
Priority sampling for estimation of arbitrary subset
sums

NICK DUFFIELD

AT&T Labs–Research

and

CARSTEN LUND

AT&T Labs–Research

and

MIKKEL THORUP

AT&T Labs–Research

From a high volume stream of weighted items, we want to create a generic sample of a certain
limited size that we can later use to estimate the total weight of arbitrary subsets. Applied to
Internet traffic analysis, the items could be records summarizing the flows of packets streaming
by a router. Subsets could be flow records from different time intervals of a worm attack whose
signature is later determined. The samples taken in the past thus allow us to trace the history of
the attack even though the worm was unknown at the time of sampling.

Estimation from the samples must be accurate even with heavy-tailed distributions where most
of the weight is concentrated on a few heavy items. We want the sample to be weight sensitive,
giving priority to heavy items. At the same time, we want sampling without replacement in
order to avoid selecting heavy items multiple times. To fulfill these requirements we introduce
priority sampling, which is the first weight sensitive sampling scheme without replacement that
works in a streaming context and is suitable for estimating subset sums. Testing priority sampling
on Internet traffic analysis, we found it to perform an order of magnitude better than previous
schemes.

Priority sampling is simple to define and implement: we consider a steam of items i = 0, ..., n−1
with weights wi. For each item i, we generate a random number αi ∈ (0, 1] and create a priority
qi = wi/αi. The sample S consists of the k highest priority items. Let τ be the (k + 1)th highest
priority. Each sampled item i in S gets a weight estimate bwi = max{wi, τ}, while non-sampled
items get weight estimate bwi = 0.

Magically, it turns out that the weight estimates are unbiased, that is, E[bwi] = wi, and by
linearity of expectation, we get unbiased estimators over any subset sum simply by adding the
sampled weight estimates from the subset. Also, we can estimate the variance of the estimates,
and find, surprisingly, that the covariance between estimates bwi and bwj of different weights is
zero.

Finally, we conjecture an extremely strong near-optimality; namely that for any weight se-
quence, there exists no specialized scheme for sampling k items with unbiased weight estimators
that gets smaller variance sum than priority sampling with k + 1 items. Szegedy settled this
conjecture at STOC’06.

A very preliminary version of this paper was presented at SIGMETRICS’04 [Duffield et al. 2004].
A more complete technical report has circulated since 2005 [Duffield et al. 2005c].
All authors same address: AT&T Labs—Research, Shannon Laboratory, 180 Park Avenue, NJ
07932, USA. E-Mail: (duffield,lund,mthorup)@research.att.com.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 0004-5411/2007/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, October 2007, Pages 1–39.

2 · Duffield, Lund, and Thorup

Categories and Subject Descriptors: C.2.3 [Computer–Communications Networks]: Network
Operations—Network monitoring; E.1 [Data]: Data Structures; F.2 [Theory of Computation]:
Analysis of Algorithms and Problem Complexity; G.3 [Mathematics of Computing]: Proba-
bility and Statistics; H.3 [Information Systems]: Information Storage and Retrieval

General Terms: Measurement, Theory

Additional Key Words and Phrases: Subset sum estimation, weighted sampling, sampling without
replacement, reservoir sampling

1. INTRODUCTION

In this paper we focus on sampling from a high volume stream of weighted items.
The items arrive faster and in larger quantities than can be saved, so only a sample
can be stored efficiently. We want to create a generic sample of a certain limited
size that we can later use to estimate the total weight of arbitrary subsets. This
scenario is the basis for data bases over streams [Johnson et al. 2005]. The subset
sums can also be used for other aggregates over selected subsets. For example,
using unit weights, we can compute subset sizes which together with the previous
sums provide the subset averages.

Applied to Internet traffic analysis, the items could be records summarizing the
flows streaming by a router. A subset could be flow records of a worm attack whose
signature is only determined after sampling has taken place. The samples taken
in the past allow us to trace the history of the attack even though the worm was
unknown at the time of sampling.

Estimation from the samples must be accurate even with heavy-tailed distribu-
tions where most of the weight is concentrated on a few heavy items. We want the
sample to be weight sensitive, giving priority to heavy items. At the same time, we
want sampling without replacement in order to avoid selecting heavy items multiple
times. To fulfill these requirements we introduce priority sampling, which is the
first weight sensitive sampling scheme without replacement that works in a stream-
ing context and is suitable for estimating subset sums. Testing priority sampling
on Internet traffic analysis, we found it to perform an order of magnitude better
than previous schemes.

1.1 Priority Sampling

Priority sampling is a fundamental new technique to sample k items from a stream
of weighted items so as to later estimate arbitrary subset sums. The scheme
is illustrated in Figure 1. We consider a stream of items with positive weights
w0, ..., wn−1. For each item i = 0, .., n − 1, we generate an independent uniformly
random αi ∈ (0, 1], and a priority qi = wi/αi. Assuming that all priorities are dis-
tinct, the priority sample S of size k < n consists of the k items of highest priority.
An associated threshold τ is the (k + 1)th priority. Then i ∈ S ⇐⇒ qi > τ . Each
sampled item i ∈ S gets a weight estimate ŵi = max{wi, τ}. If i 6∈ S, ŵi = 0. We
will prove

E [ŵi] = wi. (1)

By linearity of expectation, if we want to estimate the total weight of an arbitrary
subset I ⊆ [n] = {0, 1, . . . , n− 1}, we just sum the corresponding weight estimates
Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 3

weight estimate

priority

sample

threshold

original weight

Fig. 1. Priority sampling of size 3 from a set of 10 weighted items.

in the sample, that is,

E

[∑

i∈S∩I

ŵi

]
= E

[∑

i∈I

ŵi

]
=

∑

i∈I

wi. (2)

Ties between priorities happen with probability zero, and can be resolved arbitrar-
ily. We resolve them in favor of earlier items. Thus we view priority qi as higher
than qj , denoted qi Â qj , if either qi > qj or qi = qj and i < j. With any such
resolution of ties, priority sampling works even if some weights are zero.

Note that in the case of unit weights, τ is just the (k + 1)th largest value 1/αi,
and then (2) simplifies to

E [kτ] = n. (3)

This unit case is a classic theorem in order statistics (see e.g., [Arnold and Balakr-
ishnan 1988; David 1981]).

1.2 Reservoir sampling

Priority sampling is ideally suited for reservoir sampling (c.f. [Knuth 1969, p. 138–
140]). In reservoir sampling, we operate on a stream of (weighted) items. The items
arrive one at the time, and a reservoir maintains a sample S of the items seen thus
far. When a new item arrives, it may be included in the sample S and old samples
may be dropped from S. Old items outside S are never reconsidered. Reservoir
sampling addresses two issues:

—The streaming issue [Muthukrishnan 2005] where we with limited memory want
to compute a sample from a huge stream that passes by only once.

Journal of the ACM, Vol. V, No. N, October 2007.

4 · Duffield, Lund, and Thorup

—The incremental data structure issue of maintaining a sample as new items are
added. In our case, we use the sample to provide quick estimates of sums over
arbitrary subsets of the items seen thus far.

In priority reservoir sampling, we simply use a standard priority queue to maintain
the k + 1 highest priority items. When an item i arrives, we generate the random
αi ∈ (0, 1], and assign it the priority qi = wi/αi. The first k + 1 items are all
put in the queue. Each subsequent item is also put in the queue but afterward we
remove the smallest item from the queue. This takes O(log k) time per item using a
comparison based priority queue [Cormen et al. 2001, pp. 138–141] or O(log log k)
time if we exploit that the priorities are represented as standard double precision
floating point numbers.

1.3 Relation to survey sampling

The above set-up is similar to that of classic survey sampling (see, e.g. [Särndal
et al. 1992]). However, in survey sampling, typically, we do not know the weight wi

of an item i unless we sample it. We may have access to some auxiliary variable ui

that is somehow correlated with wi, and we may use ui to determine the sampling
probability pi for item i. For example, if the items i are households, the wi may
be income while the ui is an approximation of wi based on street address. A main
challenge is to estimate the total weight based on the sampled weights.

Our context is that a large stream of weighted items pass by. When item i passes
by, we get to see its weight wi. If our goal was to compute the total, we would
simply accumulate the weights in a counter. Hence, in our context, the challenge
of survey sampling is trivial.

One thing that makes reservoir sampling hard is that sampling decisions are made
on-line. This rules out off-line sampling schemes such as Sunter’s [1977] method
where we have to sort all the items before any sampling decision is made.

A cultural difference between survey sampling and our case is that survey sam-
pling appears less focused on heavy tailed distributions. In our kind of applications,
heavy tailed distributions are very prominent [Adler et al. 1998; Park et al. 1996].

Finally, we note that priority sampling can be used in the above survey sampling
context, where the sampling decision is based on a weight ui different from the
weight wi that we are really interested in. The standard observation is that priority
sampling provides an unbiased estimator ûi of ui, and then we can use ŵi = ûiwi/ui

as an unbiased estimator of wi. However, in the rest of the paper, we are focused
on the case where the weight of interest is known prior to the sampling decision.

1.4 Concrete examples

With two examples we will now illustrate the selection of subsets and the use of
reservoir sampling for estimating the sum over these subsets. For the selection, the
basic point is that an item, besides the weight, has other associated information,
and selection of an item may be based on all its associated information. As stated in
(2), to estimate the total weight of all selected items, we sum the weight estimates
of all selected sampled items.

1.4.1 Internet traffic analysis. As mentioned earlier, our motivating application
comes from Internet traffic analysis. Internet routers export information about flows
Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 5

Flow record 1 Flow record 2

src IP 192.20.225.32 10.255.255.255
src port 80 (http) 48181
dest IP 10.0.0.1 192.168.1.1
dest port 48811 1434
protocol 17 (tcp) 6 (udp)

bytes (weight) 13408 404
packets 10 1

Fig. 2. Flow record examples. Record 1 is response from a web server 192.20.225.32. Record
2 is the slammer worm in action. Infected host 10.255.255.255 trying to infect 192.168.1.1 (all
addresses here are hypothetical)

of packets passing through them. A flow could be transmissions an ftp transfer of
a file, an email, or some other collection of related packets. The router summarizes
each flow in a flow record which is exported to a collector for subsequent analysis.
Each flow record contains the flow’s key, i.e., the common properties that relate the
flow’s packets, such as their source and destination IP addresses and TCP/UDP
port numbers and protocol number, and a summary of the packets in the flow, e.g.,
total number of packets and bytes. We think of the byte size as the weight. Some
examples of flow records are presented in Figure 2.

We want to sample flow records in such a way that we can answer questions
like how many bytes of traffic came from a given customer or how much traffic
was generated by a certain application. Both of these questions ask what is the
total weight of a certain selection of flows. If we knew in advance of measurement
which selections were of interest, we could have a counter for each selection and
increment these as flows passed by. The challenge here is that we must not be
constrained to selections known in advance of the measurements. This would pre-
clude exploratory studies, and would not allow a change in routine questions to be
applied retroactively to the measurements.

A striking example where the selection is not known in advance was the tracing
of the Internet Slammer Worm [Moore et al. 2003]. It turned out to have a simple
signature in the flow record; namely as being udp traffic to port 1434 with a packet
size of 404 bytes. Once this signature was identified, the worm could be studied by
selecting records of flows matching this signature from the sampled flow records.

We note that data streaming algorithms have been developed that generalizes
counters to provide answers to a range of selections such as, for example, range
queries in a few dimensions [Muthukrishnan 2005]. However, each such method
is still restricted to a limited type of selection to be decided in advance of the
measurements.

1.4.2 External information in the selection. In our next example, suppose a
large chain store saved samples of all their sales where each record contained in-
formation such as item, location, time, and price. The weight of a record is the
price.

Based on sampled records, the store management might want to ask questions
like how many days of rain does it take before we get a boom in the sale of rain
gear. Knowing this would allow them to tell how long they would need to order and

Journal of the ACM, Vol. V, No. N, October 2007.

6 · Duffield, Lund, and Thorup

disperse the gear if the weather report promised a long period of rain. Now, the
weather information was not part of the sales records, but if they had a data base
with historical weather information, they could look up each sampled sales record
with rain gear, and check how many days it had rained at that location before the
sale.

The important lesson from this example is that selection can be based on external
information not even imagined relevant at the time when samples are made. Such
scenarios preclude any kind of streaming algorithm based on selections of limited
complexity, and shows the inherent relevance of sampling preserving full records for
the purpose of arbitrary selections.

To put this example in a reservoir sampling context, imagine a central reservoir
maintaining a priority sample over all sales done so far. The reservoir is small
enough that it can be shared easily over the Internet with an analyst at a different
location.

