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Abstract

We analyse the queue Q

L

at a multiplexer with L inputs. We obtain a large deviation result,

namely that under very general conditions

lim

L!1

L

�1

logP[Q

L

> Lb] = �I(b)

provided the o�ered load is held constant, where the shape function I is expressed in terms of the

cumulant generating functions of the input tra�c. This provides an improvement on the usual

e�ective bandwidth approximation P[Q

L

> b] � e

��b

, replacing it with P[Q

L

> b] � e

�LI(b=L)

.

The di�erence I(b) � �b determines the economies of scale which are to be obtained in large

multiplexers. If the limit � = � lim

t!1

t�

t

(�) exists (here �

t

is the �nite time cumulant of

the workload process) then lim

b!1

(I(b) � �b) = �. We apply this idea to a number of exam-

ples of arrivals processes: heterogeneous superpositions, Gaussian processes, Markovian additive

processes and Poisson processes. We obtain expressions for � in these cases. � is zero for in-

dependent arrivals, but positive for arrivals with positive correlations. Thus economies of scale

are obtainable for highly bursty tra�c expected in ATM multiplexing.

Keywords: Large deviations, scaling limits, ATM multiplexers, heterogeneous superpositions.
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1 Introduction.

The problem of determining loss probabilities in queueing systems is crucial in the development

of emergent technology of telecommunications networks using the Asynchronous Transfer Mode

(ATM). Much recent work has focused on the analysis of the single server queue with general

arrivals. This enables one to analyse queues with correlated arrivals, such as those which occur in

the bu�er of an ATM multiplexer whose input is a superposition of highly bursty sources.

Consider a general single server queue. For t 2 T (here T = R

+

or Z

+

) denote by A

t

the amount

of work which arrives to be processed in the interval [�t; 0) and by S

t

the amount which can be

processed in the same interval. If more work arrived than can be processed, the surplus waits in

the queue. The workload process W is de�ned by W

0

= 0 and

W

t

= A

t

� S

t

; (1.1)

and the queue of unprocessed work at time zero is

Q = sup

t�0

W

t

: (1.2)

The relation between the tail of the queue length distribution and the large deviation properties

of the workload processes has been established in progressive degrees of generality. Following a

heuristic proposal by Kesidis et al [22] (see also [32, 5] for further bibliographical details), Glynn

and Whitt [16] showed for T = Z

+

that if the pair (W

t

=t; t) satisfy a large deviation principle then

lim

b!1

b

�1

logP[Q > b] = ��; (1.3)

where

� = supf� j �(�) � 0g; (1.4)

and � is the cumulant generating function of the workload process de�ned by

�(�) = lim

t!1

t

�1

logE[e

�W

t

]: (1.5)

Alternatively, � can be expressed through

� = inf

t>0

t�

�

(t

�1

) (1.6)

where �

�

, the Legendre-Fenchel transform of �, is de�ned through

�

�

(x) := sup

�

(x� � �(�)) : (1.7)

(We refer the reader to the book Dembo and Zeitouni [9] as a comprehensive reference for large

deviations, that of Bucklew [3] for a more heuristic approach, and the article of Lewis and P�ster

[26] for a general introduction).

Recently, Du�eld and O'Connell have extended this result in two directions [12]. Firstly, the same

result is shown to hold when T = R

+

, subject to a local growth condition on W . Secondly an

analogous result holds with large deviation scalings more general than the linear scalings b and t

in (1.3) and (1.5). These are appropriate for treating, for example, the case where the workload is
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fractional Brownian motion: this has been proposed as a model for the workload by Leland et al

[25], based on observations of Ethernet tra�c.

The relation (1.3) is the basis of the e�ective bandwidth approximation to the queue length distri-

bution:

P[Q > b] � e

��b

: (1.8)

(See for example, [5, 18, 19, 15, 21, 34] for development, applications and further references).

The motivation here is that for ATM multiplexers one wants to estimate exponentially small loss

probabilities, which in practice are to be as small as 10

�9

. However, there is already theoretical

and numerical work indicating that (1.8) is insu�cient for this purpose. For a queue where the

input is an L-fold superposition of Markovian sources served at constant rate s, Du�eld [10] proves

the upper bound

P[Q > b] � e

��L

e

��b

(1.9)

� is as before and � and � depend only the the tra�c due to a single source, and on the o�ered load

through the ratio s=L. In the example of on-o� Markov sources with positive autocorrelation, � is

strictly positive (see Bu�et and Du�eld [4]). Thus in a large superposition, the loss probabilities

may be exponentially small even for small b: the e�ective bandwidth approximation (1.8) can be

extremely conservative through over-estimating the loss probabilities. On the other hand, if � were

negative, then (1.9) suggests that (1.8) will under-estimate the loss probabilities at large L, even

for large b. Moreover, both types of error become more severe as L increases at constant load.

Both these types of behaviour have been observed though numerical studies of queueing models by

Choudhury et al [6], in which the asymptotic approximation

P[Q > b] � �e

��L

e

��b

(1.10)

is proposed. The e�ective bandwidth approximation, when compared with these results, is shown

to over-estimate the loss probabilities in examples of bursty sources, and under-estimate them in

examples of sub-bursty sources. Finally, we note the work of Weiss [33] for L-fold superpositions

of On-O� Markov 
uids. There a sample-path large deviation argument was used to identify the

most likely path to a rare event (such as over
ow from a large bu�er) and its probability, with the

asymptotics P[Q > Lb] � e

�LJ(b)

where for large b, J(b) � � + �b.

Thus we are led to investigate the large deviation properties of the queue length distribution in

the size L. Apart from the above considerations, we are motivated by the observation in examples

that the broad features of the queue length distribution remain roughly invariant when both the

size L and the queue length b are jointly scaled. (See simulation results in the thesis of Corcoran

[7], heuristic arguments by Rasmussen et al [28] and by Courcoubetis et al [8]). For example, let

Q

L

be the queue due to a superposition of L identical sources not necessarily Markovian, served at

constant rate sL (s �xed), and denote by �

t

the �nite time cumulant due to a single source with

arrival process A served at rate s:

�

t

(�) = t

�1

logE[e

�(A

t

�st)

]: (1.11)

The workload W

L

t

of the superposition is the sum of L independent copies of W

t

= A

t

� st and

Q

L

t

= sup

t�0

W

L

t

. As a consequence of Theorem 1 of the next section it follows (under convergence

of �

t

as t!1 and suitable local regularity conditions on the workload) that for b � 0

lim

L!1

L

�1

logP[Q

L

> Lb] = �I(b) (1.12)
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where I is the shape function de�ned by

I(b) = inf

t>0

t�

�

t

(b=t): (1.13)

The heuristics behind (1.12) are as follows. By (1.2), P[Q

L

> Lb] = P[[

t�0

fW

L

t

> Lbg]. The

probability of each event in the union is exponentially small for large L, and so the probability

is dominated by that of the most likely event sup

t�0

P[W

L

t

> Lb]. If, for each �xed t, the fam-

ily of superposed workloads satis�es a large deviation principle with some rate function I

t

, i.e.

