section 5, the
SNN heuristic restricts the pivot to be a pair. In one-dimension we
maintain the IP addresses present in the sample in a binary search
tree (BST) ordered by treating the key as a 32-bit integer; for sim-
plicity we allow both left and right neighbors of a given element
to constitute a pair with it. (Note this method generalizes to pair-
ing with nodes that are siblings in the IP address hierarchy of a left
or right neighbor, but happen to be further away numerically). To
allow quickly finding the best pair to pivot on, the range cost asso-
ciated with each pair is maintained in an ascending order priority
queue. The lowest cost pair is selected as the pivot at each step. We
discuss specific range cost variants below. Updates to the BST are
O(log k) in complexity, and updates to the priority queue have the
same cost (since there are O(k) NN pairs).

We consider the following SNN variants based on how we define
the cost of a pair.

• SNN-Sum: the cost is set as the sum of the weights of the
pair elements. We also tried using the product of the weights
as the cost; the results were similar to SNN-SUM, and are
omitted.

• SNN-Lin: uses the average range cost over all linearizations
of the hierarchy, as given by (10). This is a way of adding fur-
ther structure awareness to SNN. A pitfall of SNN described
above is that an SNN pair can be quite distant in the IP hi-
erarchy. The linearization cost penalizes pairs (x, y) that are
distant in the hierarchy by including the weight of other de-
scendants of LCA(x, y).

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000 10000

er
ro

r

sample size

qdigest
varopt

SNN-sum
SNN-lin

TNN-prod

(a) Overall MRE as a function of sample size k.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 5 10 15 20 25 30

er
ro

r

prefix length

qdigest
varopt

SNN-sum
SNN-lin

TNN-prod

(b) MRE as a function of prefix length for k = 256 samples.

Figure 4: Accuracy: 1-dimension.

TNN-Prod: True Nearest Neighbor. For each node we find its
nearest neighbor of minimum weight, then minimize the cost over
all such pairs. The pair cost was set as the product of weights, i.e.,
the estimation variance associated with VAROPT sampling from a
pair. Note that implementing this algorithm is more costly than the
SNN approaches; we include it for accuracy comparison.

6.2.4 Structure Aware Sampling in Two Dimensions
VSNN: Very Simple Nearest Neighbor. As described in Sec-
tion 5.1, IPv4 address pairs are represented as points in a KD-Tree.
Ideally we would want to determine true NN pairs using distance
based on the IP4v hierarchy, e.g.,

D((s1, d1), (s2, d2)) = (32− PRE(s1, s2)) + (32− PRE(d1, d2))

were PRE(·, ·) returns the longest common prefix length. However,
finding a nearest neighbor in a KD-Tree can take time linear in the
number of keys stored, so we adopt a simpler approach. The VSNN
of a given node is determined by finding the element in the KD-tree
of minimum D distance, when testing all nodes (except the node
itself) on the path that would be followed by a fresh insertion of the
node. We then use the weight product pair cost, maintained over all
VSNN pairs in a priority queue. Similarly to the 1-dim SNN case,
the complexity is O(log k) per key.

SpanApprox. This is a heuristic related to span cost in Section 5.2.
In each dimension we compute internal nodes s and d in the respec-
tive spanning tree IPv4 hierarchies of the addresses of the nodes
currently stored. Let Ss and Dd be the keys in the sample with
source address (respectively, destination) in the subtree of s (resp.,
d). To choose a pivot set, then for each pair (s, d) we search for
an applicable set in Ss ∩ Dd which induces the minimal value of
the tightness parameter c in Section 3.3. The range cost associated
with this set is then W (Ss) + W (Dd); this is minimized over all
such pairs (s, d) to select the actual pivot. This algorithm is clearly
expensive computationally; we include it for comparison of accu-
racy.

6.3 Evaluation Metrics
Our principle metric for evaluating summarization accuracy is

the error of the estimated weight a(J) of a given node or nodes
J , as compared with the actual weights w(J). This is normalized
by the total weight of the whole dataset, which is equivalent to
a(S). The corresponding elementary error value is ε = |a(J) −
w(J)|/a(S).