1.5 Relation to known sampling schemes

We will now relate priority sampling to some known sampling schemes. We will
discuss the schemes in the context of reservoir sampling from a stream. We have
resources for a reservoir of k = ω(1) samples. We are particularly interested in the
important case of heavy-tailed distributions where one or a few dominant items
contain most of the total weight [Adler et al. 1998; Park et al. 1996].

Below we present the schemes and make some basic comparisons. In the body of
the paper we shall compare the schemes both experimentally and theoretically.

First we have the standard schemes: uniform sampling without replacement and
probability proportional to size sampling with replacement:

Uniform sampling without replacement (U−R). In uniform sampling without re-
placement, we pick a sample of k items uniformly at random. If item i is sampled
it gets weight estimate ŵi = win/k. We denote this scheme U-Rk.

Uniform sampling has problems with heavy-tailed distribution because it is likely
to miss the dominant items.

Probability proportional to size sampling with replacement (P+R). In probability
proportional to size sampling with replacement, each sample Sj ∈ [n], j ∈ [k],
is independent, and equal to i with probability wi/W where W is the sum of all
weights. Then i is sampled if i = Sj for some j ∈ [k]. This happens with probability
pi = 1−(1−wi/W)k, and if i is sampled, ŵi = 1/pi. We denote this scheme P+Rk.

Probability proportional to size sampling with replacement also has a problem
with heavy-tailed distributions for if one or a few dominant items contain most of
the total weight, then most samples will be copies of these dominant items. As a
result, we are left with comparatively few samples of the remaining items.

We note that there are many variations of probability proportional to size
sampling with replacement. For example, an alternative estimator for item i is
ŵi = wi/W · |{j ∈ [k]|Sj = i}|. However, this alternative estimator has larger
variance and is hence less popular. In the case of integer weights, another variant
is to divide them into unit weights and then use uniform sampling without replace-
ment on these units. The estimate of an item is then the sum of the estimates of
its units. However, when the total weight is large compared with the number of
Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 7

samples, then this alternative is very similar to the previous one. None of these
alternatives alleviate the basic problem that most samples are devoted to a few
dominant items.

Skipping the duplicates. A simple fix for probability proportional to size sampling
with replacement seems to be to skip duplicates until we have the desired number of
distinct samples. The problem is that the probability that a given item is included
in the sample is a complicated function of all the involved weights.

The above discussion suggests that we need weight-sensitive sampling without re-
placement. Below we discuss some schemes that do just that, but which unfortu-
nately have problems sampling k items from a stream:

Threshold sampling (THR). The threshold sampling from [Duffield et al. 2005a] is
a kind of Poisson sampling. In Poisson sampling, each item i is picked independently
for S with some probability pi. For unbiased estimation, we set ŵi = wi/pi. The
expected number of samples is E[|S|] =

∑
i pi.

In threshold sampling we pick a fixed threshold τ . For the sample S, we include
all items with weight bigger than τ . Moreover, we include all smaller items with
probability wi/τ . If τ is bigger than the largest weight, this is sampling with
probability proportional to size. Sampled items i ∈ S have estimate ŵi = wi/pi =
wi/ min{1, wi/τ} = max{wi, τ}. With k =

∑
i min{1, wi/τ} the expected number

of samples, we denote this scheme THRk. Threshold sampling is an optimal Poisson
sampling scheme in that it minimizes the sum of individual variances relative to
the expected number of samples.

In our streaming context, we have the immediate problem that we do not know
in advance which threshold τ to use so that the expected number of samples is k. In
[Duffield et al. 2005a] it is suggested to update τ periodically, but a burst in traffic
would still lead to a burst in samples. As a result of some independent interest, we
will show how τ can be increased on-line as items arrive, dropping some previously
sampled items, so as to maintain a threshold reservoir with an expected number of
k samples.

However, in this paper, we assume that we have allocated resources only for
a fixed number of samples, so we would have to go for a much smaller expected
number to be sure to stay within the bound.

The systematic threshold sampling below addresses the problem of getting exactly
k samples, but then it will run into other problems.

Systematic threshold sampling (SYS). We consider the general version of system-
atic sampling where each item i has an individual sampling probability pi, and if
picked, a weight estimate wi/pi. Contrasting Poisson sampling, the sampling de-
cisions are not independent. Instead we pick a single uniformly random number
x ∈ [0, 1], and include i in S if and only if for some integer j, we have

∑

h<i

pi ≤ j + x <
∑

h≤i

pi.

It is not hard to see that Pr[i ∈ S] = pi. Let k =
∑

i∈[n] pi be the expected number
of samples. Then the actual number of samples is either bkc or dke. In particular,
this number is fixed if k is an integer. Below we assume that k is integer.

Journal of the ACM, Vol. V, No. N, October 2007.

8 · Duffield, Lund, and Thorup

In systematic threshold sampling, we will assume exactly the same sampling
probabilities as in threshold sampling, and denote this scheme SYSk. Hence for
each item i we have identical marginal distributions ŵi with THRk and SYSk.

Thus systematic threshold sampling can be seen as fixing the variable number
of samples in threshold sampling, thus fitting it to our fixed resource constraint on
the samples. Unfortunately, it is not so easy to adapt the threshold τ on-line. The
problem is that a small change in threshold completely changes the set of items
sampled, unless the change is by a factor in which case we essentially drop every
other item. Another objection to systematic threshold sampling in a streaming
context is that we may have a very strong correlations between items in a subset
depending on how they are placed in the stream. Hence some subsets may be
subject to a huge variance.

Thus, even if threshold and systematic threshold sampling adapt well to different
weight distributions, we have the problem that they are not suitable for sampling
at most k items in a streaming context. We will thus view threshold and systematic
threshold sampling as idealistic benchmarks.

Other schemes. The book [Brewer and Hanif 1983] mentions many other sam-
pling schemes, all aiming at the same marginal sampling probabilities as the schemes
described above. The ones discussed here are those closest to being implementable
in an on-line streaming context.

Priority sampling (PRI). We basically claim that our new priority sampling si-
multaneously solves all our problems. We already saw that it was simple to maintain
a reservoir of k priority samples using a standard priority queue for the k +1 items
of highest priority. It is also trivial that priority sampling acts without replacement.
To see that it is weight-sensitive, suppose we have an item i which is r = wj/wi ≥ 1
times smaller than an item j. Then the probability that i gets higher priority than
j is 1/2r. More precisely,

Pr[qi > qj] = Pr[wi/αi > wj/αj] = Pr[αi < αj/r] =
∫ 1

0

αj/r dαj = 1/2r. (4)

Priority sampling is thus weight-sensitive without replacement, and, as stated in
(2), it does provide unbiased estimates.

Priority based implementation of threshold sampling. Next we will demonstrate
that priority sampling, technically speaking, is very similar to threshold sampling.
First we show how to implement threshold sampling using priorities. For each item
i, we generate a uniformly random αi ∈ (0, 1], and assign i the priority qi = wi/αi.
We sample i if qi is bigger than the fixed threshold τTHR. This way we sample i
with probability min{1, wi/τTHR} as required for threshold sampling. If sampled,
the estimate is max{wi, τ

THR}.
In priority sampling, the only technical difference is that we instead of using the

fixed threshold τTHR use the (k + 1)th priority as a variable threshold τPRI .
Recall that the threshold sampling threshold τTHR is the fixed value such that

the expected number of larger priorities is k. The priority sampling threshold τPRI

is the priority which has exactly k larger priorities. Thanks to this similarity, we
Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 9

would hope that priority sampling in its estimate quality would perform similarly
to threshold sampling.

Despite the technical similarity between priority and threshold sampling, we note
that priority sampling is much harder to analyze. In threshold sampling, sampling
decisions are independent for different items. However, in priority sampling, the
sampling of an item depends on τPRI which, as the (k + 1)th priority, depends
on all the random priorities. Just proving that unbiasedness as stated in (2) is
non-obvious.

Priority sampling is special.. The use of the variable τPRI in the weight estimate
max{wi, τ

PRI} sets priority sampling apart from all the other sampling schemes
considered. These other sampling schemes use a fixed value if an item is sampled.
More precisely, if item i is sampled with probability pi, they use the Horwitz-
Thompson estimator 1/pi which is the fixed value leading to unbiased estimation.

Finally, we note that priority sampling has different sampling probabilities. As a
simple example, suppose we sample one of two items with weights w1 and w2 where
w1 < w2. In priority sampling, we sample the item of highest priority. According
to (4), the probability that w1 is picked is w1/(2w2). The other weight-sensitive
schemes P+Rk, THRk, and SYSk, would all pick w1 with probability proportional
to size, that is, with probability w1/(w1 + w2) > w1/(2w2).

1.6 The birth of priority sampling.

As a historical remark, we note that the way we came up with priority sampling
was that we first came up with the priority based implementation of threshold
sampling. This was needed for a reservoir implementation of independent interest.
Then, as a simple hack to get exactly k samples, we replaced τTHR with the (k +
1)th priority as a variable threshold τPRI . Analyzing this new sampling scheme,
we discovered to our great surprise that it provided unbiased estimators and had
many other interesting properties. This paper is only the start, introducing priority
sampling along with some of its basic properties. There have already been follow-up
papers by ourselves and others [Cohen et al. 2007; Cohen and Kaplan 2007; Duffield
et al. 2005b; Szegedy 2006; Szegedy and Thorup 2007; Thorup 2006], deepening
the theory and broadening the practice. We will describe these directions in the
concluding remarks.

1.7 Outline of the Paper

The rest of the paper is organized as follows. In Section 2 we present a basic
theory for priority sampling. First of all, we show that priority sampling provides
unbiased estimators as stated in (1). In addition we will show how we can estimate
the variance of our subset sum estimates. This relies on a striking property of
priority sampling, namely, that the covariance between different weight estimates
is zero. Zero covariance is impossible for any kind of Horvitz-Thompson estimator
using exactly k samples.

In Section 3, we present experiments comparing priority sampling with the other
sampling schemes from Section 1.5 on real data from the Internet. We demonstrate
an order of magnitude gain in accuracy in subset sum estimates compared with

Journal of the ACM, Vol. V, No. N, October 2007.

10 · Duffield, Lund, and Thorup

uniform sampling and probability proportional to size sampling with replacement.
We also present experiments on synthetic heavy-tailed distributions

In Section 4, we analyze the performance of the different sampling schemes in
some simple cases in order to gain further understanding of the experiments.

In Section 5 we discuss the optimality of priority sampling in relation to that of
threshold and systematic threshold sampling. We conjecture an extremely strong
near-optimality; namely that for any weight sequence, there exists no specialized
scheme for sampling k items with unbiased weight estimators that gets smaller sum
of individual variances than priority sampling with k + 1 items. This conjecture
was settled recently by Szegedy [2006]1.

In Section 6, we compare in detail how reservoir sampling can be implemented
with the different schemes. In particular this includes our reservoir implementation
of threshold sampling.

In Section 7 we finish with some concluding remarks including a description of
later follow-up works.

2. BASICS OF PRIORITY SAMPLING

In this section, we will show that priority sampling yields unbiased estimates of
subset sums as stated in (1). The proof is simpler and more combinatorial than
the standard proofs for the known unit case [Arnold and Balakrishnan 1988; David
1981]. We will also show how to form unbiased estimators of secondary weights.
Finally, we consider variance estimation. We show that there is no covariance
between the weight estimates of different items, and that we can get unbiased
estimates of the variance of any subset sum estimate.

Recall that we consider items with positive weights w0, ..., wn−1. For each item
i ∈ [n], we generate an independent uniformly distributed random number αi ∈
(0, 1], and a priority qi = wi/αi. Priority qi is higher than qj , denoted qi Â qj , if
either qi > qj , or qi = qj and i < j. A priority sample S of size k consists of the
k items of highest priority. The threshold τ is the (k + 1)st highest priority. Then
i ∈ S ⇐⇒ qi Â τ . Each i ∈ S gets a weight estimate ŵi = max{wi, τ}. Also, for
i 6∈ S, we define ŵi = 0. Now (1) states that E[ŵi] = wi.

We will prove that (1) holds for an item i no matter which values the other
αj , j 6= i take. Fixing these values, we fix all the other priorities qj , j 6= i. Let τ ′

be the kth highest of these other priorities. We can now view τ ′ as a fixed number.
More formally, our analysis is conditioned on the event A(τ ′) of τ ′ being the kth

highest among the priorities qj , j 6= i, and we will prove

E[ŵi|A(τ ′)] = wi. (5)

Proving (5) for any value of τ ′ implies (1). The essential observation is as follows.

Lemma 2.1. Conditioned on A(τ ′), item i is picked with probability
min{1, wi/τ ′}, and if picked, τ = τ ′.

1It may seem funny to raise here a conjecture that has already been settled, but our conjecture goes
back to SIGMETRICS’04 when this work was first announced and the conjecture was included
in [Duffield et al. 2005c]. Moreover, we show here that the conjecture is equivalent to a certain
technical statement, and it is this technical statement that Szegedy proved true.

Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 11

Proof. We pick αi ∈ (0, 1] uniformly at random, thus fixing qi = wi/αi. If
qi ≺ τ ′, there are at least k priorities higher than qi, so i 6∈ S. Conversely, if
qi Â τ ′, then τ ′ becomes the (k + 1)th priority among all priorities, so τ ′ = τ , and
then i ∈ S. Finally,

Pr[i ∈ S|A(τ ′)] = Pr[qi Â τ ′] = Pr[αi < wi/τ ′] = min{1, wi/τ ′}.

From Lemma 2.1, we get

E[ŵi|A(τ ′)] = Pr[i ∈ S|A(τ ′)]× E [ŵi|i ∈ S ∧A(τ ′)]
= min{1, wi/τ ′} ×max{wi, τ

′}
= wi.

The last equality follows by observing that both the min and the max take their
first, respectively their second value, depending on whether or not wi ≥ τ ′. This
completes the proof of (5), hence of (1).

2.1 Zero weight items and sampling it all

We note here that priority sampling, as defined above, works even in the presence
of zero weights. First we note that wi = 0 ⇐⇒ qi = wi/αi = 0 while wi > 0 ⇐⇒
qi = wi/αi > wi > 0. It follows that zero weight items can only be sampled if all
positive weight items have been sampled. Moreover, if we do sample a zero weight
item i, we have τ ≺ qi = wi = 0, so τ = 0, and then ŵj = wj for all items j. Having
noted that zero weight items do not cause problems, we will mostly ignore them.

Above we have assumed k < n, but we note a natural view of a priority sample
of everything, that is, with k = n. We define an (n + 1)th priority τ = qn = 0, as if
we had an extra zero weight wn = 0. Then qi Â τ = qn for all i ∈ [n], so all items
get sampled. Moreover ŵi = max{wi, τ} = wi, so the weight estimate is equal to
the original weight.

2.2 Secondary variables

Suppose that each item i has a secondary variable xi. We can then use (1) to give
unbiased estimators of corresponding secondary subset sums. More precisely, we
set x̂i = ŵixi/wi. That is x̂i = max{wi, τ}xi/wi = max{1, τ/wi}xi if i is sampled;
0 otherwise. Then (1) implies E[x̂i] = xi.

An application could be to deal with negative and positive weights xi. We could
define the priority weights as their absolute values, that is, wi = |xi|, and use these
non-negative weights in the priority sample.

Another application could be if we had several different variables for each item.
Instead of making an independent priority sample for each variable, we could con-
struct a compromise weight. For example, for each item, the weight could be a
weighted sum of all the associated variables.

2.3 Variance estimation for a single item

We now provide a simple variance estimator

v̂i =
{

τ max{0, τ − wi} if i ∈ S
0 if i 6∈ S

,

Journal of the ACM, Vol. V, No. N, October 2007.

12 · Duffield, Lund, and Thorup

and show that it is unbiased, that is,

E [v̂i] = Var[ŵi]. (6)

As in the proof of (1), we define A(τ ′) to be the event that τ ′ is the kth highest
among the priorities qj , j 6= i. We will prove

E [v̂i|A(τ ′)] = E[ŵ2
i |A(τ ′)]− w2

i . (7)

From Lemma 2.1, we get

E[v̂i|A(τ ′)] = Pr[i ∈ S|A(τ ′)]× E [v̂i|i ∈ S ∧A(τ ′)]
= min{1, wi/τ ′} × τ ′max{0, τ ′ − wi}
= max{0, wiτ

′ − w2
i }.

On the other hand,

E[ŵ2
i |A(τ ′)] = Pr[i ∈ S|A(τ ′)]× E

[
ŵ2

i |i ∈ S ∧A(τ ′)
]

= min{1, wi/τ ′} ×max{wi, τ
′}2

= max{w2
i , wiτ

′}.

This establishes (7) and hence (6).

2.4 Zero covariance

Assuming that we sample more than one item, we will show that the covariance
between our weight estimates is zero , that is, for k > 1 and i 6= j,

E [ŵiŵj] = wiwj . (8)

If k = 1, we have E [ŵiŵj] = 0 since we cannot sample both i and j.
Note that (8) is somewhat counter-intuitive in that if we sample i then this

reduces the probability that we also sample j. However, the assumption that i is
sampled affects the threshold τ and thereby the weight estimate ŵj and it turns
out that the different effects cancel out.

We will prove (8) via the following common generalization of (8) and (1) holding
for any I ⊂ [n], |I| ≤ k:

E

[∏

i∈I

ŵi

]
=

∏

i∈I

wi. (9)

If |I| > k, we have E
[∏

i∈I ŵi

]
= 0 since at most k items are sampled with ŵi > 0.

The proof of (9) generalizes that of (1). Inductively on the size of I, we will prove
that (9) holds no matter what values all the other αj , j 6∈ I take. The equality is
trivially true in the base case where I = ∅ and the products equals one.

Thus, for all j 6∈ I, fix all αj ∈ (0, 1] and priorities qj = wj/αj . Fix τ ′′ to be
the (k − |I|+ 1)th highest of these priorities qj j 6∈ I. This priority exists because
k ≤ |I| < n. Next for i ∈ I, we pick αi ∈ (0, 1] and set qi = wi/αi. We can now
have at most (k − |I|) + |I| priorities below τ ′′, so τ ′′ is at least as big as our new
threshold τ .
Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 13

Consider the case that I has a weight wh ≥ τ ′′. Fix αh ∈ (0, 1] arbitrarily. Then
qh > wj ≥ τ ′′ ≥ τ , so item h is sampled with ŵh = max{wh, τ} = wh. Hence

E
[∏

i∈I ŵi

]
= whE

[∏
i∈I\{h} ŵi

]
. We have now fixed all αj , j 6∈ I \ {h}, and by

induction, E
[∏

i∈I\{h} ŵi

]
=

∏
i∈I\{h} wi. This completes the proof of (9) in the

case that I has some weight as big as τ ′′.
Next consider the case that all weights from I are smaller than τ ′′. Let q` be the

lowest priority from I. If q` ≺ τ ′′, then there are at least (k−|I|+1)+ |I \{`}| = k
priorities higher than q`, so q` 6∈ S, and ŵ` = 0 =

∏
i∈I ŵi. Thus, if q` ≺ τ ′′, there

is no contribution to E
[∏

i∈I ŵi

]
.

Conversely, if τ ′′ ≺ q`, then all priorities from I are bigger than τ ′′. In this
case there are exactly (k − |I|) + |I| = k priorities higher than τ ′′, so τ ′′ becomes
our threshold τ . Then each i ∈ S are sampled. Since wi ≤ τ ′′ = τ , we get
ŵi = max{wi, τ} = τ . Hence

∏
i∈I ŵi = τ ′′|I|. Since no weights in I is higher than

τ ′′, the probability that all their priorities are bigger is
∏

i∈I(wi/τ ′′). Thus, the
contribution to E

[∏
i∈I ŵi

]
is τ ′′|I|

∏
i∈I(wi/τ ′′) =

∏
i∈I wi. This completes the

proof of (9) in the remaining case where all weights from I are smaller than τ ′′.

2.5 Variance estimation over subsets

We can now use our variance estimator from Section 2.3 to estimate the variance
over any subset. By (8) and (6) we get an unbiased estimator of the variance of any
subset sum estimate simply by summing the variance estimators from the subset,
that is, if k > 1 for any subset I ⊆ [n],

Var[
∑

i∈I

ŵi] =
∑

i∈I

Var[ŵi] = E

[∑

i∈S∩I

v̂i

]
. (10)

In fact, (10) also holds if k = 1, but this is because Var[
∑

i∈I ŵi] = ∞ for any
non-empty subset I. We shall return to this point later in Section 4.1.

3. EXPERIMENTS

We tested priority sampling against the other sampling schemes from Section 1.5
on both real and synthetic data.

3.1 Internet flow records

The real data are from the Internet application we discussed in Section 1.4. The
stream consisted of 85,680 flow records exported from an Internet gateway router.
The distribution of bytes reported in the flow records was quite heavy-tailed with
a single record containing 78% of the total weight. Such heavy tails are common
in real life [Adler et al. 1998; Park et al. 1996].

In Figure 3 we consider subsets defined by different types of applications; namely
ftp, multimedia, sessions, and dns. On the left hand side the weights of the sets
are plotted in order of decreasing weight. The interesting thing is that the subsets
are of very different nature. For example, there are less than 1% ftp flows, yet they
represent most of the weight. Conversely, nearly half the flows are dns, yet they
represent less than 0.1% of the total weight.

Journal of the ACM, Vol. V, No. N, October 2007.

14 · Duffield, Lund, and Thorup

The middle plot shows the estimates for increasing sample sizes k. We note that
for threshold sampling, k represents the expected number of samples and not the
actual number. Also, with weighted sampling with replacement, there may be many
duplicates among the k samples. In fact the percentage of duplicates is plotted in
Figure 4. For all sampling schemes except systematic threshold sampling, increasing
k means adding more samples to the same set, that is, the k + 1 samples contains
the k samples. However, there is no natural way of doing this with systematic
sampling. This is why it is only for systematic threshold sampling that we can
have an isolated point as we see it in the multimedia case for k ≈ 15.

Finally, on the right hand side we plotted the root mean square (RMS) relative
error over 1000 runs. That is, we made a 1000 runs with increasing sample sizes,
each like the one in the middle plot. For each sampling scheme and each value of
k, we got 1000 estimates ŴI of the weight WI of a subset. The relative error is
|cWI−WI |

WI
, and we computed the square root of the mean over all 1000 estimates

of the square of the relative error. The RMS relative error is hence our measured
relative standard deviation.

In Figure 5 we consider estimates of all entries in an 8 × 8 traffic matrix. Each
entry then represents the subset of traffic going from a given source to a different
destination. Whereas Figure 3 considered the performance on very different types
of subsets, the point here is to consider the average performance over the 64 entries,
thinking of these as more random subsets. What is plotted is the sum of errors
over all entries divided by the total traffic. These data are all based on a single
run, that is, for each sampling scheme and value of k, it is the same sample that is
used to estimate all 64 entries.

3.2 Pareto distributions

As synthetic data we use Pareto distributions displaying different degrees of heavy-
tailedness. The Pareto(β) distribution of a random variable X has cumulative
distribution function P [X < x] = 1− x−β for x greater than 1. The distribution is
more heavy tailed when β is small. It has infinite variance for β ≤ 2 and infinite
mean for β ≤ 1.

In order to study the behavior of the schemes as the distribution got more and
more heavy-tailed, we started with a ground set of 10,000 weights each picked
uniformly at random from [0, 1]. Each weight was selected independently with
probability 1/10 for a subset. Next, for β = 1.75, 1.25, 0.75, we converted the data
to Pareto(β) with the map wi 7→ (1 − wi)1/β . This way it is only the distribution
of the ground set and subset that changes while the ranks of the subset elements
within the ground set remain unchanged. The results are presented in Figure 6.
After uniform, we display the Paretos in order of decreasing β so they become less
and less uniform and more and more heavy-tailed. As in Figure 3, we have 3 plots
for each case, first a distribution plot, then the result of a single run, and finally
the RMS relative error measured over 1000 runs.

3.3 Discussion

The quality of a sampling scheme is the number of samples it takes before the
estimates converge towards the true value. It takes only a quick look at the results
Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 15

Ftp. This subset has 727 items and weight 3,394,832,734

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1 10 100 1000 10000 100000

si
ze

index

all traffic
ftp traffic

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1 10 100 1000 10000

samples k

U-R
P+R
THR
SYS
PRI

0.01

0.1

1

10

1 10 100 1000 10000

R
M

S
 r

el
at

iv
e

er
ro

r

samples k

U-R
P+R
THR
SYS
PRI

Multimedia. This subset has 81 items and weight of 4,339,064.

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1 10 100 1000 10000 100000

si
ze

index

all traffic
multimedia traffic

10000

100000

1e+06

1e+07

1e+08

1 10 100 1000 10000

samples k

U-R
P+R
THR
SYS
PRI

0.01

0.1

1

10

1 10 100 1000 10000

R
M

S
 r

el
at

iv
e

er
ro

r

samples k

U-R
P+R
THR
SYS
PRI

Sessions. This subset has 2,600 items and weight of 121,625,397.

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1 10 100 1000 10000 100000

si
ze

index

all traffic
sessions traffic

1e+06

1e+07

1e+08

1e+09

1 10 100 1000 10000

samples k

U-R
P+R
THR
SYS
PRI

0.01

0.1

1

10

1 10 100 1000 10000

R
M

S
 r

el
at

iv
e

er
ro

r

samples k

U-R
P+R
THR
SYS
PRI

Dns. This subset has 40,767 items and weight 4,083,277.