P[W

L

t

> Lb] � e

�LI

t

(b)

, then altogether we get P[Q

L

t

> Lb] � e

� inf

t

I

t

(b)

. The required large de-

viation principle for independent superpositions follows from Cram�er's Theorem, and I

t

= (t�

t

)

�

.

(However, independence is not a requirement for our proof). We note that this large deviation

principle was obtained for alternating renewal processes by Simonian and Guibert [30].

The shape function I can be seen to give the large scale corrections to the e�ective bandwidth

approximation: (1.8) is replaced by

P[Q

L

> b] � e

�LI(b=L)

: (1.14)

(Observe that if one replaces �

�

t

by �

�

in (1.13), where � = lim

t!1

�

t

, then by (1.6) I(b) reverts to

b�). I(b)��b determines the error incurred by using the e�ective bandwidth at large L, or to make

a more positive statement, it determines the economies of scale to be obtained in multiplexers of a

large number of sources.

We examine the initial value I(0) and asymptotics as b!1 of the shape function I in Theorems

2 and 3. For T = Z

+

, a workload with stationary increments, I(0) = �

�

1

(0). This is just the

large deviation result for the loss probability in a bu�erless resource as found by Hui [18, 19]. The

asymptotics of I are

lim

b!1

(I(b)� �b) = � (1.15)

where

� = � lim

t!1

t�

t

(�) (1.16)

provided this limit exists, and subject to some regularity conditions in the case T = Z

+

. For large

b (at least of order L) this means we can make the approximation I(b) � � + �b. This establishes

that the asymptotics found by Weiss for Markov 
uid sources hold far more generally, and provides

a theoretical justi�cation for (1.10).

One sees from (1.4) that � = 0 for uncorrelated arrivals, since then �

t

(�) = �(�) = 0. Thus there

are no economies of scale to be gained at large (rescaled) bu�er sizes for uncorrelated arrivals,

since then ��b is asymptotic to I(b) for large b. On the other hand, a su�cient condition for � to

be positive is that the workloads on disjoint time intervals are positively correlated (Theorem 4).

This is typically the case for highly bursty sources. A generic con�guration with � > I(0) > 0 is

illustrated in Figure 1.
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Figure 1: Economies of Scale with � > I(0) > 0
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It is interesting to note that � depends on �ner details of the workload process than those which

determine the asymptotic slope �: it depends not only on the limiting cumulant � but rather on

the manner in which the �

t

approach � as t ! 1. To borrow from the terminology of physics, �

is not a thermodynamic quantity.

The paper is organised in the following way. The basic large deviation result is stated and proved

in section 2. The analysis of the shape function I is done in section 3. In section 4 we apply them

to a number of examples. The case of heterogeneous superpositions is worked out in 4.1. Gaussian

workload process are covered in 4 and the speci�c example of Ornstein-Uhlenbeck processes in 4.3,

including a calculation of the shape function for a heterogeneous superposition. Markov Additive

Processes are treated in 4.4. In this case we can express � in terms of the the maximal eigenfunction

of the (Laplace transform) of the Markov transition kernel (Corollary 5). Comparisons of the

approximation (1.14) with simulation are made for superpositions of Markovian on-o� sources.

Finally, in 4.5 we apply the results to a very simple class of examples: independent Poissonian

arrivals with general service distribution. In light of the explicit distribution for

P

L

M(�)=M(L�)=1

it is not surprising that in this case I(0) = � = 0: there are no economies of scale to be obtained

for Poissonian arrivals at any bu�er size.

2 Large deviations.

We begin by stating our hypotheses concerning the workload processes, then give some examples

which satisfy the hypotheses. For each L 2 N, (W

L

t

)

t2T

(where T = Z

+

or R

+

) is a stochastic

process, and W

L

0

= 0. The queue length at time zero is

Q

L

= sup

t2T

W

L

t

: (2.1)
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(Note that if the increments of W

L

are stationary, then the distribution of Q

L

is also stationary).

For � 2 R de�ne the cumulant generating function

�

L

t

(�) = (Lt)

�1

logE[e

�W

L

t

]: (2.2)

Hypothesis 1

(i) For each � 2 R, the limits

�

t

(�) = lim

L!1

�

L

t

(�) and �(�) = lim

t!1

�

t

(�) (2.3)

exist as extended real numbers. Moreover, the �rst limit exists uniformly for all t su�ciently

large.

(ii) � ( and �

t

) are essentially smooth: i.e. � is di�erentiable on the interior of its e�ective

domain (the region where it is �nite), and lim

n!1

j�

0

(�

n

)j = +1 for any sequence (�

n

) in

the e�ective domain which converges to a point on its boundary.

(iii) There exists � > 0 for which �

t

(�) < 0 for all t 2 T .

(iv) (T = R

+

) For all t � r � 0 de�ne

~

W

L

t;r

= sup

0<r

0

<r

W

L

t�r

0

�W

L

t

. Then for all � 2 R

lim sup

r!0

lim sup

L!1

L

�1

sup

t�0

logE[e

�

~

W

L

t;r

] � 0: (2.4)

Remark: if Hypotheses 1(i),(ii) are satis�ed, then by the G�artner-Ellis theorem, for each t the

pair (W

L

t

=L; L) satis�es a large deviation principle with good rate function given by the Legendre-

Fenchel transform of t�

t

. In other words, for any Borel set �,

lim sup

L!1

L

�1

logP(W

L

t

=L 2 �) � � inf

x2�

(t�

t

)

�

(x); (2.5)

and

lim inf

L!1

L

�1

logP(W

L

t

=L 2 �) � � inf

x2�

�

(t�

t

)

�

(x); (2.6)

where the Legendre-Fenchel transform of a function f is

f

�

(x) := sup

�2R

f�x� f(�)g; (2.7)

from which it follows that (t�

t

)