A given set of unsampled data is represented as leaf weights wj .
We consider the set of aggregates of these weights up the tree, i.e.,
w(v) =

∑
j∈Lv

wj where Lv is the set of leaf nodes descended
from v. For each internal node v with non-zero actual aggregate
w(v), we calculate the corresponding error εv . In order to under-
stand the dependence of accuracy on level in the address hierar-
chy, we average errors of non-zero aggregates at each prefix prefix
length, as the Mean Relative Error (MRE). In the two-dimensional
case we consider prefixes of the same length in each of the two di-
mensions. Finally, we construct a global average of the length-wise
error over all prefix lengths.

In the one-dimensional case, we also evaluated performance in
identifying hierarchical heavy hitters (HHH). Specifically, we con-
sidered prefixes whose true aggregate weight exceeded a given thresh-
old fraction (after discounting the weight all such prefixes under
them), then calculated the Root Mean Square relative estimation
error over all such nodes, over the set of runs.

6.4 Experimental Results
We extracted from our trace 10 subsets of 16,384 flows each. We

employed sample sizes of k = 64, 256, 1024 and 4, 096, corre-
sponding to sampling rates of 1 in 256, 64, 16 and 4 respectively.
We computed the error measured described above, averaged over
the 10 runs. The algorithm implementations were constructed us-
ing Python and Perl.

One-dimensional Results. Figure 4(a) shows the global MRE in
the one-dimensional case as the sample size is varied. We observe
that although designed to give accurate answers for these kinds of
range queries, the Q-digest approach is clearly less accurate than
sampling methods on this data. This is due to the method’s depen-
dence on log U , the logarithm of the domain size: in this case, it
contributes a factor of 32 to the space cost. Beyond this, we still
see much variation in the behavior of the sampling-based methods
(note that the plot is on a log scale). VAROPT, the state of the art
sampling method, can be improved on by up to an order of magni-
tude by methods which are structure-aware. Across sample sizes,
the TNN-prod method consistently achieves the best (or approx-
imately best) accuracy, since it puts more effort into finding the
best NN pair to pivot on. The two SNN methods were apprecia-
bly faster to process the data, and the simplest SNN-sum method
still achieves a clear improvement over VAROPT while having low
computational complexity.

 1e-05

 0.0001

 0.001

 0.01

 10 100 1000 10000 100000

er
ro

r

sample size

qdigest
varopt
VSNN

SpanApprox

(a) Overall MRE as a function of sample size k.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 5 10 15 20 25 30

er
ro

r

prefix length

qdigest
varopt
VSNN

(b) MRE as a function of prefix length for k = 1024 samples.

Figure 5: Accuracy: 2-dimensions.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.001 0.01 0.1 1

R
M

S
 R

el
at

iv
e

E
rr

or

HHH Threshold Fraction

Varopt
TNN-Prod

Figure 6: HHH Detection: Relative Error vs. Threshold

The MRE is broken down by prefix length in Figure 4(b) for
k = 256 samples. For the longer prefixes, which have very low
associated weight, our implementation of Q-digest essentially esti-
mates their weight as 0. We see that even here, sampling methods
can achieve better accuracy. Structure aware sampling is more ac-
curate than structure-oblivious down to a prefix length of about 16,
corresponding to ranges that are only a 1/216 fraction of the data
domain size and (roughly) the corresponding fraction of the data
weight. Even the least costly computational methods (SNN) have
accuracy up to an order of magnitude better than VAROPT, with
even greater gains possible for the more computationally intensive
TNN. As expected VAROPT is (barely) the most accurate for long
prefixes; it has optimal variance for the case of leaf nodes. This
confirms our claims, that for the common case of range queries,
there are considerable benefits to making sampling structure aware.