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1 10 100 1000 10000 100000

si
ze

index

all traffic
dns traffic

1e+06

1e+07

1e+08

1e+09

1 10 100 1000 10000

samples k

U-R
P+R
THR
SYS
PRI

0.01

0.1

1

10

1 10 100 1000 10000

R
M

S
 r

el
at

iv
e

er
ro

r

samples k

U-R
P+R
THR
SYS
PRI

Fig. 3. Real network data. A stream 85,680 flow records was collected from an Internet gateway
router. Their total weight was 4,265,677,642. Different traffic classes were selected as subsets.
Left: Weight distribution for total traffic and dns traffic. Middle: Weight estimates as a function
of sample size. Right: RMS relative error of weight estimates as function of sample size averaged
over 1000 runs.

Journal of the ACM, Vol. V, No. N, October 2007.

16 · Duffield, Lund, and Thorup

70

75

80

85

90

95

100

10 100 1000 10000

%
 d

up
lic

at
es

samples k

Duplicates in P+R

Fig. 4. Percentage of duplicates with P+R as function of number of samples.

 0.01

 0.1

 1

 1 10 100 1000 10000

R
el

at
iv

e
T

ot
al

 E
rr

or

samples k

8 x 8 traffic matrix

U-R
P+R
THR
SYS
PRI

Fig. 5. Estimating a traffic matrix with different sampling strategies. We divide the total error
over all entries with the total traffic.

in Figures 3, 5, and 6 to see that priority sampling (PRI) performs better than
the standard alternatives: uniform sampling (U−R) and probability proportional
to size sampling with replacement (P+R). Also, we see that its performance is
very similar to that of the idealistic benchmarks: thresholds sampling (THR) and
systematic threshold sampling (SYS). These two schemes are considered idealistic
in our context because they are not suitable in a streaming context for maintaining
a reservoir of k samples (c.f. Section 1.2). The similarity between PRI, THR, and
SYS is so strong that it is often hard to tell them apart in the plots. Below follows
a more detailed comparison.

We will now in more detail compare priority sampling (PRI) scheme with the
standard alternatives uniform sampling without replacement (U−R) and probabil-
ity proportional to size sampling with replacement (P+R). First we focus on the
single sample paths in the middle plots of Figures 3 and 6, showing single estimates
with increasing sample sizes. For each of the three schemes, we are adding samples
to the same set when k increases. When comparing the resulting curves, there are
Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 17

Uniform. Subset has 975 items and weight 483.45. Groundset has 10,000 items and weight
5005.02.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

si
ze

index

ground set
subset

1e+08

1e+09

1e+10

1 10 100 1000 10000

samples k

U-R
P+R
THR
SYS
PRI

0.01

0.1

1

10

1 10 100 1000 10000

R
M

S
 r

el
at

iv
e

er
ro

r

samples k

U-R
P+R
THR
SYS
PRI

Pareto(1.75). Subset has 975 items and weight 2,123. Ground set has 10,000 items and weight
30,467.

1

10

100

1000

1 10 100 1000 10000

si
ze

index

ground set
subset

100

1000

10000

100000

1 10 100 1000 10000

samples k

U-R
P+R
THR
SYS
PRI

0.01

0.1

1

10

1 10 100 1000 10000

R
M

S
 r

el
at

iv
e

er
ro

r

samples k

U-R
P+R
THR
SYS
PRI

Pareto(1.25). Subset has 975 items and weight 3,633. Groundset has 10,000 items and weight
267,178.

1

10

100

1000

10000

1 10 100 1000 10000

si
ze

index

ground set
subset

100

1000

10000

100000

1 10 100 1000 10000

samples k

U-R
P+R
THR
SYS
PRI

0.01

0.1

1

10

1 10 100 1000 10000

R
M

S
 r

el
at

iv
e

er
ro

r

samples k

U-R
P+R
THR
SYS
PRI

Pareto(0.75). Subset has 975 items and weight 37,212. Groundset has 10,000 items and weight
774,271,000.

1

10

100

1000

10000

100000

1e+06

1e+07

1 10 100 1000 10000

si
ze

index

ground set
subset

100

1000

10000

100000

1e+06

1 10 100 1000 10000

samples k

U-R
P+R
THR
SYS
PRI

0.01

0.1

1

10

1 10 100 1000 10000

R
M

S
 r

el
at

iv
e

er
ro

r

samples k

U-R
P+R
THR
SYS
PRI

Fig. 6. Synthetic data. We start with a groundset of 10,000 weights chosen uniformly at random
from [0, 1]. Each was picked with probability 1/10 for a random subset which got 975 items.
For β = 1.75, 1.25, 0.75, we converted the data to Pareto(β) with the map wi 7→ (1 − wi)

1/β .
Left: Weight distribution for ground set and selection. Middle: Weight estimates as a function
of sample size. Right: RMS relative error of weight estimates as function of sample size averaged
over 1000 runs

Journal of the ACM, Vol. V, No. N, October 2007.

18 · Duffield, Lund, and Thorup

two points to consider. One is how many samples it takes before we get one from
a given application. This is the point at which we get our first non-zero estimate.
Second we consider how quickly we converge after this point.

Number of samples needed to hit an application. With uniform sampling, the
number of samples expected before we get one from a given application is roughly
the total number of flows divided by the number of application flows. In that
regard, ftp traffic is clearly the worst.

With probability proportional to size sampling with replacement, the expected
number is roughly the total traffic divided by the application traffic. The worst
application here is dns traffic which was the best application for uniform sampling.

Priority sampling is like probability proportional to size sampling with replace-
ment but it avoids making duplicates of dominant items. If the dominant items
are outside the application, we waste at most one sample on each. The impact
is clear for dns traffic where we get the first sample about 30 times earlier with
priority sampling than we did with probability proportional to size sampling with
replacement. A more direct illustration of the problem is found in Figure 4 where
we see how the fraction of distinct samples drops in probability proportional to size
sampling with replacement.

Turning to the synthetic experiments in Figure 6, the subset always has the
same roughly 10% of the items, so we expect a first hit after around 10 samples. In
Pareto(0.75), uniform gets the subset already in the first sample. The probability
of that event is 1/10, but given that we have 4 independent experiments, it is not
so unlikely that one case comes out early. As the distribution gets more heavy-
tailed, the subset gets a smaller and smaller fraction of the total weight, and hence
it takes longer and longer before probability proportional to size sampling gets its
first sample, the most extreme being Pareto(0.75) where the first hit is after more
than 2000 samples. For contrast, priority sampling gets its first hit already after
about 15 samples.

Convergence after first hitting an application. After we have started getting sam-
ples from an application, uniform sampling may still have problems with conver-
gence. This typically occurs if the weight distribution within the application is
heavy-tailed. Once again, ftp traffic is the worst application, this time because it
has a dominant flow with more than 99% of its traffic. Until this flow is sampled,
we expect to underestimate. If it is sampled early, we will hugely overestimate,
although this is unlikely. The typical heavy-tail behavior is that the estimate grows
as we catch up with more and more dominant items. We see this phenomena most
clearly for the ftp traffic. Another good illustration is in the synthetic data where
we expect to get the first hit after the same number uniform samples, yet the con-
vergence with uniform sampling gets slower as the distribution gets more heavy
tailed.

With probability proportional to size sampling with replacement and with prior-
ity sampling, we generally get quick convergence as soon as we start having samples
from an application. Neither scheme has any problems with skewed weight distri-
butions within a subset. For example, we see that probability proportional to size
sampling with replacement starts slower than uniform on dns traffic, yet it ends up
Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 19

converging faster. If we consider the very best case for uniform sampling; namely
dns traffic, we see that uniform is very quick at getting positive estimates, yet it
continues to underestimate the total. This is because the uniform sampling misses
out on the large dns items. Priority sampling has a slower start, but converges
much better after about 300 samples. The dns example is also interesting in that
the priority sample starts of with large over estimates because it is “lucky” to get
an early dns sample.

The traffic matrix. Figure 5 shows the average relative error over 8 × 8 = 64
entries. We note first the poor performance of uniform sampling. In fact, it is only
luck that the error with uniform is remains below 100%. This is because we miss the
dominant items and get under-estimates that can never be by more than 100%. We
could instead have gotten a dominant item early, leading to a huge over-estimate,
but this is much less likely.

Comparing priority sampling with probability proportional to size sampling with
replacement the faster convergence of priority sampling is very clear. For example,
priority sampling gets down around a 1% error with about 150 samples whereas
probability proportional to size sampling with replacement needs about 3000 sam-
ples, and the probability proportional to size sampling falls further behind with
smaller errors because it gets more and more duplicates.

Root mean square (RMS) relative error. We now consider the root mean square
relative error in the plots to the right in Figures 3 and 6. The RMS plots show our
measured estimates of the relative standard deviation.

The real standard deviation is often dominated by rare large overestimates, so a
question is if r = 1000 runs is enough for these rare events to show up. Consider the
Internet data in Figure 3, we see that the curve for uniform sampling often starts
low around 1, and then jumps up before we get to 100 samples. We claim that the
curve is only a reasonable approximation to the relative standard deviation after
the jump. To be more precise, we have n = 85, 680 flows. With sample size k, the
weight estimate of a sampled item is n/k times bigger than the original weight.
Suppose a subset X has a dominant item i ∈ X whose weight wi is a fraction ε
of the total subset weight WI . If i is contained in a sample of size k, we get a
subset estimate ŴI which is at least win/k. With r = 1000 runs, we expect one of
them to sample wi with k ≈ n/r ≈ 85. If so, that run overestimates wi by a factor
n/k ≈ r, hence WI by at least a factor rε. In the RMS, this alone contributes a
factor

√
(rε)2/r = ε

√
r ≈ 30ε. With ftp and multimedia we see from the plots

of the data, we have a large dominant weight, hence ε close to 1, explaining the
very high jump. With sessions and dns, the dominance is less pronounced, and the
jump much smaller. In either case, we only trust the RMS curve after around 100
samples.

In the synthetic data in Figure 3, we have only 10,000 items, so a dominant
item is expected to appear within k = 10 samples, hence earlier than before. In
the synthetic data, the dominant subset weight is generally less dominant, and it is
really only in the most heavy-tailed case that we see a pronounced jump for uniform
sampling.

For probability proportional to size sampling with replacement, we can do a
Journal of the ACM, Vol. V, No. N, October 2007.

20 · Duffield, Lund, and Thorup

corresponding calculation. This time the rare event is that we get an early sample
of any item from a subset. Let W be the total weight and WI be the weight of a
subset I. With r = 1000 runs, the subset should turn up among the first samples
when W/WI < r. If the subset is much lighter, it should start appearing after
around k = W/(rWI) samples. The only case of such a very light subset is with
Pareto(0.75) where W/(rWI) = 774, 271, 000/(1000 · 37, 212) ≈ 20, and indeed we
see probability proportional to size sampling jump around this number of samples.

With priority sampling, we expect to reach items from a given subset at least as
soon as probability proportional to size sampling as we do not have wasted duplicate
samples. Indeed there is no case of a jump with priority sampling after k = 2.

Now, considering the curves after k = 100, it is very clear that priority sampling
beats both of the standard alternatives, that is, uniform sampling and probability
proportional to size sampling, on the real Internet data in Figure 3. Concerning
the synthetic data in 6, we see that priority sampling continues to beat uniform
sampling, but that it only beats probability proportional to size sampling in the
more heavy-tailed cases of Pareto(1.25) and Pareto(0.75). In the less heavy-tailed
cases, priority sampling ties with probability proportional to size sampling, except
that priority sampling wins in the end. This is because the probability proportional
to size sampling only starts having many duplicates when k gets close to n.

3.4 Priority sampling versus idealistic benchmarks

In our experiments, it appears that priority sampling (PRI) has a performance very
similar to the idealistic benchmarks: threshold sampling (THR) and systematic
threshold sampling (SYS). The middle plots based on a single run are a bit noisy
with no clear general winner. The right hand side RMS plots have more stable
curves. There we see that the three curves are almost always indistinguishable,
except that SYS has a slight advantage on the real Internet data in Figure 3 for
dns and perhaps a bit for sessions. The overall conclusion is, however, that the
performances are very close.

The above closeness was not so unexpected. Recall that the threshold sampling
threshold τTHR is the fixed value such that the expected number of larger priorities
is k. The priority sampling threshold τPRI is the priority which has exactly k larger
priorities. Thanks to this similarity, we were hoping that priority sampling in its
estimate quality would perform similarly to threshold sampling. Since systematic
threshold sampling use the same marginal sampling probabilities on the items as
threshold sampling, it was also expected that it would have similar performance.
The fact that systematic threshold sampling does slightly better on subsets with
a large number of items may have to do with negative covariance where threshold
sampling has zero covariance. We shall return to this point in Section 5.4.