�

(x) = t�

�

t

(x=t). Let x

�

t

be the solution of �

�

t

(x

�

t

) = 0: by Hypothesis

1(iii) it is negative. Then for x � x

�

t

lim sup

L!1

L

�1

logP(W

L

t

=L > x) � �t�

�

t

(x=t); (2.8)

and

lim inf

L!1

L

�1

logP(W

L

t

=L > x) � �t�

�

t

(x

+

=t); (2.9)

where

+

indicates limit from above. Hypothesis 1(iii) is a stability condition: then there exists

a strictly positive solution � of the equation �(�) = 0, which is the asymptotic decay rate of the

queue length distribution. Hypothesis 1(iv) is a local regularity condition on the sample paths of

the workload.
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Examples

Homogeneous superpositions. There are L identical sources whose backward arrival processes

are independent copies of (A

t

)

t2T

. The superposition is served at a constant rate sL: the

o�ered load is independent of L. Then

�

t

(�) = �

L

t

(�) = t

�1

logE[e

�A

t

]� s�; (2.10)

independent of L. Thus �

t

is the cumulant corresponding to the workload W

t

= A

t

� st of a

single source served at rate s.

Heterogeneous superpositions. Sources are classi�ed by type j in some �nite index set J . There

are L

j

sources of type j, with L =

P

j

L

j

sources in total. The backward arrival process for

a source of type j is (A

j;t

)

t2T

. All sources are independent. Then

�

L

t

(�) =

X

j2J

p

L

j

c

j;t

(�)� s�; (2.11)

where

c

j;t

(�) = t

�1

logE[e

�A

j;t

] and p

L

j

= L

j

=L: (2.12)

The limits c

j

(�) = lim

t!1

c

j;t

(�) are assumed to exist with c

j

(�) essentially smooth. Then

for any � 2 R, L ! �

L

t

(�) is convergent provided the limits p

j

= lim

L!1

p

L

j

exist, and

the convergence is uniform in t since J is �nite. Heterogeneous superpositions have been

previously analysed through the e�ective bandwidth approximation (see references above)

and through eigenfunction expansions for classes of Markovian 
uid models by Kosten [23]

(building on the early work of Anick et al[1] on homogeneous superpositions) and �nite state

models by Elwalid et al [14].

For T = R

+

and A

j;t

having stationary increments, Hypothesis 1(iv) is satis�ed if, for each

j 2 J ,

lim sup

r!0

E[exp(� sup

0<t<r

jA

j;t

j)] = 1: (2.13)

Time rescalings. The single source arrival process is A

L;t

where the process (A

L;Lt

) is convergent

in distribution to some process (A

t

) as L!1. The superposition is served at a �xed rate s.

Thus with

P

L

denoting an L-fold superposition:

Q

L

t

= sup

t�0

�

(

P

L

A

L;t

)� st

�

(2.14)

= sup

t�0

�

(

P

L

A

L;Lt

)� Lst

�

: (2.15)

We shall take the limit L ! 1 and so assume �

L

t

(�) = (Lt)

�1

logE[exp �

P

L

(A

L;Lt

� st)]

satis�es Hypothesis 1. This class of models is motivated by examples of rescaled Markovian

sources simulated by Corcoran [7], and of rescaled renewal processes examined by Sriram and

Whitt [31] and Rasmussen et al [28].

Theorem 1 Under Hypothesis 1, for each b > 0,

Upper bound:

lim sup

L!1

L

�1

logP[sup

t>0

W

L

t

> Lb] � �I(b) (2.16)

where I(b) := inf

t>0

t�

�

t

(b=t) (2.17)
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Lower bound:

lim inf

L!1

L

�1

logP[sup

t>0

W

L

t

> Lb] � �I(b

+

): (2.18)

Proof of Theorem 1 : Lower Bound

lim inf

L!1

L

�1

logP[sup

t>0

W

L

t

> Lb] � lim inf

L!1

L

�1

sup

t>0

logP[W

L

t

> Lb] (2.19)

� sup

t>0

lim inf

L!1

L

�1

logP[W

L

t

> Lb] (2.20)

= sup

t>0

�t�

�

t

(b

+

=t) = �I(b

+

); (2.21)

by (2.9), where the last equality follows since, by Hypothesis 1(iii), �

�

t

is increasing on [0;1) �

[x

�

t

;1).

Upper Bound: T = Z

+

. For any t; � > 0 and �

t

0

> 0; 0 < t

0

< t,

P[sup

t

0

>0

W

L

t

0

> Lb] � t max

0<t

0

<t

P[W

L

t

0

> Lb] +

X

t

0

�t

P[W

L

t

0

> Lb] (2.22)

� t max

0<t

0

<t

e

�Lb�

t

0

+t

0

L�

L

t

0

(�

t

0

)

+ e

��Lb

X

t

00

�t

e

Lt

00

�

L

t

00

(�)

(2.23)

by Chebychev's inequality. Since �

L

t

(�) ! �

t

(�) uniformly in t, �

t

(�) ! �(�) and �(�) < 0 on

(0; �), we can �nd � > 0 and " < 0 such that �

L

t

(�) < " for all L; t su�ciently large. This means

that for such L and t the geometric series in (2.23) is summable, yielding

P[sup

t

0

>0

W

L

t

0

> Lb] � t max

0<t

0

<t

e

�Lb�

t

0

+t

0

L�

L

t

0

(�

t

0

)

+ e

��Lb+Lt"

=(1� e

L"

) (2.24)

Taking logarithms, dividing by L, taking the lim sup as L!1 and �nally taking the in�mum over

the �

t

0

we obtain

lim sup

L!1

L

�1

logP[sup

t

0

>0

W

L

t

0

> Lb] � max

�

max

0<t

0

<t

�

�t

0

�

�

t

0

(b=t

0

)

�

; ��b+ t"

�

(2.25)

Recall " < 0 so that taking the limit t ! 1 we obtain (in conjunction with the lower bound) the

stated result.

Upper Bound: T = R

+

. For any � > 0 and n 2 N de�ne

^

W

L

n

= sup

(n�1)�<t�n�

W

L

t

and

^

�

L

n

= (nL)

�1

logE[e

�

^

W

L

n

]: (2.26)

By H�older's inequality then for any p in (0; 1):

n

^

�

L

n

(�) � n� p�

L

n�

(�=p) + (1� p)L

�1

logE[e

�

~

W

L

n�;�

=(1�p)

]; (2.27)

with

~

W

L

as in Hypothesis 1(iv). According to Hypothesis 1, for any p 2 (0; 1) we can make the

second term of the right hand side of (2.27) as small as we like by choosing � su�ciently small then

L su�ciently large. Thus we can repeat the steps (2.22), (2.23) and (2.24) with � and p �xed, take

the limits t!1 then �! 0 to obtain

lim sup

L!1

L

�1

logP[sup

t>0

W

L

t

> Lb] � lim sup

L!1

L

�1

logP[sup

n>0

^

W

L

n

> Lb] (2.28)

� p sup

t>0

�t�

�

t

(b=t); (2.29)

since (p�

t

(�=p))

�

= p�

�

t

(�), and �nally let p% 1 to get the stated result.
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3 Analysis of the shape function.