We show an example of how improved sampling can assist data
mining applications, in this example, detection of Hierarchical Heavy
Hitters (HHH). Figure 6 displays the Root Mean Square relative es-
timation error of HHH weights for VAROPT and TNN-prod, as a
function of the HHH detection threshold. The central observation
here is that the structure-aware sampling can be substantially more
accurate than the structure-oblivious approach.

Two-dimensional Results. Figure 5(a) shows the global MRE
in the two-dimensional case. Here, even with large values of the
parameter ε, the Q-digest approach needs to build a summary of
size 105 or higher to achieve good accuracy. Hence the difference

between Q-digest and the sampling-based methods is more strik-
ing, being over 2 orders of magnitude on comparable sample sizes.
Again, there is a clear improvement of structure aware sampling
over structure oblivious. The VSNN method has less than half the
error of VAROPT for moderate sample sizes (from 10s to 1000s
of sampled keys). The partial results for SpanApprox indicate that
there is room for a further factor of 2 improvement. However, the
more extensive search for NN pairs means that the computational
cost becomes prohibitive for a sample size of more than 100.

When we compare the accuracy over different prefix lengths (Fig-
ure 5(b), we see similar behavior to the 1-dimensional case, but ac-
centuated. Recall that here we compare queries over square ranges,
corresponding to prefixes of the same length on each dimension.
There is a clear benefit for VSNN over VAROPT when the prefixes
are short, corresponding to queries with an appreciable fraction of
the weight. The cross-over point comes when the prefix length is
about 8: this corresponds to a 2−16 = 1.5 × 10−5 fraction of
the toal area. So with a sample of 1024 keys, the structure-aware
approach still obtains good accuracy for queries down to ranges
which touch a relatively small fraction of the data. We also con-
ducted a single set of experiments on the full set of 196K pair flows,
comparing VAROPT and VSNN. The behavior was similar to that
just described, with VSNN outperforming VAROPT in accuracy on
queries over square ranges down to prefix lengths of 10.

Discussion. In both the 1-dim and 2-dim cases we saw (i) the
smaller accuracy of Q-digest, relative to other methods; (ii) the
greatest accuracy of the most costly heuristics; (iii) The compu-
tationally cheapest structure aware approaches based on SNN still
give an considerable increase in accuracy relative to VAROPT, down
to prefix length 16 in the 1-dimensional case. That the structure-
aware SSN heuristic is most accurate on queries with high weight
is a factor in its favor as compared with existing methods. As ex-
pected, VAROPT is more accurate on very small ranges. However,
the penalty paid by structure aware sampling in error relative to
VAROPT in these cases is not great, making it a good general-
purpose summary.

7. CONCLUDING REMARKS
We have addressed the need for better summarization of mas-

sive data streams by presenting stream sampling algorithms that are
structure aware. Structure-aware sampling combines the principal
benefits of sampling, as traditionally used in a structure-oblivious

manner, and of dedicated summaries designed specifically for range-
sum queries and applications such as heavy hitter detection.

Our summaries retain the ability to answer arbitrary subset queries
and produce unbiased estimates with tail bounds on the error. At
the same time, we can optimize for the structure present in the data
which makes range queries much more likely than other subset
queries, achieving superior accuracy on such queries. In practice
this can be achieved at a low computational cost: O(log k) per new
key in a buffer of k keys.

Our approach is facilitated by introducing a generalization of
VAROPT summaries which we term WB summaries. WB sum-
maries have guaranteed performance on subset queries that is at
least as good as that of smaller VAROPT summaries. At the same
time, they provide the necessary flexibility to support structure-
aware stream summarization.

In the future we hope to study structure-aware summarization of
unaggregated data streams, where keys may appear multiple times
and the weight of a key is the sum of weights over occurrences. Our
algorithms naturally extend to handle unaggregated streams, fol-
lowing the structure-oblivious setting [?]: if the key of the stream
element is already in S, the adjusted weight is increased by new
value (no need to pivot). Our analysis, however, assumes that keys
are distinct and does not apply to unaggregated streams.

add citation to rangesum histograms [?]