4. ANALYTIC COMPARISON OF VARIANCE IN SOME SIMPLE CASES

In this section, we will compare the different sampling schemes on some simple cases
where we can analyze the variance, so as to gain some intuition for what is going
on. This includes proving the infinite variance with a single priority sample claimed
previously in Section 2.5. The results of the analysis will be used to formulate some
general optimality theorems and conjectures in the next section.

We will focus on the variance for individual items. For threshold and priority
Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 21

sampling, this does give us the full picture, for with zero covariance, the variance
of a subset sum estimate, is the sum of the variances of the items in the set.

Since threshold and systematic threshold sampling have the same marginal dis-
tribution for each item, they have the same individual variances, so below, when
we analyze threshold sampling, we are really considering both of these schemes.

Most of the sampling schemes we deal with use so-called Horvitz-Thompson esti-
mators, and it is useful to introduce some special notation for these: if w is a weight
and p ∈ [0, 1] a sampling probability, we let ŵ(p) denote the random variable that
is w/p with probability p; 0 otherwise. Then

E [ŵ(p)] = w

E
[
(ŵ(p))2

]
= p(w/p)2 = w2/p

Var [ŵ(p)] = w2/p− w2 = w2 1− p

p
.

It is also convenient to define the function

v(w, τ) = w max{0, τ − w}.
Then, with fixed threshold τTHR, the variance for item i is

Var[ŵTHR
i] = Var

[
ŵi(min{1, wi/τTHR})]

= w2
i (1/ min{1, wi/τTHR} − 1)

= wi max{0, τ − wi)
= v(wi, τ

THR).

With our new priority sampling, the threshold changes, and the variance of item i
is

Var [ŵi] =
∫ ∞

τ ′=0

f(τ ′)v(wi, τ
′) dτ ′, (11)

where f(τ ′) is the probability density function for τ ′ to be the kth threshold amongst
the items j 6= i. With τ ′ thus defined, by Lemma 2.1, item i is picked if qi =
wi/αi > τ ′ with ŵi = τ ′; 0 otherwise. This imitates the fixed threshold scheme
with τ ′ = τTHR. Thus (11) follows from the previous calculation with a fixed
threshold. A similar calculation was made in Section 2.3 but without the reference
to threshold sampling.

Sometimes it is easier with a more direct calculation. Summing over all j 6= i, we
integrate over choices of αj , multiply with the probability that qj = wj/αj is the
kth highest priority from [n] \ {i}, and multiply with the variance v(wi, qj). That
is,

Var [ŵi] =
∑

j∈[n]\{i}

∫ 1

0

Pr[|{h ∈ [n] \ {i, j}|qh Â qj}| = k − 1] v(wi, qj) dαj . (12)

4.1 Infinite variance with single priority sample

We will show that if we only make a single priority sample with k = 1, then the
variance of any weight estimate is infinite. The proof is based on (12). We assume
i = 0. For a lower-bound, in the sum, we only need to consider one other item

Journal of the ACM, Vol. V, No. N, October 2007.

22 · Duffield, Lund, and Thorup

j = 1. Also, when integrating over α1, we only consider very small values of α1.
More precisely, define ε = w1/(2W) where W is the sum of all weights. If α1 < ε,
we have q1 = w1/α1 > 2W , and then

Pr[|{h ∈ [n] \ {i, j}|qh Â qj}| = k − 1] = Pr[|{h ∈ {2, ..., n− 1}|qh Â q1}| = 0]

> 1−
∑

h∈{2,...,n−1}
Pr[qh > 2W]

= 1−
∑

h∈{2,...,n−1}
(wh/2W)

> 1/2.

Moreover, for α1 < ε = w1/(2W), we have q1 = w1/α1 > 2W , and hence

v(wi, qj) = v(w0, q1) = w0 max{0, q1 − w0} > w0w1/(2α1).

Thus, by (12), we have

Var [ŵ0] >

∫ ε

0

1/2 · w0w1/(2α1) dα1 = ∞.

We note that none of the other sampling schemes considered can get infinite vari-
ance.

Next, we argue that the variance is bounded if we make at least two priority
samples. Again, we focus on the variance for item i = 0. Also, it suffices to show
that the integral in (12) is finite for each value of j, that is, we want to show that

Vi,j =
∫ 1

0

Pr[|{h ∈ [n] \ {i, j}|qh Â qj}| = k − 1] v(wi, qj) dαj

is bounded. Now, for k ≥ 2,

Pr[|{h ∈ [n] \ {i, j}|qh Â qj}| = k − 1] ≤ Pr[|{h ∈ [n] \ {i, j}|qh Â qj}| ≥ 1]

≤
∑

h∈[n]\{i,j}
Pr[qh Â qj]

=
∑

h∈[n]\{i,j}
Pr[wh/αh > wj/αj]

=
∑

h∈[n]\{i,j}
min{1, whαj/wj}

≤
∑

h∈[n]\{i,j}
(whαj/wj)

< Wαj/wj .

Moreover,

v(wi, qj) = wi max{0, wj/αj − wi} ≤ wiwj/αj ,

so we get that

Vi,j <

∫ 1

0

Wαj/wj · wiwj/αj dαj =
∫ 1

0

Wwi dαj = Wwi.

Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 23

Hence

Var [ŵi] =
∑

j∈[n]\{i}
Vi,j < n Wwi,

so indeed the variance is bounded. Since the covariance is zero, it also follows that
estimates of weights of subsets are bounded. Thus we have proved

Proposition 4.1. If we make a single priority sample, then all weight estimates
have infinite variance. With more than one priority samples, all weight estimates
have finite variance.

By contrast, with all the other sampling schemes, the variance estimates are finite
as soon as we make at least one sample.

4.2 Unit weights

We will now study identical unit weights, focusing on the first item i = 0. We will
compute the exact variance for each of the sampling schemes considered.

U−R. For uniform sampling without replacement, item 0 is picked with proba-
bility pU−R

0 = k/n, so

Var
[
ŵU−R

0

]
=

1− pU−R
0

pU−R
0

=
n− k

k
.

P+R. For probability proportional to size sampling with replacement, item 0 is
picked with probability pP+R

0 = 1− (1− 1/n)k, hence with

Var
[
ŵP+R

0

]
=

1− pP+R
0

pP+R
0

=
(1− 1/n)k

1− (1− 1/n)k
.

For k ¿ n, the variance approaches n−k
k from above. However, for k = n, the

variance approaches 1/(e(1− e−1) = 0.58...

THR/SYS. In the fixed threshold scheme from [Duffield et al. 2005a], we set
τTHR = n/k. Then

Var
[
ŵTHR

0

]
= v(w0, τ

THR) = w1 max{0, τTHR − wi} =
n− k

k
. (13)

PRI. For priority sampling, we will evaluate (12) exactly. By symmetry, it suf-
fices to consider the case where q1 becomes the threshold, and then multiply by a
factor n− 1. We use that

Pr[qh Â q1] = Pr[αh < α1] = α1

and

v(w0, q1) = w0 max{0, q1 − w0} = (1/α1 − 1).

Hence

Var [ŵ0] = (n− 1)
∫ 1

α1=0

Pr[|{h ∈ {2, ..., n− 1}|qh Â q1}| = k − 1] v(w0, q1) dα1

= (n− 1)
∫ 1

α1=0

Pr[B(n− 2, α) = k − 1] (1/α1 − 1) dα1

Journal of the ACM, Vol. V, No. N, October 2007.

24 · Duffield, Lund, and Thorup

= (n− 1)
(

n− 2
k − 1

) ∫ 1

α1=0

αk−2
1 (1− α1)n−k dα1

= (n− 1)
(

n− 2
k − 1

)
(k − 2)! (n− k)!

(n− 1)!

=
n− k

k − 1
.

Discussion. For unit weights, uniform sampling without replacement and thresh-
old sampling gets the same variance on single item weight estimates; namely n−k

k .
When k is not too small, priority sampling gets nearly the same variance; namely
n−k
k−1 . Weighted sampling with replacement starts doing well, but gets worse and
worse as k grows. In particular, for any k ≥ n, it has positive variance while all the
other schemes have zero variance since they have no replacement.

4.3 Large and small weights

In this section we illustrate what happens when different weights are involved. We
consider the case where we have ` large weights of weight N and n > ` small
unit weights. The large weights are first, that is, w0 = · · · = w`−1 = N while
w` = · · · = wn+`−1 = 1. We let W = `N + n denote the total weight. We will
use w0 as a representative for the large items and wn as a representative for the
small items. Besides studying the individual variances, we will study the total
variance ΣV measured as the sum of the individual variances. The variances from
the different sampling schemes will be collected in Table I.

As notation we use x ≈ y ⇐⇒ x = (1± o(1))y and x ¿ y ⇐⇒ x = o(y). We
view `, n, and N as unbounded. We assume ` ¿ n ¿ √

N and that k ¿ n. These
assumptions will help simplifying the analysis.

U−R. For uniform sampling without replacement, the large item 0 is picked with
probability pU−R

0 = k/(n + `), hence with

Var
[
ŵU−R

0

]
= N2 1− pU−R

0

pU−R
0

= N2 n + `− k

k
≈ N2 n

k
.

For small item n, we have the same sampling probability, pU−R
n = k/(n + `), so we

get

Var
[
ŵU−R

n

]
=

1− pU−R
n

pU−R
n

≈ n

k
.

Then ΣV ≈ `N2n/k.

P+R. For probability proportional to size sampling with replacement, the large
item 0 is picked with probability pP+R

0 = 1− (1−N/W)k hence with

Var
[
ŵP+R

n

]
= N2 1− pP+R

0

pP+R
0

≈ N2 1− (1−N/W)k

(1−N/W)k
= N2(1/(1−N/W)k − 1).

In particular, this is Θ(N2) for k = Θ(`). Yet it saves a factor n/k over uniform
sampling with replacement in the case of large weights.

For probability proportional to size sampling with replacement, the small item
i = n is picked with probability pP+R

n = 1 − (1 − 1/W)k ≈ k/W ≈ k/(`N) ¿ 1,
Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 25

hence with

Var
[
ŵP+R

n

]
=

1− pP+R
n

pP+R
n

≈ N`/k.

Then ΣV P+R ≈ N2`/(1/(1−N/W)k − 1) + Nn`/k.

THR/SYS. For the fixed threshold scheme, if k ≤ `, we set τTHR = W/k > N .
Then for large item 0,

Var
[
ŵTHR

0

]
= v(w0, τ

THR) = N(W/k −N) ≈
{

N2 `−k
k if k < `

Nn/` if k = `.

For light item n with k ≤ `, we get

Var
[
ŵTHR

n

]
= v(wn, τTHR) = (W/k − 1) ≈ N`/k.

On the other hand, for k > `, we pick a threshold below N ; namely τTHR =
(n− `)/(k − `). Then for large item 0,

Var
[
ŵTHR

0

]
= 0

while for a light item n, it is

Var
[
ŵTHR

n

]
= v(wn, τTHR) = (n− `)/(k − `)− 1 ≈ n/(k − `).

For k < `, the total variance is dominated by the large items, adding up to
ΣV THR ≈ N2` `−k

k . For k = `, the variance over the large items is approximately
Nn but this is also the variance over the small items, so ΣV THR ≈ 2Nn. For k > `,
we only have variance for the small items, so ΣV THR ≈ n2/(k − `).

We note that with k > 1, the variance with threshold sampling is always
smaller than with probability proportional to size with replacement. Since both
use Horvitz-Thompson estimators, this follows directly because the sampling prob-
ability with threshold sampling is larger for any items.

PRI. First we consider the large item 0. Let m be the event that we have exactly
m small items with priorities bigger than N . Then

Var [ŵ0] =
n∑

m=0

Pr[A(m)] (E
[
ŵ2

0|A(m)
]− w2

0)

Trivially Pr[A(m)] = Pr[B(n, 1/N) = m]. Moreover, we saw in Section 2 that ŵ0 is
unbiased no matter the remaining priorities, including all priorities of small items.
Hence E [ŵ0|A(m)] = w0, so

E
[
ŵ2

0|A(m)
]− w2

0 = E
[
ŵ2

0|A(m)
]− E [ŵ0|A(m)]2 = Var [ŵ0|A(m)] .

Therefore

Var [ŵ0] =
n∑

m=0

Pr[B(n, 1/N) = m] Var [ŵ0|A(m)] .

Consider a small item i. Conditioned on having a big priority qi > N , item i acts
like a large item. Conversely, conditioned on having a small priority qi < N , item
i has no impact on the weight estimate of large items. Thus, in the event A(m),

Journal of the ACM, Vol. V, No. N, October 2007.