In this section we analyse the initial value I(0) of the shape function, and the asymptotics of I(b)

as b!1.

For t > 0; � 2 R de�ne �

t

(�) = t�

t

(�=t).

Hypothesis 2

(i) W

L

t

has stationary increments.

(ii) (T = R

+

) The limit �(�) = lim

t!0

�

t

(�) exists as an extended real number for all � 2 R.

(iii) 0 lies in the interior of the e�ective domain of �

�

.

Theorem 2 Under Hypotheses 1 and 2

(T = Z

+

) I(0) = �

�

1

(0).

(T = R

+

) I(0) = �

�

(0).

Remark: Theorem 2 says that a stable workload with stationary increments is (asymptotically)

most likely to exceed 0 at the smallest times. But this need not be the case for non-stationary

workloads. For the proof of Theorem 2 we need the following Lemma:

Lemma 1 Under Hypothesis 2(i), for n 2 N, r 2 T

�

r

(�) � �

nr

(�): (3.1)

Proof: This follows from H�older's inequality and the stationarity of the increments of W . For

(�

i

)

1�i�n

, with �

i

> 0 and

P

n

i=1

�

i

= 1

E[e

�W

t

=t

] �

n

Y

i=1

E[e

�W

�

i

t

=(�

i

t)

]

�

i

(3.2)

and hence

�

t

(�) �

n

X

i=1

�

i

�

�

i

t

(�); (3.3)

from which (3.1) follows by taking �

i

= n

�1

and t = nr.

Proof of Theorem 2:

t�

�

t

(0) = sup

�

�t�

t

(�) = sup

�

�t�

t

(�=t) = �

�

t

(0); (3.4)

so that I(0) = inf

t

�

�

t

(0).

For T = Z

+

observe from Lemma 1 that �

1

(�) � �

t

(�) and hence �

�

1

(0) � �

�

t

(0). Hence I(0) =

�

�

1

(0) = �

�

1

(0).
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For T = R

+

since, by Hypothesis 2(ii) �

t

converges to �, then by Lemma 1 of [11], �

�

t

converges

to �

�

on the interior of the e�ective domain of �

�

. By Lemma 1, n 7! �

r=2

n is increasing for any

r > 0, and so n 7! �

�

r=2

n

is decreasing. Hence �

�

(b) = inf

t>0

�

�

t

(b) for any b in the interior of the

e�ective domain of �: for any " > 0 we can choose r such that

inf

t

�

�

t

(b) + " � �

�

r

(b) � �

�

r=2

n

(b) � inf

t

�

�

t

(b) (3.5)

and lim

n!1

�

�

r=2

n

(b) = �

�

(b). The result now follows by Hypothesis 2(iii).

The identi�cation of the asymptotics of I requires some technical conditions, as follows.

Hypothesis 3

(i) (T = Z

+

or T = R

+

) The following limit exists:

� := � lim

t!1

t�

t

(�): (3.6)

(ii) (T = Z

+

) �

t

and � are strictly convex and t 7! (t+ 1)�

0

t+1

(�)� t�

0

t

(�) is bounded above; or

(ii

0

) (T = Z

+

) �

t

and � are strictly convex; (�

�

t

)

0

and (�

�

)

0

are uniformly Lipschitz continuous on

some neighbourhood of �

0

(�); and

(t+ 1)�

0

t+1

(�)� t�

0

t

(�) = o(

p

t): (3.7)

Remark: Hypothesis 3(i) can be understood as follows. Let �

t

(�

t

) = 0. Then �

t

(�) � �

0

t

(�)(���

t

).

So the existence of a �nite limit � means that �

t

� � � t

�1

for large t.

Theorem 3 Under Hypothesis 3(i), and with the addition of Hypotheses 3(ii) or 3(ii

0

) for T = Z

+

,

then

lim

b!1

(I(b)� �b) = �: (3.8)

According to Hypothesis 1(ii), �

t

and � are di�erentiable, so the convergence of �

t

to � implies the

pointwise convergence of �

0

t

to �

0

. (See, for example, Lemma IV.6.3 of [13]).

Proof of Theorem 3: De�ne

�(t) := t�

0

t

(�) (3.9)

Since �

0

t

(�)! �

0

(�) > 0 as t!1, t 7! �(t) is increasing for t su�ciently large and lim

t!1

�(t) =

+1. Set

�(b) := supft 2 T j �(t) � bg: (3.10)

Ran(�) 3 b 7! �(b) is increasing and lim

b!1

�(b) = +1. By de�nition of the Legendre-Fenchel

transform of �

�

t

and (3.9)

t�

�

t

(b=t)� �b � t�

�

t

(�(t)=t)� ��(t) = �t�

t

(�): (3.11)

We obtain upper bounds for lim sup

b!1

(I(b)� �b), �rst for T = R

+

, then for T = Z

+

. We then

show these are equal to a lower bound for lim inf

b!1

(I(b)� �b).

10



Upper Bound: (T = R

+

) Ran(�) = R

+

, and so for any b 2 R

+

,

I(b)� �b = inf

t

t�

�

t

(b=t)� �b (3.12)

� �(b)�

�

�(b)

(b=�(b))� �b (3.13)

= ��(b)�

�(b)

(�); (3.14)

the last equality following from (3.11) because �(�(b)) = b for T = R

+

. Since �(b)!1 as b!1,

then by Hypothesis 3,

lim sup

b!1

(I(b)� �b) � �: (3.15)

(T = Z

+

) In this case Ran(�) is a discrete set, but the conclusion (3.15) holds provided we take

the limit along Ran(�), since � � � acts as the identity there. But for any b 2 R

+

we have

�(b)�

�

�(b)

(b=�(b))� �b = �(b)�

�

�(b)

(�(�(b))=�(b))� ��(�(b)) +E

b

(3.16)

where

E

b

= �(b)

�

�

�

�(b)

(b=�(b))� �

�

�(b)

(�(�(b))=�(b))

�

� � (b� �(�(b))) (3.17)

� (b� �(�(b))) (�

b

� �) (3.18)

where

�

b

= (�

�

�(b)

)

0

(b=�(b)): (3.19)

Here we have used the fact that since �

t

is strictly convex, �

�

t

is di�erentiable (see Theorem 26.3

in [29]).