8. REFERENCES

[1] C. Buragohain and S. Suri. Quantiles on streams. In
Encyclopedia of Database Systems, pages 2235–2240.
Springer US, 2009.

[2] M. T. Chao. A general purpose unequal probability sampling
plan. Biometrika, 69(3):653–656, 1982.

[3] H. Chernoff. A measure of the asymptotic efficiency for test
of a hypothesis based on the sum of observations. Annals of
Math. Statistics, 23:493–509, 1952.

[4] E. Cohen, N. Duffield, H. Kaplan, C. Lund, and M. Thorup.
Stream sampling for variance-optimal estimation of subset
sums. In ACM-SIAM Symposium on Discrete Algorithms,
2009.

[5] E. Cohen, N. Duffield, C. Lund, M. Thorup, and H. Kaplan.
Variance optimal sampling based estimation of subset sums.
Tech. report arXiv:0803.0473v1 [cs.DS], 2008.

[6] G. Cormode and M. Hadjieleftheriou. Finding frequent items
in data streams. In VLDB, 2008.

[7] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Space- and time-efficient deterministic algorithms for biased
quantiles over data streams. In ACM PODS, 2006.

[8] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Finding hierarchical heavy hitters in streaming data. ACM
Trans. Knowl. Discov. Data, 1(4):1–48, 2008.

[9] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan.
Dependent rounding and its applications to approximation
algorithms. J. Assoc. Comput. Mach., 53(3):324–360, 2006.

[10] J. Hájek. Sampling from a finite population. Marcel Dekker,
New York, 1981.

[11] D. G. Horvitz and D. J. Thompson. A generalization of
sampling without replacement from a finite universe. J.
Amer. Stat. Assoc., 47(260):663–685, 1952.

[12] E. Cohen, G. Cormode and N. Duffield. Structure-aware
sampling: Flexible and accurate summarization.
arXiv:1102.5146, 2010.

[13] A. Panconesi and A. Srinivasan. Randomized distributed
edge coloring via an extension of the Chernoff-Hoeffding
bounds. SIAM J. Comput., 26(2):350–368, 1997.

[14] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.
Medians and beyond: new aggregation techniques for sensor
networks. In ACM SenSys, pages 239–249, 2004.

[15] A. Srinivasan. Distributions on level-sets with applications to
approximation algorithms. In IEEE FOCS, pages 588–597.
2001.

[16] M. Szegedy and M. Thorup. On the variance of subset sum
estimation. In Proc. ESA, pages 75–86, 2007.

[17] Y. Tillé. Sampling Algorithms. 2006.
[18] J. Vitter. Random sampling with a reservoir. ACM Trans.

Math. Softw., 11(1):37–57, 1985.
[19] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund. Online

identification of hierarchical heavy hitters: algorithms,
evaluation, and applications. In ACM SIGCOMM conference
on Internet measurement, pages 101–114, 2004.

APPENDIX
A. OMITTED PROOFS

Proof of Theorem 3
PROOF OF THEOREM 3. We use the fact that over the set of all

random variables X ∈ [0, 1] with expectation p, Var[X] is maxi-
mized for X ∈ {0, 1}, that is, the Bernoulli random variable which
is X = 1 with probability p and X = 0 otherwise.

Under VAROPT with τk∗(M), the HT adjusted weight ai is equal
to τk∗(M) with probability wi/τk∗(M) and 0 otherwise. For an M -
bounded summary, the adjusted weight a′i satisfies a′i ≤ M ≤
τk∗(M).

From unbiasedness, E[ai] = E[a′i] = wi. The random variables
ai/τk∗(M) and a′i/τk∗(M) are both in [0, 1] and both have the same
expectation. The random variable ai/τk∗(M) is in {0, 1} and hence
Var[ai/τk∗(M)] ≥ Var[a′i/τk∗(M)], which implies Var[ai] ≥ Var[a′i].

Proof of Theorem 4
PROOF OF THEOREM 4. It suffices to bound only the weights

of entries with wi < M since we have full information on the
others.