26 · Duffield, Lund, and Thorup

the variance of item 0 is as if we had ` + m large items and no small items. If
` + m ≤ k, the threshold is at most N , and then there is no variance. If ` + m > k,
the analysis from the all unit weights case shows that

Var [ŵ0|A(m)] = N2 ` + m− k

k − 1
.

Thus

Var [ŵ0] =
n∑

m=0

Pr[A(m)] Var [ŵ0|A(m)]

=
n∑

m=max{0,k−`+1}
Pr[B(n, 1/N) = m]N2 ` + m− k

k − 1
.

Since N À n2, the first term dominates. If k < `, we get m = 0, and then

Var [ŵ0] ≈ Pr[B(n, 1/N) = 0] N2 `− k

k − 1
≈ N2 `− k

k − 1
.

If k ≥ `, we get m = k − ` + 1, and then

Var [ŵ0] ≈ Pr[B(n, 1/N) = k − ` + 1] N2/(k − 1)

≈
(

n

k − ` + 1

)
N1−k+`/k

≈




Nn/k if k = `
n2/(2k) if k = ` + 1
o(n/k) if k > ` + 1.

We now consider the small item n. We are going to prove that Var [ŵn] ≈
N`/(k − 1) if k ≤ `, Var [ŵn] ≈ n ln N if k = ` + 1, and Var [ŵn] ≈ n/(k − `− 1) if
k > ` + 1.

We consider two different contributions to the variance depending on whether
the threshold τ is greater than N . If τ > N , we further distinguish depending on
whether qn > N . If τ > N and qn ≤ N , then ŵn = 0 so (ŵn − wn)2 = 1. The
variance contribution of this event is therefore at most 1, and this will not impact
the final small item variance.

Next consider the case that τ > N and qn > N . The probability that qn > N is
1/N . Let A′(m) denote that event that we have m small items i 6= n with qi > N .
Conditioned on qn > N , we have τ > N if and only if m ≥ k − `. In this case,
the variance contribution is E

[
ŵ2

n

] − 1. However, conditioned on qn > N , qn is
distributed like a priority of a large item, and hence ŵn behaves like the weight
estimate of large item among `+m+1 large items. Thus E

[
ŵ2

n|qn > N ∧A′(m)
]

=
N2 `+m+1

k−1 , so we get a variance contribution of

Pr[qn > N]
n−1∑

m=max{0,k−`}
Pr[B(n− 1, 1/N) = m] (N2 ` + m + 1

k − 1
− 1)

≈ 1/N · Pr[B(n− 1, 1/N) = max{0, k − `}] N2 ` + max{0, k − `}
k − 1

Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 27

≈




N`/(k − 1) if k ≤ `
n if k = ` + 1
o(1) if k > ` + 1.

When k ≤ `, the above estimate of N`/(k−1) will dominate the small item variance.
For k > `, we will find larger contributions below.

Finally we consider the case where τ ≤ N . For light item n to be sampled, we
need k > `, and then this is like the all unit weights case, except that we only
sample k′ = k − ` items. Hence we can apply the integral from the all unit weight
case, but with the restriction that α ≥ 1/N . We then get a variance contribution
of

(n− 1)
∫ 1

α=1/N

Pr[B(n− 2, α) = k′ − 1] (1/α− 1) dα

= (n− 1)
(

n− 2
k′ − 1

) ∫ 1

α=1/N

αk′−2(1− α)n−k′ dα.

For k′ ≥ 2 ⇐⇒ k > `+1, the impact of starting the integral at 1/N instead of at 0
is not significant, so as in the all unit weights case, we get an variance contribution
which is approximately

n− k′

k′ − 1
=

n− k + `

k − `− 1
≈ n

k − `− 1
.

This is the dominant small item variance contribution for k > ` + 1.
For k′ = 1 ⇐⇒ k = ` + 1, we get a variance contribution of

(n− 1)
∫ 1

α=1/N

(
n− 2
k′ − 1

)
αk′−2(1− α)n−k′ dα ≈ n

∫ 1

α=1/N

α−1 dα = n ln N.

This is the dominant small item variance contribution for k = ` + 1.
We now consider the total variance with priority sampling. For k < `, the total

variance is dominated by the large items, adding up to N2` `−k
k−1 . For k = `, the

variance over the large items is approximately Nn but this is also the variance over
the small items, so ΣV PRI ≈ 2Nn. For k = ` + 1, we get a contribution of n3/(2k)
from the large items and n2 ln N from the small variance. Finally, for k > `+1, the
variance is dominated by the small items who have a total variance of n2/(k−`−1).

This completes the analysis of priority sampling for large and small weights. A
comparison of all the sampling schemes is summarized in Table I.

Discussion. With reference to Table I, the problem with uniform sampling is
that it does a terrible job on the large weights, performing about n/` times worse
than the other schemes. On the other hand, it gives the best performance on the
small items. However, the advantage over threshold and priority sampling becomes
insignificant when k À `. This illustrates that if the number of large items is small
compared with the number of samples, then threshold and priority sampling do
very well even on the small items.

The problem in probability proportional to size sampling with replacement is that
it does poorly compared with threshold and uniform sampling when the number of
samples exceeds the number of large items. This is for both large and small items,

Journal of the ACM, Vol. V, No. N, October 2007.

28 · Duffield, Lund, and Thorup

1 ≤ k < ` k = ` k = ` + 1 k > ` + 1

large item

U−R N2n/k

P+R N2/(1/(1−N/W)k − 1)

THR/SYS N2 `−k
k

Nn/` 0

PRI N2 `−k
k−1

Nn/` n2/(2k) o(n/k)

small item

U−R n/k

P+R N`/k

THR/SYS N`/k n/(k − `)

PRI N`/(k − 1) n ln N n/(k − `− 1)

Total variance

U−R N2`n2/k

P+R N2`/(1/(1−N/W)k − 1) + Nn`/k

THR/SYS N2` `−k
k

2nN n2/(k − `)

PRI N2` `−k
k−1

2nN n2`/(2k) + n2 ln N n2/(k − `− 1)

Table I. Overview of approximate variance with k samples, in the case of ` large items of size N
and n− ` items of small weight. We assume 1 ¿ ` ¿ n ¿ √

N and 1 ¿ k ¿ n.
.

illustrating the problem with duplicates. In particular, for k À `, we see that the
small item variance with probability proportional to size with replacement is nearly
a factor W/n bigger than that for threshold and priority sampling. This difference
also shows up in the total variance.

Finally, comparing threshold and priority sampling, we see that priority sampling
has positive variance for large items when k > ` whereas threshold sampling has
no variance. However, this variance of priority sampling is small compared to the
size N of a large weight, so this is a case where priority sampling is doing well
anyway. It is more interesting to see what happens with the small items. The
major differences are in the two boundary cases when k = 1 and when k = ` + 1.
The former case has infinite variance as discussed previously. For k = ` + 1, we see
that priority sampling does worse by a factor of lnN . However, these boundary
cases are quite special and it is therefore not surprising that this kind of difference
did not show up in any of our experiments.

Thus, in our analysis, priority sampling performs much better than the standard
sampling schemes U−R and P+R, and for most cases of k, it is close to the idealistic
benchmarks THR and SYS.

5. VARIANCE OPTIMALITY

We are now going to discuss the variance optimality of threshold, systematic thresh-
old, and priority sampling, and contrast it with the non-optimality of uniform
sampling and probability proportional to size sampling with replacement. First
we show that threshold sampling minimizes the variance relative to the expected
number of samples. As in the previous section, we are here considering the total
variance measured as the sum of variances for the individual items. Next we discuss
Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 29

how the optimality of threshold sampling should imply a certain near-optimality
for priority sampling, capturing this in a concrete conjecture. With threshold and
priority sampling we have zero covariance, and then the total variance is the sum of
variances over any partitioning of the items into sets to be estimated. Considering
cases with non-zero covariance like systematic threshold sampling, we finish this
section discussing the relationship between our total variance and variances over
random subsets of different sizes.

5.1 Threshold sampling

In this subsection, we prove that threshold sampling minimizes the total variance
relative to the expected number of samples. Some of this is partly known, at least
implicitly, but here we need the results in a concrete strong form. The optimality
will also hold for systematic threshold sampling which has exactly the same total
variance as threshold sampling because the estimate of each item follows the same
marginal distribution.

In Poisson sampling, for each item i with weight wi, we have to decide on a
sampling probability pi. If i is not picked, the weight estimate is zero, that is,
ŵi(pi) = 0. To get an unbiased estimator, if item i is picked, it gets the Horvitz-
Thompson weight estimate ŵi(pi) = wi/pi. Generally, we want to sample few items,
yet keep the variance low. This motivates an objective of the form

minimize pi + α Var [ŵi(pi)] .

Here

Var [ŵi(pi)] = E
[
(ŵi(pi))2

]− w2
i where E

[
(ŵi(pi))2

]
= pi(wi/pi)2 = w2

i /pi.

Thus we want to minimize pi + α w2
i /pi. For pi ∈ [0, 1], the unique solution is to

set

pi = min{1,
√

αwi}.
Setting

√
α = 1/τTHR, we get pi = min{1,

√
αwi} = min{1, wi/τTHR}, which

is the sampling probability of threshold sampling with threshold τTHR = 1/
√

α.
Conversely, this means that for any choice of τTHR, the fixed threshold scheme
picks the pi = max{1, wi/τTHR} so as to

minimize pi + (1/τTHR)2 Var [ŵi(pi)] . (14)

Summing over the whole stream of items, we

minimize
∑

i∈[n]

(
pi + (1/τTHR)2 Var [ŵi(pi)]

)
=

∑

i∈[n]

pi+1/(τTHR)2 Var


∑

i∈[n]

ŵi(pi)


 .

(15)
To get a specified number of k expected samples, we choose τTHR such that

∑

i∈[n]

pi =
∑

i∈[n]

min{1, wi/τTHR} = k.

This scheme is denoted THRk.

Lemma 5.1. Among Poisson sampling scheme with an expected number of at
most k samples, THRk minimizes the total variance.

Journal of the ACM, Vol. V, No. N, October 2007.

30 · Duffield, Lund, and Thorup

Proof. If some scheme used the same number or fewer expected samples than
THRk and simultaneously got smaller sum of variances, then this scheme would
reduce (15), contradicting that (15) is minimized by THRk.

We are now going to strengthen Lemma 5.1 to cover all possible sampling schemes.
For a given set of input weights w1, ...wn, we think abstractly of a sampling and
estimation scheme as a probability distribution Φ over functions ŵ mapping items
i into estimates ŵi. We want the estimators to be unbiased in the sense that
E bw←Φ[ŵi] = wi. For a given ŵ ∈ Φ, the number of samples is the number of
non-zeros.

Proposition 5.2. For any weight sequence w0, ..., wn−1 and positive k, there is
no sampling scheme Φ with unbiased estimators and an expected number of at most
k samples which has smaller total variance than THRk.

Proof. Let Φ be a sampling scheme with unbiased estimation of the wi and
an expected number of at most k samples. We will first convert Φ into a Poisson
sampling scheme and then use Lemma 5.1 to conclude that THRk has no bigger
total variance.

As a first transformation, for each item i independently, we create a random
variable w′i whose distribution is the marginal distribution of ŵi in Φ, that is,
Pr[w′i = x] = Pr bw←Φ[ŵi = x] for any x ∈ R. Then Pr[w′i > 0] = Pr bw←Φ[ŵi > 0]
and Var[w′i] = Var bw←Φ[ŵi], so the transformation has neither changed the total
variance, nor the expected number of non-zeros.

We now create a new random variable w′′i as a function of w′i that is 0 when w′i
is 0, and equals w̄i = E[w′i |w′i > 0] when w′i > 0. Then E[w′′i] = E[w′i] = wi, so
the random variables w′′i represent a Poisson sampling scheme providing unbiased
estimation of the wi: each item i is sampled independently with estimate w̄i when
w′i > 0. Moreover, for each i, Pr[w′′i > 0] = Pr[w′i > 0] = Pr bw←Φ[ŵi > 0] while
Var[w′′i] ≤ Var[w′i] = Var bw←Φ[ŵi].

The Poisson sampling scheme represented by the w′′i thus has the same expected
number of samples/non-zeros as Φ which was at most k, so from Lemma 5.1 it
follows that the total variance of the w′′i is at least as big that of THRk. However,
the total variance with Φ is at least as big as that of the w′′i , so we conclude that
the total variance of Φ is at least as big as that of THRk.