The proof is complete if we can show that lim sup

b!1

E

b

� 0, since then lim sup

b!1

(I(b)� �b)

� lim sup

b!1

��(b)�

�(b)

(�) = �. Note

�(�(b)) � b � �(�(b) + 1) (3.20)

(for su�ciently large b) and the relations

�(b)�

0

�(b)

(�

b

) = b; �(b)�

0

�(b)

(�) = �(�(b)); (�(b) + 1)�

0

�(b)+1

(�) = �(�(b) + 1) (3.21)

from which it follows that �

b

� � since �

0

t

is increasing. (This means E

b

is non-negative). Combining

these gives

�(�(b) + 1)� �(�(b))

�(b)

�

b� �(�(b))

�(b)

= �

0

�(b)

(�

b

)� �

0

�(b)

(�) � 0: (3.22)

We now proceed under Hypothesis 3(ii) Since, from (3.21),

lim

b!1

�(�(b))=�(�) = lim

b!1

�

0

�(b)

(�) = �

0

(�); (3.23)

then by (3.22)

lim

b!1

�

�

0

�(b)

(�

b

)� �

0

�(b)

(�)

�

= 0: (3.24)

Hence

lim

b!1

�

b

= �; (3.25)
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for if not then �

b

i

> �+" for some " > 0 and subsequence b

i

!1. so lim sup

i!1

�

0

�(b

i

)

(�

b

i

)��

0

�(b

i

)

(�)

� lim sup

i!1

�

0

�(b

i

)

(�+")��

0

�(b

i

)

(�) = �

0

(�+")��

0

(�) > 0, since � is strictly convex, in contradiction

with (3.24). Finally,

0 � b� �(�(b)) � �(�(b) + 1)� �(�(b)) = (�(b) + 1)�

0

�(b)+1

(�)� �(b)�

0

�(b)

(�) (3.26)

which is bounded according to Hypothesis 3(ii). Combining with (3.25), then lim

b!1

E

b

= 0 as

required.

Alternatively, under Hypothesis 3(ii

0

), 0 � �

b

� � � k(b� �(�(b)) for some k > 0 independent of b

and so

0 � E

b

� k (b� �(�(b)))

2

=�(b) (3.27)

� (�(�(b) + 1)� �(�(b)))

2

=�(b) (3.28)

=

�

(�(b) + 1)�

0

�(b)+1

(�)� �(b)�

0

�(b)

(�)

�

2

=�(b) (3.29)

which goes to 0 as b!1 by (3.7).

Lower Bound: (T = R

+

or Z

+

) Suppose �rst that inf

t

t�

�

t

(b=t) is attained at �̂(b).

inf

t

t�

�

t

(b=t)� �b = �̂(b)�

�

�̂(b)

(b=�̂(b))� �b (3.30)

� ��̂(b)�

�̂(b)

(�) (3.31)

by (3.11) and so

lim inf

b!1

(I(b)� �b) � � (3.32)

provided �̂(b) ! 1 as t ! 1. But if this is not the case, �̂(b) is bounded. Thus we obtain a

contradiction with the upper bound (3.15) if we can show that

lim

b!1

(t�

�

t

(b=t)� �b) = +1 (3.33)

for any �xed t. But this is true since b 7! t�

�

t

(b=t)� �b is strictly convex and by (3.9) achieves it

in�mum at �(t) <1.

If inf

t

t�

t

(b=t) is not attained, then we can repeat the above arguments replacing �̂(b) with �̂

"

(b)

for which the in�mum is approximated to within ", uniformly in b, then take "! 0 at the end.

We shall say more concerning the existence of � in the context of Markov Additive Processes in

section 4.4. However, we can make a general statement concerning the sign of �.

Theorem 4 Let W

L

t

have stationary increments, and suppose for each L and for each 0 � t

1

�

t

2

� t

3

� t

4

that W

t

4

�W

t

3

and W

t

2

�W

t

1

are non-negatively correlated. Then if � exists, it is

non-negative.

Proof: Since W

t

and W

t+t

0

�W

t

are non-negatively correlated and w 7! e

�w

is non-decreasing

for � � 0,

E[e

�W

t+t

0

] = E[e

�W

t

e

�(W

t+t

0

�W

t

)

] � E[e

�W

t

]E[e

�(W

t+t

0

�W

t

)

] = E[e

�W

t

]E[e

�W

t

0

]; (3.34)

the last equality being due to the stationarity of the increments of W . Thus t 7! t�

t

(�) is superad-

ditive. Applying the sub-additivity theorem (see Lemma 6.1.11 of [9]) to �t�

t

(�) we obtain:

lim

t!1

�

t

(�) = sup

t>0

�

t

(�) = �(�) = 0: (3.35)

Thus �

t

(�) is non-positive for all t and so lim

t!1

t�

t

(�), if it exists, is also non-positive.
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4 Applications and Examples.

4.1 Heterogeneous Superpositions

We examine I(0) and � for the class of heterogeneous superpositions described in the section

2. Recall there are L =

P

j

L

j

sources in total in the superposition, L

j

of type j, each having

backward arrival process A

j;t

. We set c

j;t

(�) = t

�1

logE[e

�A

j;t

] and assume the existence of the limits

c

j

(�) = lim

t!1

c

j;t

(�) and p

j

= lim

L!1

L

j

=L. The service rate is sL so �

t

(�) =

P

j

p

j

c

j;t

(�) � s�.

First, we examine I(0). Consider the case T = R

+

. We assume the existence of the limits

C

i

(�) = lim

t!0

tc

i;t

(�=t). Then

�(�) =

X

j

p

j

C

j

(�)� s�: (4.1)

Thus

I(0) = �

�

(0) =

X

j

p

j

C

�

j

(s

(0)

j

) (4.2)

where s

(0)

j

= C

0

j

(

^

�),

^

� being the unique solution of the equation

P

j

p

j

C

0

j

(

^

�) = s. For T = Z

+

, the

same formulae hold, but with the C

j

replaced by c

j;1

.

Second, we examine �. � is the unique solution of the equation �(�) = 0, i.e.