Consider the random variables Xi = ai/M which are in [0, 1].
We have pi = E[Xi] = wi/M . We have that for any J ⊆ [n],

(I): E[
∏

i∈J Xi] ≤ ∏
i∈J pi

(E): E[
∏

i∈J(1−Xi)] ≤ ∏
i∈J(1− pi)

It is established in [13] (see also [9, 5]) that for Xi ∈ {0, 1},
these property imply Chernoff tail bounds on

∑
i∈J pi.

When used with VAROPT [5], we apply the inequalities with
respect to the random variables ai/τ ∈ {0, 1}. The bounds are
then multiplied by τ to obtain bounds on the weights.

It is not hard to verify that the proofs that (I) and (E) imply these
bounds carry over when we allow Xi to assume fractional values
Xi ∈ [0, 1]. By multiplying the bounds we obtain on

∑
i∈J|wi<M pi

by M , we obtain corresponding bounds on
∑

i∈J|wi<M wi.
Since M ≤ τk∗(M), the bounds are at least as tight as the tail

bounds we obtain for VAROPTk∗(M).

Proof of Lemma 5
PROOF OF LEMMA 5. Let a′ be thr output of PIVOT(a, X). As

the other properties are straightforward, it remains to establish (5)
and (6). That is, for any subset J , and M ≥ M(a, X),

(I): E[
∏

i∈J a′i] ≤ ∏
i∈J ai

(E): E[
∏

i∈J(M − a′i)] ≤ ∏
i∈J(M − ai)

It suffices to show this for J ⊂ CAND(X), since for i 6∈ CAND(X),
a′i ≡ ai, and the contributions of these keys to the products in both
sides of the inequalities are the same. To simplify notation, we as-
sume X = CAND(X). This is without loss of generality since the
pivot step is identical when applied to X or to CAND(X).

Inclusion Bound (I). The probability that item i ∈ J has a′i = 0 is
1− ai(|X|−1)

a(X)
. Since these are disjoint events for different keys, the

probability that one key from J has a′i = 0 is |J | − a(J)(|X|−1)
a(X)

.
Hence, the probability that all keys in J have a′i = M(a, X) is
a(J)(|X|−1)

a(X)
− |J | + 1. The product

∏
i∈J a′i = 0 if a key from J

has a′i = 0 and is M(a, X)|J| otherwise. Thus,

E[
∏
i∈J

a′i] =

(
a(J)(|X| − 1)

a(X)
− |J |+ 1

)
(M(a, X))|J| . (13)

Because we have X = CAND(X), it must satisfy the condition
∀i ∈ X, ai ≤ M(a, X) = a(X)/(|X| − 1). Therefore,

a(J) = a(X)− a(X \ J) = a(X)−∑
i∈X\Jai

≥ a(X)− (|X| − |J |) a(X)

|X| − 1
= a(X)

|J | − 1

|X| − 1
.

a(J) ≤ a(X)
|J |

|X| − 1

For a given J and total adjusted weight a(J),
∏

i∈J ai is mini-
mized when one key in J has ai = a(J) − a(X) |J|−1

|X|−1
and the

|J | − 1 other keys in J having adjusted weights ai = a(X)
|X|−1

.
Hence,

∏
i∈J

ai ≥
(

a(X)

(|X| − 1)

)|J|−1 (
a(J)− a(X)

|J | − 1

|X| − 1

)

=

(
a(X)

(|X| − 1)

)|J|(
a(J)(|X| − 1)

a(X)
− |J |+ 1

)
(14)

The bound (I) follows by combining (13) and (14).