Previous Results on Optimality.. When τTHR is bigger than the largest weight,
the sampling probabilities are all proportional to size. In this case it is standard
that the variance is minimized relative to the expected number of samples (see,
e.g., [Särndal et al. 1992, p. 86]). It is also a standard idea (see, e.g., [Särndal et al.
1992, p. 90]) to include very large weights with probability one. This is normally
defined iteratively, saying that if the total weight is W and the desired number of
samples is k, we include all weights beyond W/k with probability 1, and sample
from the rest. Recursively, we may find more weights that should be sampled with
probability 1 among the rest. However, it appears to be [Duffield et al. 2005a]
that names threshold sampling defining it generally in terms of a given threshold
parameter τTHR. Also, the proof of (15) is from [Duffield et al. 2005a]. In [Duffield
et al. 2005a] the focus was somewhat different, and it was never made explicit that
threshold sampling minimizes the total variance relative to the expected number of
Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 31

samples as stated here in Lemma 5.1. The simple relation to general sampling in
Proposition 5.2 is also new.

5.2 Conjectured near-optimality of priority sampling

We saw above that threshold sampling minimizes the total variance relative to the
expected number of samples. Technically speaking, priority sampling is very similar
to threshold sampling. The technical difference is that threshold sampling uses the
threshold τTHR such that we expect k bigger priorities, while priority sampling
uses the actual (k + 1)st priority as the threshold τPRI .

We would like to argue that priority sampling inherits some of the variance
optimality of threshold sampling. For unit items, threshold sampling got an item
variance of n−k

k while priority sampling got an item variance of n−k
k−1 . The difference

is infinite for k = 0. Another more interesting example is the large and small weights
from Section 4.3. With ` large weights and k = ` + 1 samples, the total variance
with priority sampling was a factor ln N worse than that of threshold sampling,
and this factor can be arbitrarily large. However, instead of comparing an expected
number of k threshold samples with k priority samples, we suggest giving priority
sampling one extra sample, e.g., comparing the bad case priority sampling with
` + 1 samples with the worse case of threshold sampling with an expected number
of ` samples. We conjecture that priority sampling with one extra sample always
beats threshold, that is,

Conjecture 5.3. For any weight sequence w0, ..., wn−1 and positive integer k,
threshold sampling with an expected number of k samples gets a total variance which
is no smaller than with a priority sample of size k + 1.

One consequence of Conjecture 5.3 is that if we only have resources for a certain
number k of samples, then we are much better off using priority sampling than
using threshold sampling; for with threshold sampling, we would have to aim for
a much smaller expected number of samples, e.g., k − 2

√
k, in order to make the

probability of getting more than k samples small.
By Proposition 5.2, Conjecture 5.3 is equivalent to saying that priority sampling

with one extra sample beats any possible sampling scheme, that is,

Conjecture 5.4. For any weight sequence w0, ..., wn−1 and positive integer k ≤
n, there is no sampling scheme with unbiased estimators and an expected number
of at most k samples which has smaller total variance than with a priority sample
of size k + 1.

As evidence for Conjecture 5.3, we note from Section 4.2 that it holds true for the
unit case. Also, for the large-small example in Section 4.3, the analysis implies
Conjecture 5.3 within a factor (1 ± o(1)). Finally, we note that the conjecture
conforms nicely with the closeness of priority sampling and threshold sampling in
the experiments from Section 3.

Recently, Szegedy [2006] has settled Conjecture 5.3, and then, by Proposition
5.2, Conjecture 5.4 follows. Thus priority sampling is variance optimal modulo one
extra sample.

Journal of the ACM, Vol. V, No. N, October 2007.

32 · Duffield, Lund, and Thorup

5.3 Anti-optimality of uniform sampling and probability proportional to size sampling
with replacement

In the previous subsection, we discussed optimality of priority sampling based on
giving it one extra sample. No such general optimality is possible for uniform
sampling or probability proportional to size sampling with replacement. More
precisely consider the case of large and small items from the previous section, and
suppose the number of samples is much larger than the number of large items.
This corresponds to ` ¿ k in Table I. In that case, threshold sampling had a total
variance of ≈ n2/k the total variance of uniform sampling is ≈ N2`n2/k and the
total variance of probability proportional to size sampling is ≈ Nn`/k. In both
cases we have a dependence of the size N of the largest item which cannot be
absorbed, e.g., by allowing 10 times as many samples.

5.4 Variance over larger subsets and systematic threshold sampling

Above we have discussed variance optimality of threshold and priority sampling
with respect to the total variance measured as the sum

ΣV =
∑

i

Var[ŵi].

However, the intended application of priority sampling is the estimation of sums
over subsets of arbitrary sizes, not just singleton sets. In [Szegedy and Thorup
2007] it is suggested that one studies the average variance over sets of a given size
m. We denote this quantity Vm:n. Then V1:n = ΣV/n. With zero covariance as in
threshold and priority sampling, we have Vm:n = m

n ΣV . Now Vm:n could be smaller
if we have negative covariance. In [Szegedy and Thorup 2007] it is shown that
Vm:n ≥ n−m

n−1
m
n ΣV for any sampling scheme with unbiased estimators, with equality

if and only if the estimate of the total sum is exact, that is,
∑

i∈[n] ŵi =
∑

i∈[n] wi.
Systematic threshold sampling has the same optimal total variance ΣV as threshold
sampling, and it estimates the total exactly, so it minimizes Vm:n for any set size
m, improving over threshold sampling by a factor n−1

n−m . Modulo one extra sample,
this is also the largest scope for improvement over priority sampling.

We note that the factor n−1
n−m is only significant when m is not too far from n.

In practice, we do not view the factor as much of an obstacle. For example, in
a partitioning such as a traffic matrix in our Internet application, or a division
into traffic classes, there can be at most one subset of size bigger than n/2, and
generally, the larger subset is the one that is expected to have the smallest relative
error, hence the least of our worries. More formally, with zero covariance, the
average variance Vm:n and the average sum both grow linearly in the subset size
m. For sets achieving both of these averages, this means that the relative standard
deviation falls as 1/

√
m.

If we are very interested in estimating the weight of large subsets containing
a large fraction of all items, then we may consider the following adjusted weight
estimation: besides maintaining the priority sample, we maintain a counter W for
the exact total weight

∑
i∈[n] wi. If Ŵ =

∑
i∈S ŵi is the priority estimate of the

total weight, we derive an adjusted weight estimate ŵadj
i from the priority weight

Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 33

estimate ŵi as follows.

ŵadj
i = (W/Ŵ)ŵi.

In particular, we get that the adjusted estimate of the total
∑

i∈S ŵadj
i is exactly

W . Such adjustments are standard (see, e.g., [Särndal et al. 1992, p. 87]) but the
result is biased, and we will not pursue this option any further in this paper.

Even though systematic threshold sampling is optimal with respect to the average
variance Vm:n, it is not a good choice in a streaming context. Besides implementa-
tion issues that we will discuss in the next section, systematic threshold sampling
may have very strong correlations between items in a subset depending on how they
are placed in the stream. Normally, it is recommended that the items are appro-
priately shuffled [Särndal et al. 1992, p. 92], but that is not possible in reservoir
sampling (c.f. Section 1.2) from a stream. With threshold and priority sampling
there is no such dependence. As demonstrated in [Thorup 2006], it is possible to
get good confidence bounds with priority sampling and threshold sampling so that
we statistically know when we have good estimates for a subset. The correlation
between items in systematic threshold sampling prevents us from providing good
confidence intervals, so even if systematic threshold sampling gives better variance
on the average, we have no way of knowing if we get these good estimates for a
concrete subset.

In all our experiments, there is only one case where systematic threshold sampling
has a lead over threshold and priority sampling, and that is a marginal lead for the
dns traffic which is the most numerous traffic class (see Figure 3).

6. RESERVOIR SAMPLING

In this section, we will discuss and compare how the different sampling schemes
can be used for reservoir sampling from a stream of weighted items as described in
Section 1.2. If we have seen items 0, ..., n − 1, we should have a sample S ⊆ [n].
The individual samples are denoted S[0], .., S[k − 1]. Our solution for threshold
sampling (THR) is a small result of independent interest.

U−R. Reservoir uniform sampling goes back to Fan et al. [1962]. Let SU−R ⊆
[n] be the current sample. While n ≤ k, we have S[i] = i for i = 0, ..., n − 1.
When item n > k arrives, we pick a random number j ∈ [n + 1]. If j < k, we set
SU−R[j] := n. Finally, we set n := n + 1. All this takes constant time for each
item.

We note that the weight estimates are only maintained implicitly via n. If j ∈
SU−R, then ŵj = n

k wj where n is the current number of items.
A faster solution by Vitter [1985] does not consider all items, but generates

directly the random number of items to be skipped before reaching an item to be
included in the sample. However, in our context it is OK to spend a little time on
each item streaming by.

P+R. A reservoir version of probability proportional to size sampling with re-
placement was studied by Chaudhuri et al.[1999]. Besides maintaining a sample
SP+R ⊆ [n], we maintain the total current weight W =

∑
i∈[n] wi. When item n

arrives, for j = 0, ..., k − 1, we pick a random number α ∈ (0, 1]. If α ≤ wn

W+wn
,

we set SP+R[j] := n. When done with all samples, we set W := W + wn. Note
Journal of the ACM, Vol. V, No. N, October 2007.

34 · Duffield, Lund, and Thorup

that if we had wn ≥ W , we would expect to change at least half the samples, so
for exponentially increasing weight sequences, we spend Θ(k) time on each item.
In [Chaudhuri et al. 1999], it is claimed that their algorithm spends constant time
on each item, but that is only true if k is viewed as a constant. In our Internet
application, we typically use k > 1, 000.

Using the current value of the total weight W , we can compute the weight esti-
mates of the sampled items as described in Section 3.

PRI. Priority sampling is trivially implemented using a standard priority queue
(see, e.g., [Cormen et al. 2001]). Recall that for each item i, we generate a random
number αi ∈ (0, 1] and a priority qi = wi/αi. A priority queue Q maintains the
k + 1 items of highest priority. The k highest form our sample S, and the smallest
qi in Q is our threshold τ .

It is convenient to start filling our priority queue Q with k + 1 dummy items
with weight and priority 0. When a new item arrives we simply place it in Q. Next
we remove the item from Q with smallest priority. With a standard comparison
based priority queue, we spend O(log k) on each item, but exploiting a floating
point representation, we can get down to O(log log k) time for each item [Thorup
2002] (this counts the number of floating point operations, but is independent of
the precision of floating point numbers). This is substantially better than the Θ(k)
time we spend on probability proportional to size sampling with replacement, but a
bit worse than the constant time spent on uniform sampling without replacement.
We shall later show how to get down to constant time if we relax the notion of
reservoir sampling a bit.

THR. As a small result of independent interest, we show here how to perform
threshold reservoir sampling. In this case, the reservoir will always contain an
expected number of k samples from the items seen thus far.

In [Duffield et al. 2005a], the threshold τTHR was determined before items where
considered. The threshold was adapted to the traffic to get a desired amount of
samples, yet bursts in traffic lead to bursts in the sample. Here, as a new contri-
bution to threshold sampling, we present a reservoir version of threshold sampling
which at any time maintains a sample STHR of expected size k.

As items stream by, we generate priorities as in priority sampling. At any point,
n is the number of items seen so far. We maintain a threshold τTHR that would
give an expected number k of items, that is,

∑

i∈[n]

min{1, wi/τTHR} = k. (16)

Also, we maintain the corresponding threshold sample, that is,

STHR = {i ∈ [n]|qi > τTHR}.
The sample STHR is stored in a priority queue. When a new item n arrives it is
first added to STHR. Next we have to increase τTHR so as to satisfy (16) with
n′ = n + 1. Finally, we remove all the items from STHR with priorities lower than
τTHR. Thanks to the priority queue, each such item is extracted in O(log k) time.

We still have to tell how we compute the threshold. Together with the sample,
we store the set L of all items i with weight wi ≥ τTHR. Also, we store the total
Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 35

weight U of all smaller items. We note that the set L is contained in STHR. Now,
∑

i∈[n]

min{1, wi/τTHR} = |L|+ U/τTHR.

The items i in L are stored in a priority queue ordered not by priority pi but by
weight wi. When item n arrives we do as follows. If wi ≥ τTHR, we add i to L;
otherwise we add its weight wn to U .

Next we increase τTHR in an iterative process. Let τ∗ = U/(k − |L|) and let
wj be the smallest weight in L. If L was empty, wj = ∞. If τ∗ < wj , we set
τTHR = τ∗, and we are done. Otherwise, we set τTHR = wj , remove j from L, add
wj to U , and repeat.

In the above process, each item is inserted and deleted at most once from each
priority queue. Also, at any time, the expected size of each priority queue is at
most k, so the total expected cost per item is O(log k). Exploiting a floating point
representation of priorities, this can be reduced to O(log log k) time. Thus we get
the same time complexity as for priority sampling, but with a more complicated
algorithm.