X

j

p

j

c

j

(�)� s� = 0 (4.3)

and so

� =

X

j

p

j

�

i

(4.4)

where

�

i

= � lim

t!1

t

�

c

j;t

(�)� s

(1)

j

�

�

; (4.5)

and s

(1)

j

= c

j

(�)=�. Note s

(1)

j

> s

(0)

j

due to the convexity of c

j

, since c

j

(0) = 0. s

(0)

j

and s

(1)

j

are

the usual e�ective bandwidths of sources of type j for zero and in�nite bu�ers respectively. (See,

for example, [21] for further details).

4.2 Superpositions of Gaussian Arrival Processes.

In this section we take W

L

t

= A

L

t

� sLt where for each L, A

L

t

is an L-fold superposition of inde-

pendent copies of A

t

: a zero-mean Gaussian process with stationary increments and variance �

2

t

.

We make the following Hypotheses concerning A

Hypothesis 4

(i) For some function k

t

increasing to +1 as t& 0,

lim sup

t!0

k

t

m

t

<1 where m

t

= E[ sup

0<r<t

jA

r

j]; and lim sup

t!0

k

2

t

�

2

t

<1: (4.6)

The following limits exist as extended real numbers:
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(ii) �

2

:= lim

t!1

�

2

t

=t.

(iii) �̂

2

0

:= lim

t!0

�

2

t

=t

2

.

(iv) �̂

2

1

:= lim

t!1

(�

2

t

� t�

2

).

Proposition 1 Under Hypothesis 4, Theorems 1, 2 and 3 hold with

� = 2s=�

2

; I(0) =

s

2

2�̂

2

0

and � = �

2s

2

�̂

2

1

�

4

: (4.7)

Proof: Hypothesis 4(ii) means that � exists, and

�

t

(�) = �

2

�

2

t

=(2t)� s� and �(�) = �

2

�

2

=2� s� (4.8)

are clearly convex and di�erentiable.

To check that Hypothesis 1(iv) holds, we show that (i) implies (2.13). By Borell's inequality (see

[2], Theorem 5.2),

P[ sup

0<r<t

jA

r

j � x] � 1� � ((x� 2m

t

)=��

t

) (4.9)

for any x � 2m

t

, where ��

t

= sup

0<r<t

�

t

and � is the canonical Gaussian distribution function.

From this is follows that for any �,

E[exp(�k

t

sup

0<r<t

jA

r

j)] � e

2�k

t

m

t

�

1 + e

�

2

k

2

t

��

2

t

=2

(1� �(��k

t

��

t

))

�

: (4.10)

With (i) we get that k

t

m

t

, k

t

�

t

and hence also k

t

��

t

remain bounded as t! 0, so that

E[exp(�k

t

sup

0<r<t

jA

r

j)] is also bounded as t! 0. Hence when k

t

� 1,

E[exp(� sup

0<r<t

jA

r

j)] � E[exp(�k

t

sup

0<r<t

jA

r

j)]

1=k

t

! 1 (4.11)

as t! 0.

From (4.8) the decay rate is � = 2s=�

2

. Under (iii) the limit

�(�) = lim

t!0

t�

t

(�=t) = lim

t!0

�

2

�

2

t

2t

2

� �s = �

2

�̂

2

0

=2� �s (4.12)

exists and �

�

(b) = (b� s)

2

=(2�̂

2

0

). Thus Hypothesis 2 is satis�ed and I(0) = �

�

(0) = s

2

=(2�̂

2

0

).

Finally, under (iv) the limit

�� = lim

t!1

t�

t

(�) = lim

t!1

2(�

2

t

� �

2

t)s

2

=�

4

= 2s

2

�̂

2

1

=�

4

(4.13)

exists, so Hypothesis 3(i) is satis�ed.

The proof goes through for heterogeneous superpositions as described in sections 2 and 4.1, where

A

L

t

is a superposition of sums of L

j

copies of independent Gaussian processes A

j;t

with mean zero

and variance �

2

j;t

satisfying Hypothesis 4, provided the limits p

j

= lim

L!1

L

j

=(

P

j

L

j

) exist. In

this case �

2

t

=

P

j

p

j

�

2

j;t

.

We note that when A is Brownian motion (take k

t

= t

�1=2

), �̂

0

= +1 and �̂

1

= 0, so I(0) = � = 0.

(Compare with the discussion in section 4.5).
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4.3 Ornstein-Uhlenbeck Arrival Processes

An example where the workload is modelled by a Gaussian process with stationary increments is the

following. Consider a queue with constant service rate, for which the workload W

t

is the position

component of a stationary Ornstein-Uhlenbeck process with added negative drift. Such an arrival

process has been proposed by Norros et al [27] as a model of continuous correlated arrivals. It

arises as the heavy tra�c limit of superposed 2-state Markov 
uid sources under suitable rescaling

of time and mean activity (see [24]).

We consider the stationary Ornstein-Uhlenbeck velocity process (V

t

; t 2 R

+

), de�ned to be the

solution of the stochastic di�erential equation

dV

t

= �V

t

dt+

p

2(s=�)dB(t) (4.14)

where V

0

is normally distributed with zero mean and variance (s=�)

2

. Here B is standard Brownian

motion, � > 0 is a load parameter (the case � = 0 corresponding to unit load), and s > 0 can be

viewed as a service rate. The corresponding position process (with zero initial condition) is

A

t

=

Z

t

0

V

s

ds; (4.15)

and the workload is

W

t

= A

t

� st: (4.16)

W

t

is Gaussian with mean �st and variance

�

2

t

= 2(s=�)

2

(t+ e

�t

� 1): (4.17)

Hence

�

t

(�) =

�

2

�

2

t

2t

� s� ; and �(�) =

�

2

s

2

�

2

� s�: (4.18)

This gives �

2

= 2s

2

=�

2

, � = �

2

=s, �̂

2

0

= s

2

=�

2

and �̂

2

1

= �2s

2

=�

2

. Thus items (ii), (iii) and (iv) of

Hypothesis 4 is satis�ed and

I(0) = �

2

=2 and � = �

2

: (4.19)

In item (i) we can take k

t

= t

�1

since, as t! 0, �

2

t

� (st=�)

2

by (4.17), and m

t

� const: t

3=2

as we

shall now show. We use the integral representation of (4.14),

V

t

= e

�t

V

0

+ e

�t

p

2(s=�)

Z

t

0

e

s

dB(s): (4.20)

Then for t � 1

E[ sup

0<r<t

jZ

r

j] � 2E[ sup

0<r<t

Z

r

] by symmetry (4.21)