Exclusion bound (E). By definition, M ≥ M(a, X). Because
J ⊂ CAND(X), for all i ∈ J , a′i ≤ M(a, X) ≤ M and ai ≤
M(a, X) ≤ M . For a given J and a(J),

∏
i∈J(M − ai) is mini-

mized when one key in J has ai = a(J) − a(X) |J|−1
|X|−1

and other

keys in J have ai = a(X)
|X|−1

. Therefore,
∏
i∈J

(M − ai) ≥
(
M − a(J) + a(X) |J|−1

|X|−1

)(
M − a(X)

|X|−1

)|J|−1

(15)
The value of

∏
i∈J(M − a′i) is equal to (M − a(X)

|X|−1
)|J| if

all keys in i ∈ J have a′i = M(a, X) and is equal to M(M −
a(X)
|X|−1

)|J|−1 otherwise (one of the keys has a′i = 0). Substituting
the probabilities of these two outcomes we obtain

E[
∏
i∈J

(M − a′i)]

=

(
M − a(X)

|X| − 1

)|J|−1 (
M

(
|J | − a(J)(|X| − 1)

a(X)

))
+

(
M − a(X)

|X| − 1

)|J| (
a(J)(|X| − 1)

a(X)
− (|J | − 1)

)

=
(
M − a(X)

|X|−1

)|J|−1 (
M − a(J) + a(X) |J|−1

|X|−1

)

(16)

(E) follows by combining (15) and (16).

Proof of Lemma 7
PROOF OF LEMMA 7. This clearly holds for the h ≤ k prefix

of the stream, since a ≡ w. For h > k, the proof proceeds by
induction. Assume that at the beginning of the iteration ` = h− k
the sample S is a τk/c(w1, . . . , wh−1)-bounded summary of the
input (w1, . . . , wh−1). From the algorithm, all keys for which the
adjusted weight had increased during iteration ` have final adjusted
weight value

≤ τk/c(aS∪{h}) = τk/c(w1, . . . , wh) .

Thus it is a τk/c(w1, . . . , wh) bounded summary.

B. RANGE COST FOR ORDER

Range Cost of a pair
Given a pair of keys i1 < i2, we compute the range cost for X =
{i1, i2}. Denote w1 ≡ ai1 and w2 ≡ ai2 . Let SM = S ∩ (i1, i2)
be the set of all keys in S that lie strictly between i1 and i2.

All quantile points with ∆q > 0 must be contained in the keys
S∩[i1, i2]. For the w1/a(S) quantile points in i1: With probability

w2
w1+w2

we have a′i1 = 0 and a′i2 = w1 + w2 and with probability
w1

w1+w2
we have a′i2 = 0 and a′i1 = w1 + w2. Combining, we get

that the contribution to the cost of X is

1

a(S)(w1 + w2)

(
w2

∫ w1

0

x2dx+w1

∫ w1

0

(
w2

w1
x)2dx

)
=

w2
1w2

3a(S)
.

Symmetrically, the contribution of the quantile points in i2 is w2
2w1

3a(S)
.

Lastly, we consider the contribution of the a(SM)/a(S) quan-
tile points in the keys SM . For each point, we have ∆q = w1

with probability w2/(w1 + w2) and ∆q = w2 with probability
w1/(w1 + w2). Hence, the contribution to the cost is

a(SM)

a(S)

(
w2

w1 + w2
w2

1 +
w1

w1 + w2
w2

2

)
=

a(SM)w1w2

a(S)
.

Combining, we obtain that

ρ({i1, i2})) =
w1w2

a(S)

(w1 + w2

3
+ a(SM)

)
. (17)

Range cost of arbitrary X

By definition ρ(X) ≡ ρ(CAND(X)). Thus, we assume that all
keys i in X have wi < M(a, X) = M . It is clear that Algorithm 3
runs in O(|X|) time when given w1, . . . , w|X| in a sorted order and
the weights y1, . . . , y|X|−1 of keys between keys in X in a sorted
order.

LEMMA 8. Algorithm 3 correctly computes ρ(X).

PROOF. Let q ∈ [0, 1] be a quantile point with respect to S.

We say that i is “left” of q if
∑

h∈S|h≤i ah

a(S)
≤ q; right of q if

∑
h∈S|h≥i ah

a(S)
< 1− q and that i contains q (iq ≡ i) otherwise.