SYS. Systematic threshold sampling is unfortunately not useful for reservoir sam-
pling. Recall the definition of the sample. For some threshold τSY S , we want to
pick item i with the same sampling probability pi = min{1, wi/τSY S}, just as in
threshold sampling. The sampling decisions are performed by picking a single uni-
formly random number x ∈ [0, 1], and include i in S if and only if for some integer
j, we have

∑

h<i

pi ≤ j + x <
∑

h≤i

pi.

With threshold sampling we saw how we could maintain the threshold τSY S , in-
creasing it as new items arrive. However, when we change τSY S , we change all the
sampling probabilities, and typically, this will completely change the set of items
picked. For contrast, with threshold sampling, the increased τSY S would only re-
sult in the deletion of some old samples, and never in the inclusion of a previously
discarded item.

There is, however, an alternative implementation of systematic threshold sam-
pling which works when the threshold can only be increased by doubling. As
in threshold sampling, we maintain a priority queue L over large items i with
wi > τSY S . The large items are all in the sample. The random number x is now
picked in [0, τSY S]. Considering now the smaller items only, item i is picked if for
some integer j,

∑

h<i

wj ≤ jτSY S + x <
∑

h≤i

wi.

This leads to the same sampling probabilities as above. For an efficient implemen-
tation, we maintain the sum WS of all the small items. When a new item i arrives,
if wi ≥ τSY S , it is put in the priority queue of large items. Otherwise, we sample
i if for some integer j, we WS ≤ jτSY S + x < WS + wi. Afterward, we increment
WS by wi. If we end up with k + 1 samples, we double the threshold τSY S .

Journal of the ACM, Vol. V, No. N, October 2007.

36 · Duffield, Lund, and Thorup

When we double τSY S , with probability 1/2 we add the old value of τSY S to x.
Now x is a uniform random number in the doubled interval [0, τSY S]. The effect is
to keep every other small item, starting with the first item if τSY S was not added.
In addition, there may be items in the priority queue that are now small, and these
have to be appended to the list of small items and sampled as described above.
The amortized cost per item is that of a priority queue operation, hence the same
as for priority sampling, except that for priority sampling it was worst-case.

Note that when we double τ , we may halve the sample size, e.g., if all items are
small. Hence we are not fully utilizing the capacity of the reservoir for k samples.

Discussion. Above we showed how the different sampling schemes could be used
for reservoir sampling. Uniform sampling was the easiest to implement, using only
constant time in the worst case. Second came priority sampling using O(log k) time
with a simple priority queue. Using more complicated algorithms, we could also get
this time bound for threshold sampling and systematic threshold sampling, though
only expected for threshold sampling and only amortized for systematic threshold
sampling. From the view point of time complexity, probability proportional to size
was worst, spending O(k) time on each item.

Another problem for threshold and systematic threshold sampling is that they
do not make good use of a fixed size reservoir. Threshold sampling only gives an
expected number of samples, and systematic threshold sampling can only control
the sample size within a factor 2. In all the analysis of the previous sections,
we considered the off-line version of systematic threshold sampling which picked
exactly k items. Priority sampling with k samples performed very similarly, and
would outperform systematic threshold sampling with k/2 items.

Relaxed reservoir sampling. Before leaving reservoir sampling, we note that the
processing time of an item can be reduced to a constant if we temporarily allow for
a doubling of the number of samples in the reservoir. In priority sampling, suppose
we during the processing have space for 2k + 2 items. Instead of using a priority
queue, we use a buffer B for up to 2k+2 items. The buffer is guaranteed to contain
the k + 1 items of highest priority. New items are placed in the buffer. When the
buffer gets full, a cleanup is performed to reduce the occupancy to k + 1. Using
a standard selection algorithm [Cormen et al. 2001], we find the (k + 1)st highest
priority in B, and all items of lower priority are deleted, all in O(k) time. The
cleaning is executed once for every k + 1 arrivals, hence at constant cost O(1) per
item processed. Using two buffers in tandem, cleaning one while filling the other,
we can process each item in constant worst-case time. From the buffers we can
generate a priority sample of size k in O(k) time. Similar ideas can be applied to
the other sampling schemes.

7. CONCLUDING REMARKS

We have introduced priority sampling as a new simple scheme for weight sensitive
sampling for later estimation of subset sums. The scheme is particularly well suited
for reservoir sampling in a high volume streaming context. Priority sampling is
special in that all item estimates are correlated via the (k + 1)st priority. Despite
Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 37

the correlations, we proved that priority sampling provides unbiased item estimates
with no covariance. This combination is not achieved by any previous scheme.

Next we evaluated priority sampling experimentally, finding that it in quality
outperformed traditional schemes like uniform sampling and probability propor-
tional to size sampling with replacement. In quality priority sampling matched
threshold sampling and systematic threshold sampling which are viewed as ideal-
istic benchmarks, not really applicable for reservoir sampling with fixed capacity.
To further understand the phenomena we presented an analytic comparison of the
different schemes on some simple cases.

We then embarked on a study of the variance optimality of the different schemes.
We focused on the total variance measured as the sum of individual item variances.
This measure was particularly relevant for threshold and priority sampling which
both have zero covariance. We saw that threshold sampling was optimal if one
is satisfied with an expected number of k samples, and conjectured that priority
sampling did as well given exactly k + 1 samples.

Finally, we made a more detailed comparison of the performance of the different
sampling schemes in the context of reservoir sampling from a stream.

The above has already formed the basis of several follow-up works. In particular,
our conjecture is now settled by Szegedy [2006], implying that priority sampling
given one extra sample beats any other sampling scheme on any possible input.
This is of course only for the above total variance measure. However, Szegedy and
Thorup [2007] showed that this implies near-optimality with respect to the average
variance over all subsets of a given size, as long as this size is not too close to the
total set size.

Thorup has shown that we can generate confidence intervals from a priority
sample, complimenting the subset sum estimates with likely upper and lower bounds
qualifying the precision of the estimates [Thorup 2006]. No such confidence bounds
can be given for systematic threshold sampling even though its estimates may be
better on the average for large enough subsets.

Duffield et al. [2005b] have shown how to combine different priority estimates
of the same value, based on estimates of the variance of each estimate, so as to
minimize the overall variance.

Moving in a quite different direction, Alon et al. [2005] have considered how
one can preprocess a large data base so that one can later generate a priority
sample from any selected subset. Note that this is the opposite order than the one
considered in this paper where we first generate a sample, and later are told what
subset sum to estimate from this sample. Also in this data base application did
priority sampling outperform previous work from [Hellerstein et al. 1997].

A fundamentally new feature of priority sampling is that the (k +1)st priority as
is used in determining the estimate of any sampled item. This is very different from
traditional Horvitz-Thompson estimators where the estimate of a sampled item is
always the same; namely the original weight divided by the sampling probability for
that item. However, the proof that the priority estimates are unbiased conditions
on the kth priority among the remaining items, and subject to this condition, the
estimates can be viewed as Horvitz-Thompson estimators. Cohen and Kaplan [2007]
and Cohen et al. [2007] have generalized this basic idea and used it to create other

Journal of the ACM, Vol. V, No. N, October 2007.

38 · Duffield, Lund, and Thorup

types of sampling and estimation schemes with different kinds of priorities which
they call ranks.

A direction not explored is that of pseudo-random permutations used in con-
nection with unweighted estimation of, say, set intersections [Cohen 1997]. For
weighted items i, we could let αi ∈ (0.1) be a pseudo-random function of i. We
would then get a pseudo-random weight sensitive permutation from the ordering of
the priorities qi = wi/αi.

Summing up, we have introduced priority sampling as a new simpler and bet-
ter scheme for weight sensitive sampling of k items for later estimation of subset
sums. Besides its immediate usefulness for reservoir sampling, priority sampling
has already turned into the basis of a rich area of research branching off in multiple
directions from the work presented in this paper.

Acknowledgment

We would like to thank a referee from J. ACM for thorough refereeing with con-
cise suggestions for clear improvements, including the fix of several typoes in the
formulas.

REFERENCES

Adler, R., Feldman, R., and Taqqu, M. 1998. A Practical Guide to Heavy Tails. Birkhauser.

Alon, N., Duffield, N., Lund, C., and Thorup, M. 2005. Estimating arbitrary subset sums with
few probes. In Proc. 24th ACM Symp. on Principles of Database Systems (PODS). 317–325.

Arnold, B. and Balakrishnan, N. 1988. Relations, Bounds and Approximations for Order
Statistics, Lecture Notes in Statistics, vol. 53. Springer, New York.

Brewer, K. and Hanif, M. 1983. Sampling With Unequal Probabilities, Lecture Notes in Statis-
tics, vol. 15. Springer, New York.

Chaudhuri, S., Motwani, R., and Narasayya, V. 1999. On random sampling over joins. In
Proc. ACM SIGMOD Conference. 263–274.

Cohen, E. 1997. Size-estimation framework with applications to transitive closure and reacha-
bility. J. Comput. Syst. Sci. 55, 3, 441–453.

Cohen, E., Duffield, N., Kaplan, H., Lund, C., and Thorup, M. 2007. Sketching unaggre-
gated data streams for subpopulation-size queries. In Proc. 26th ACM Symp. on Principles of
Database Systems (PODS). 253–262.

Cohen, E. and Kaplan, H. 2007. Bottom-k sketches: Better and more efficient estimation
of aggregates (poster). In Proc. ACM IFIP Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS/Performance). 353–354.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. 2001. Introduction to algorithms,
2nd ed. MIT Press, McGraw-Hill. ISBN 0-262-03293-7, 0-07-013151-1.

David, H. 1981. Order Statistics, 2 ed. Wiley, New York.

Duffield, N., Lund, C., and Thorup, M. 2004. Flow sampling under hard resource constraints.
In Proc. ACM IFIP Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS/Performance). 85–96.

Duffield, N., Lund, C., and Thorup, M. 2005a. Learn more, sample less: control of volume
and variance in network measurements. IEEE Transactions on Information Theory 51, 5,
1756–1775.

Duffield, N., Lund, C., and Thorup, M. 2005b. Optimal combination of sampled network
measurements. In Proc. ACM SIGCOMM Internet Measurement Conference (IMC). 91–104.

Duffield, N., Lund, C., and Thorup, M. 2005c. Sampling to estimate arbitrary
subset sums. Tech. Rep. cs.DS/0509026, Computing Research Repository (CoRR).
http://arxiv.org/abs/cs.DS/0509026.

Journal of the ACM, Vol. V, No. N, October 2007.

Priority sampling for estimation of arbitrary subset sums · 39

Fan, C., Muller, M., and Rezucha, I. 1962. Development of sampling plans by using sequential
(item by item) selection techniques and digital computers. J. Amer. Stat. Assoc. 57, 387–402.

Hellerstein, J., Haas, P., and Wang, H. 1997. Online aggregation. In Proc. ACM SIGMOD
Conference. 171–182.

Johnson, T., Muthukrishnan, S., and Rozenbaum, I. 2005. Sampling algorithms in a stream
operator. In Proc. ACM SIGMOD. 1–12.

Knuth, D. 1969. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms.
Addison-Wesley.

Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., and Weaver, N. 2003. Inside
the slammer worm. IEEE Security and Privacy Magazine 1, 4, 33–39.

Muthukrishnan, S. 2005. Data streams: Algorithms and applications. Foundations and Trends
in Theoretical Computer Science 1, 2.

Park, K., Kim, G., and Crovella, M. 1996. On the relationship between file sizes, transport
protocols, and self-similar network traffic. In Proc. 4th IEEE Int. Conf. Network Protocols
(ICNP).

Särndal, C.-E., Swensson, B., and Wretman, J. 1992. Model Assisted Survey Sampling.
Springer.

Sunter, A. B. 1977. List sequential sampling with equal or unequal probabilites without replace-
ment. Applied Statistics 26, 261–268.

Szegedy, M. 2006. The DLT priority sampling is essentially optimal. In Proc. 38th ACM
Symposium on the Theory of Computing (STOC). 150–158.

Szegedy, M. and Thorup, M. 2007. On the variance of subset sum estimation. In Proc. 15th
European Symposium on Algorithms (ESA), LNCS 4698. 75–86.

Thorup, M. 2002. Equivalence between priority queues and sorting. In Proc. 43nd IEEE Sym-
posium on Foundations of Computer Science (FOCS). 125–134. To appear in J. ACM.

Thorup, M. 2006. Confidence intervals for priority sampling. In Proc. ACM IFIP Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS/Performance). 252–253.

Vitter, J. 1985. Random sampling with a reservoir. ACM Trans. Math. Softw. 11, 1, 37–57.

Received Month Year; revised Month Year; accepted Month Year

Journal of the ACM, Vol. V, No. N, October 2007.