� 2tE[ sup

0<r<t

V

r

] (4.22)

� (2

p

2s=�)tE[ sup

0<r<t

Z

r

0

dB(r

0

)] (4.23)

� (4

p

2s=�)tE[ sup

0<r<t

B(r)] (4.24)

= const: t

3=2

(4.25)
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In fact we can easily calculate I(b) numerically . Normalizing b by s, a routine calculation yields

t�

�

t

(sb=t) =

s

2

(b+ t)

2

2�

2

t

= �

2

(t+ b)

2

4(t� 1 + e

�t

)

: (4.26)

We can also perform the same calculations for heterogeneous superpositions. Arrivals of type j are

Ornstein-Uhlenbeck position processes with mean 0 and variance

�

2

j;t

= 2(s=�

j

)

2

(r

j

t+ e

�r

j

t

� 1); (4.27)

and occur with limiting proportion p

j

in the superposition. Here we have included possible time

rescalings r

j

on each process. Thus the superposition has variance �

2

t

=

P

j

p

j

�

2

j;t

, and the analysis

of the previous section gives:

�

2

= 2s

2

X

j

p

j

r

j

�

�2

j

(4.28)

�

�1

= s

�1

X

j

p

j

r

j

�

�2

j

(4.29)

I(0) =

0

@

2

X

j

p

j

r

2

j

�

�2

j

1

A

�1

(4.30)

� =

P

j

p

j

r

2

j

�

�2

j

�

P

j

p

j

r

j

�

�2

j

�

2

(4.31)

t�

�

t

(sb=t) =

(b+ t)

2

4

P

j

p

j

�

�2

j

(r

j

t + e

�r

j

t

� 1)

: (4.32)

In Figure 2 the curve of b 7! �I(sb) is plotted for two types with r

1

= �

1

= 1, r

2

= �

2

2

= 2

and p

1

= p

2

= 1=2. The curve lies between those obtained for homogeneous arrivals of each type

separately: these are also plotted.
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Figure 2: Ornstein-Uhlenbeck superpositions

Homogeneous: p
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2
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�
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4.4 Markov Additive Arrival Processes.

In this section we obtain an expression for � in the case that the increments of the workload W

occur at integer times and are distributed according to the state of an underlying Markov process X

describing the con�guration of the source of the arrivals. (Speci�cally, one could consider W to be

the single source workload in a homogeneous superposition described in section 2; the corresponding

results for heterogeneous superpositions follow from section 4.1). A convenient description for this

is that of a Markov Additive Process.

To be precise, let X = (X

t

)

t2Z

+

be a irreducible aperiodic Markov process on a state space E (with

�-�eld E), and adjoin to it an additive component W = (W

t

)

t2Z

+

with W

0

= 0 such that (X;W ) is

a Markov process on the state space E �R. Furthermore, for each t 2 N the joint distribution of

the increment Z

t+1

:= W

t+1

�W

t

and X

t+1

, conditioned on (X

t

0

;W

t

0

)

0�t

0

�t

depends only on X

t

.

This dependence can be expressed through the kernel

P (x;G�B) := P[X

t+1

2 G;Z

t+1

2 B j X

t

= x]; (4.33)

for G 2 E and B a Borel set of R.

For � 2 R de�ne the transformed kernel

^

P (�) by

^

P (x;G; �) :=

Z

P (x;G� dz)e

�z

; (4.34)

and denote by

^

P

t

its t-fold convolution. A technical recurrence condition on the kernel P (see [20])

is required for what follows:

Hypothesis 5 (i) There exists a probability measure � on E�R, an integerm

0

and real numbers

0 < a � b <1 such that

a�(G�B) � P

m

0

(x;G�B) � b�(G�B) (4.35)

for all x 2 E, G 2 E and Borel sets B of R.

(ii) The convex hull of the support of �(E � �) has non-empty interior.

(iii) The set f� 2 R j �̂(E; �) <1g is open.

Note that Hypothesis 5 is automatically satis�ed in the case that E is �nite and P (x;E � dz) has

compact support for all x 2 E.

The main technical result we require concerning the kernel

^

P is an extension of the standard Perron-

Frobenious to non-discrete state spaces. Lemma 3.1. and Lemma 3.4 of [20] and Theorem III.10.1

of [17]). Let q denote the stationary distribution of X .

Proposition 2 � is strictly convex and essentially smooth. For all � in the e�ective domain of �,

e

�(�)

is the simple maximal eigenvalue of

^

P (�). The corresponding (right) eigenfunction r(�; �) and

Radon-Nikodym derivative d`(�; �)=dq of the (left) eigenmeasure `(�; �) are uniformly bounded and

positive. With the normalization

R

`(dx; �)r(x; �) = 1

^

P

t

(x;G; �) = r(x; �)`(G; �)e

t�(�)

�

1 +O

�

"(�)

t

��

; (4.36)

where 0 < "(�) < 1.
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Corollary 5

� = � lim

t!1

t�

t

(�) = � log

�

`(E; �)

Z

q(dx)r(x; �)

�

: (4.37)

Proof: This follows since t�

t

(�) = log

R

q(dx)

^

P

t

(x;E; �) and �(�) = 0.

To calculate I(0) we note that

�

1

(�) = log

Z

q(dx)P (x; dy� dz)e

�z

: (4.38)

In the special case, frequent in modelling, that the increment Z

t

is a non-random function � of X

t

when both are conditioned on X

t�1

we have

P (x; dy � dz) = R(x; dy)�

�(y)

(dz) (4.39)

where R is the transition kernel for X , and so (4.38) reduces to

�

1

(�) = log

Z

q(dy)e

��(y)

: (4.40)

Finally, note that the complexity of the calculation of � and I(0) (and indeed the whole curve of

I(b)) is independent of the number of sources L in the superposition.

Application: two-state Markov chain. We consider a L-fold homogeneous superposition of

arrivals streams, each of which is generated by a stationary discrete time Markov chain on two

states: on and o�. In the on state an arrival of unit length is generated; in the o� state no

arrival is generated. Transitions from o� to on occur with probability a; the reverse transition with

probability d. The superposition is serviced are serviced at constant rate sL with s < 1.

Within the general framework above we have E = f0; 1g, Z

t

= �(X

t

) with �(0) = �s; �(1) = 1� s,

so that P (x; dy � dz) = R(x; dy)�

�(y)

(dz) where R is the transition matrix of X :

R =

�

1� a a

d 1� d

�

: (4.41)

The stationary distribution of R is q = (

d

a+d

;

a

a+d

): the stability condition is a=(a+ d) < s.