Let ` = arg max` q > (W` +
∑

h<` yh)/a(S) be the number
of points in X which lie left of q. q lies on i`+1 ∈ X if q <
(W`+1 +

∑
h<` yh)/a(S) and otherwise q lies on a key in S \X .

We compute ∆q and the contribution to the range cost of each
quantile point.

Case 1: iq 6∈ X: For q ∈ [W`/a(S), (W` + y`)/a(S)] (q lies
inside a key in S \ X): With probability (` − W`/M), the dis-
carded key by PIVOT lies left of q and ∆q = (`− 1)M −W` and
symmetrically, with probability (|X| − ` − (a(X) −W`)/M) =
W`/M − (` − 1), the discarded key by PIVOT is right of q and
∆q = `M −W`. Hence, E[∆2

q] =

(`−W`

M
)((`−1)M −W`)

2 + (
W`

M
−(`−1))(`M−W`)

2

= 1
M

(`M−W`)(W`−(`−1)M)2 + (W`−(`−1)M)(`M−W`)
2

= 1
M

(`M−W`)(W`−(`−1)M)(W`−(`−1)M + `M−W`)

=(`M −W`)(W` − (`− 1)M)

Integrating over all quantile points q ∈ [W`/a(S), (W`+y`)/a(S)),
we have
∫ (W`+y`)/a(S)

W`/a(S)

E[∆2
q]dq =

y`

a(S)
(M`−W`)(W` − (`−1)M)

(18)

Case 2: iq ∈ S: For q ∈
(

W`+y`
a(S)

,
W`+1+y`

a(S)

]
(q within i`+1), let

α = qa(S)−W` −
∑

h≤`yh .

i.e. α ∈ (0, w`+1) is the portion of weight of i`+1 lying left of q.
With probability (` − W`/M), the key discarded by PIVOT is

one of the leftmost ` keys and

∆q = (`− 1 + α/w`+1)M −W` − α

= (`− 1)M −W` + α(
M

w`+1
− 1)

Symmetrically, with probability

(|X| − `− 1− (w(X)−W`+1)/M) = W`+1/M − ` ,

the discarded key is one of the rightmost |X| − `− 1 keys and

∆q = (` + α/w`+1)M −W` − α

= `M −W` + α(M/w`+1 − 1) .

With probability (1− w`+1/M), the key discarded by PIVOT is
the (` + 1)st key and ∆q = `M −W` − α.

Combining the above, we compute

E[∆2
q] = (`− W`

M
)
(
(`− 1)M −W` + α(M

w`+1
− 1)

)2

+(
W`+1

M
− `)

(
`M −W` + α(M

w`+1
− 1)

)2

+(1− w`+1
M

)(`M −W` − α)2

= (`− W`
M

)
(
(`M −W` − α) + M(α

w`+1
− 1))

)2

+(
W`+1

M
− `)

(
(`M −W` − α) + M α

w`+1

)2

+(1− w`+1
M

)(`M −W` − α)2

= (M`−W`)
(
M(α

w`+1
−1)2 + 2(`M−W`−α)(α

w`+1
−1)

)

(W`+1 − `M)
(
M(α

w`+1
)2 + 2(`M −W` − α) α

w`+1

)

(`M −W` − α)2

= (M`−W`)
(
M − 2M α

w`+1
− 2(`M −W` − α)

)

+w`+1

(
M(α

w`+1
)2 + 2(`M −W` − α) α

w`+1

)

+(`M −W`)(`M −W` − α)− α(`M −W` − α)

= (M`−W`)
(
M − 2M α

w`+1
− `M + W` + α

)

+α2 M
w`+1

+ α(`M −W` − α)

= α2(M
w`+1

− 1)− 2α(`M −W`)(
M

w`+1
− 1)+

(M`−W`)(W` − (`− 1)M)

The contribution of all quantile points contained in the (` + 1)st
key of X is

1

a(S)

∫ w`+1

0

E[∆2
q]dα

= 1
a(S)

w`+1(M`−W`)(W` −M(`− 1))

− 1
a(S)

(Mw2
`+1(M − w`1) +

w2
`+1
3

(M − w`+1))

=
w`+1
a(S)

((`M −W`)(W`+1 − `M) +
w`+1

3
(M−w`+1)) (19)

ρ(X) is the sum of “inside” contributions (19) for ` = 0, . . . , |X|−
1 and of “outside” contributions (18) for ` = 1, . . . , |X| − 1. This
gives the expression computed in Algorithm 3.