The eigenvector/eigenvalue analysis of

^

P yields the following. e

�(�)

is the maximal eigenvalue of

the matrix

^

P (�) = R e

��(�)

=

�

1� a ae

�

d (1� d)e

�

�

e

�s�

: (4.42)

Let y = e

�

and set

x

�

= (2a)

�1

�

y(1� d)� (1� a)�

q

((1� a)� y(1� d))

2

+ 4ady

�

: (4.43)

The eigenvalues of

^

P (�) are v

�

= y

�s

(ax

�

+1�a). Hence � = log y for y such that 1 = y

�s

(ax

+

+

1� a). The (unnormalised) eigenmeasures and eigenfunctions are

`

�

(�; �) = `

�

:= (d; ax

�

) and r

�

(�; �) = r

�

:= (y; x

�

) (4.44)
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respectively. Thus

e

t�

t

(�)

=

Z

q(du)

^

P

t

(u;E; �) =

q � r

+

`

+

� (1; 1)v

t

+

`

+

� r

+

+

q � r

�

`

�

� (1; 1)v

t

�

`

�

� r

�

; (4.45)

and

� = � log

�

q � r

+

`

+

� (1; 1)

`

+

� r

+

�

= � log

(ax

+

+ dy)(ax

+

+ d)

(ax

2

+

+ dy)(a+ d)

; (4.46)

using the values for x

+

obtained from (4.43) with y = e

�

.

We check that all the required hypothesis are satis�ed. Proposition 2 gives Hypotheses 1(i,ii),

coupled with the fact that for �

L

t

= �

t

for homogeneous superpositions. One veri�es by explicit

di�erentiation that �

0

t

(0) is bounded (negatively) away from zero for all t if the stability condition

s > a=(a + d) is satis�ed: this gives 1(iii). Hypothesis 2(i) follows from the assumed stationary

of the arrival streams. As seen previously, Hypothesis 3(i) follows since � exists and is �nite.

One sees that from the decomposition (4.45) that t 7! t�

0

t

(�) = A

t

+ tB

t

where A

t

is bounded

and t(B

t+1

� B

t

) ! 0 as t ! 1. Hence Hypothesis 3(ii) is satis�ed in this model (and indeed

in any Markovian model for which such a di�erentiable decomposition exists). Hypothesis 5 is

automatically satis�ed for a model with deterministic arrivals and E �nite.

At b = 0 we �nd

I(0) = �

�

1

(0) = � inf

�

�

1

(�) = � log inf

�

ae

�

+ d

(a+ d)e

�s

= � log

ax̂+ d

(a+ d)x̂

s

(4.47)

where x̂ = sd=(a(1� s)). This agrees with the large deviation (upper) bound according to Hui [18]

for the probability of over
ow at a bu�erless resource (i.e. with b = 0).

The sign of � can be related to the sign of the correlations of the arrivals process. One sees

from (4.46) that sgn(�) = sgn ((x

+

� 1)(x

+

� y)). But it is shown from Proposition 3 of [4] that

1 � a � d > 0 =) x

+

> y > 1 while 1 � a � d < 0 =) y > x

+

> 1 and 1 � a � d = 0 =) x

+

=

y > 1. Furthermore the covariance of successive arrivals Cov(Z

t

; Z

t+1

) = ad(1� a � d)=(a+ d)

2

.

Summarizing:

sgn(1� a� d) = sgn(�) = sgn (Cov(Z

t

; Z

t+1

)) : (4.48)

Bursty sources will modelled with a + d < 1: successive arrivals are positively correlated. A sub-

bursty Markov model (i.e. with negatively correlated arrivals) has been studied numerically by

Choudhury et al [6]. It is found that the log-loss curves are concave, and asymptotic to a straight

line with positive intercept at b = 0: correspondingly, our value for � will be negative.

Comparisons and estimates. Theorem 1 can be used as a basis for approximation of superpo-

sitions of �nitely many lines: we take

P[Q

L

> b] � e

�LI(b=L)

: (4.49)

The �

t

are using (4.45) with y = e

�

. The resulting approximation is compared with simulations

in three cases. Figure 3 takes a = 0:03, d = 0:045, L = 84 and s = 40=84, a superposition of

highly bursty sources. In Figure 4 the parameters a = 0:3 d = 0:5344, L = 100 and s = 40=100

are chosen to make � = I(0): the curve is very close to linear. In Figure 5 a sub-bursty case

a = 0:55, d = 0:825, L = 84 and s = 40=84 is shown. In these examples, the shape of the log-loss

curve is closely reproduced by the approximation, but with a shift which makes the approximation

conservative (in these cases). This may well be a limitation of the �rst-order large deviation method.
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In fact the discrepancy is well within the O(logL) re�nements to the large deviation estimate of

P[W

L

1

> 0] in (4.47), so some improvement may be possible with further work involving these

re�nements to the �rst-order large deviation result. As a �nal numerical example we take a large

superposition of extremely bursty sources: a = :0003, d = :0007, s = 400, L = 1000. For these

parameters �LI(0)= log10 = 9:8 and �L�= log 10 = 20:2: the desired loss probabilities of 10

�9

are

already obtained at b = 0.
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log P [Q > b]
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Figure 3: a+ d < 1 with a = 0:03, d = 0:045, s = 40 and L = 84.

Approximation: �LI(b=L)

Simulation

�
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Figure 4: I(0) = � with a = 0:3, d = :5344, s = 40 and L = 100

Approximation: �LI(b=L)

Simulation

�

20



-14

-12

-10

-8

-6

-4

-2

0

0 5 10 15 20

log P [Q > b]

b

Figure 5: a+ d > 1 with a = 0:55, d = 0:825, s = 40 and L = 84.

Approximation: �LI(b=L)

Simulation

�

4.5 Poissonian Arrivals.

We conclude with a brief discussion of Poissonian arrivals. In this case one sees easily that �

t

= �

independent of t, and hence from (1.6)

I(b) = inf

t

t�

�

(b=t) = b�: (4.50)

I(0) = � = 0: we draw the conclusion that there are no economies of scale to be obtained from a

superposition of Poissonian arrivals at any bu�er size b. In contrast, Bernoulli arrivals will generally

give I(0) > � = 0: take a = 1�d in the on-o� model as an example. The di�erence in I(0) between

the two cases can be shown to go to zero if one constructs the Poissonian arrivals process as a

continuum limit of Bernoulli arrivals.
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