Special cases of pivot selection
To gain some insights into pivot selection, we analyze some special
cases. Our analysis supports our heuristics that consider only pairs,
showing that range cost is minimized by smaller-size pivots.

Uniform Weight Case. We first consider S with uniformly-weighted
items. To find the applicable pivot with smallest range costs, it suf-
fices to consider X ⊂ S which contains |X| = x consecutive
keys: All subsets of the same size have the same applicability and
the range cost is minimized when the keys are consecutive. Wlog
we can assume unit weights, as scaling affects ρ(X) by the same
factor for all X . Then we have wi = 1 for all i ∈ S, and so Wl = l
and M = 1 + 1

x−1
. Substituting these into (19), we obtain

ρ(X) =

x−1∑

`=0

(1

3(x− 1)
+

`

x− 1

(
1− `

x− 1

))

=
x

3(x− 1)
+

1

x− 1

x−1∑

`=0

`− 1

(x− 1)2

x−1∑

`=0

`2

=
x

3(x− 1)
+

x

2
− x(2x− 1)

6(x− 1)

=
2x + 3x(x− 1)− x(2x− 1)

6(x− 1)

=
x2

6(x− 1)

We can see that ρ(x) increases with x and hence is minimized when
x = 2. Therefore, with uniformly-weighted keys of weight u, the
applicable set with smallest range cost is (any) consecutive set of
keys of the smallest size x such that M = ux/(x− 1) ≤ τk/c.

Two keys vs. Three keys. We next consider a consecutive set of
three keys i1 < i2 < i3 in S (that can have different weights)
showing that the subset of smallest range cost must be a pair. It
suffices to show that

min{ρ({i1, i2}), ρ({i2, i3})} ≤ ρ({i1, i2, i3}) .

Denoting wj ≡ wij , we may assume wlog that w1 ≤ w3 (since ρ
is invariant to reversal of the sequence), that furthermore, w3 ≡ w1

(since ρ(i1, i2, i3) is monotone increasing in the weight of i3 and
min{ρ({i1, i2}), ρ({i2, i3})} is fixed), and that w1 ≡ w3 ≡ 1
(scaling affects all costs by the same factor). We get

ρ({i1, i2}) = w2
2/3 + w2/3 and

ρ({i1, i2, i3}) = w3
2/12 + w2

2/3 + w2/3 > ρ({i1, i2}).
Note that the minimum range cost pair is not necessarily {i1, i2}.

If w2 > (1 +
√

7)/3, the subset of {i1, i2, i3} with lowest range
cost is i1, i3 (ρ({i1, i3}) = w2 + 2/3).

These special cases suggest that on order structures, range cost is
always minimized by a pair and support our heuristic of pivoting on
pairs. We note that this is not true for product spaces: Consider a
product of two orders and 4 keys {a, b, c, d} with unit weights and
coordinates (0, 1), (1, 3), (2, 0), (3, 2). Clearly, no pair is adjacent
in both dimensions. The smallest range cost over pairs is obtained
by the pairs {a, b}, {c, d}, {a, c}, and {b, d} which are adjacent in
one dimension and with 1 key between them in the other dimen-
sions. The range cost is ρ({a, b}) = 5/3 + 2/3 = 7/3. The range
cost of all 4 keys is ρ({a, b, c, d}) = 2 · 8/9 = 16/9 < ρ({a, b}).
The pivot {a, b, c, d} is optimal both in terms of range cost and in
terms of minimizing M .

