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ABSTRACT
This paper describes a measurement infrastructure used to collect
detailed IP traffic measurements from an IP backbone. Usage,
i.e, bytes transmitted, is determined from raw NetFlow records
generated by the backbone routers. The amount of raw data is
immense. Two types of data sampling in order to manage data
volumes: (i) (packet) sampled NetFlow in the routers; (ii) size-
dependent sampling of NetFlow records. Furthermore, dropping of
NetFlow records in transmission can be regarded as an uncontrolled
form of sampling.

We show how to manage the trade-off between estimation accu-
racy and data volume. Firstly, we describe the sampling error that
arises from all three types of sampling when estimating usage per
traffic class: how it can be predicted from models and raw data,
and how it can be estimated directly from the sampled data itself.
Secondly, we show how to determined the usage of resources—
bandwidth, computational cycle, storage—within the components
of the infrastructure. These two sets of methods allow dimension-
ing of the measurement infrastructure in order to meet accuracy
goals for usage estimation.

1. INTRODUCTION AND MOTIVATION
The collection of network usage data is essential for the engi-

neering and management of communications networks. Until re-
cently, the usage data provided by network elements (e.g. routers)
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has been coarse-grained, typically comprising aggregate byte and
packet counts in each direction at a given interface, aggregated over
time windows of a few minutes. However, these data are no longer
sufficient to engineer and manage networks that are moving be-
yond the undifferentiated service model of the best-effort Inter-
net. Network operators need more finely differentiated informa-
tion on the use of their network. Examples of such information
include (i) the relative volumes of traffic that use different proto-
cols or applications; (ii) traffic matrices, i.e., the volumes of traf-
fic originating from and/or destined to ranges of Internet Protocol
(IP) addresses or Autonomous Systems (AS’s); (iii) the aggregate
statistics of packet and byte volumes and durations of user sessions.
Such information can be used to support network management, in
particular: traffic engineering, network planning, peering policy,
customer acquisition, usage-based pricing, and network security;
some applications are presented in details in [2, 11, 12]. An impor-
tant application of traffic matrix estimation is to efficiently redirect
traffic from overloaded links.

A prototype Traffic Analysis Platform (TAP) has been developed
in order to achieve these goals. It allows for the collection and
processing of flow measurements from a wide area backbone net-
work. The main challenge for the TAP is the immense amount of
backbone traffic, and hence the proportionately immense amount of
flow measurements to be collected. The TAP meets this challenge
with a distributed architecture and extensive use of sampling and
aggregation at multiple measurement locations. Sampled NetFlow
(see Section 2.5.2) is configured on the routers, reporting aggregate
measured from sampled packet streams. The resulting flow records
are subject to aggregation and sampling on their passage through
the measurement infrastructure. A form of non-uniform sampling
introduced in [6] (here called smart sampling; see Section 2.5.4) of
the completed NetFlow records is implemented at collection points.
Inherent in sampling is the consequence that network usage is esti-
mated rather than known exactly. However the sampling methods,
in particular smart sampling, are optimized in order to yield esti-
mates of minimal variance subject to a given constraint on resource
usage in the TAP.

This paper provides a detailed description of the TAP, the sam-
pling methods that operate in it, and established the relationship
between resource usage in the measurement infrastructure and sta-
tistical accuracy of usage estimates from the sampled data. This
enables the dimensioning of the measurement infrastructure in or-
der to meet accuracy goals. In doing this, we build on and extend
prior work on smart sampling [6] and on the statistical properties
of packet sampled flows [7]. In particular:

• We derive bounds for the sampling variance of usage esti-
mates due to the cumulative effect of packet Sampled Net-
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Figure 1: TAP Architecture and Resources

Flow, smart sampling, and transmission loss, in terms of the
sampling parameters and simple traffic characteristics. Fur-
thermore, we show how this variance of a given usage esti-
mate can itself be estimated on the fly from the sampled data.

• We derive bounds and estimates for the usage of different
resource in the TAP architecture in terms of the sampling
parameters and traffic flow characteristics. These bounds can
be used to predict resource usage from models or traces, or to
predict the effect on resource usage of a change in parameter
settings.

The purpose of this paper is to describe the set of analytical tools
that enable planning of resources in a TAP measurement infras-
tructure, that enable the correct setting of sampling parameters and
dimensioning of resource, compatible with accuracy goals for the
estimation of network usage. The paper is organized as follows.
Section 2 describes the TAP architecture, and the sampling oper-
ations that take place within it. Section 3 describes the model for
sampling process and relevant traffic properties.

With this setup, the main work of the paper is to show how the se-
lection of sampling parameters determines both the variance of us-
age estimates and volumes of samples selected. Section 4 contains
the main results on bounding sampling errors. Section 5 shows how
to estimate the rate of production of sampled flow records from a
router. Section 6 establishes bounds and estimates for the rate of
production of smart sampled records, and the rate at which aggre-
gates of these are formed. Section 7 reports some examples of us-
ing these methods with NetFlow data. We conclude in Section 8.
Mathematical proofs are deferred to an Appendix.

2. THE TAP ARCHITECTURE

2.1 Components
The components of the TAP architecture are shown in Figure 1:

• Routers:these collect raw NetFlow records on the traffic that
they route. These are exported in UDP packets to a local
collection server.

• Collector/Aggregators:these have three tasks. First, they
receive the raw NetFlow records from the routers and write
them to local disk. Second, they aggregate raw records and
create various higher level aggregates. Third, the aggregates
are shipped to a central Data Warehouse. Collection servers

are placed at major geographical locations in the backbone
network. This makes the architecture scalable and reduced
bandwidth consumption by the transmission of raw flows in
the backbone.

• Data Warehouse:this stores the aggregate data, which can
generate reports and field ad-hoc queries from an end-user
community including engineering, product management and
research organizations.

2.2 Resources
The resources of these components, and their usage, is as fol-

lows. The load on transmission and CPU resources at a given com-
ponent is proportional to the rate which flow records arrive at it.
During aggregation, memory usage is proportional to the number
of distinct flow keys that present during the aggregation period. At
the end of each such period, the aggregated flows are written to
disk; thus the rate of consumption of disk storage space is propor-
tional to the number of distinct aggregate flow keys, divided by
the duration of the aggregation period. A substantial part of the
the work of this paper is to predict the usages of these resources
through a combination of measurement and analysis.

2.3 Aggregation and Queries
The software running on the collection servers was required to be

efficient and flexible in the following sense. It needs to be efficient,
since it needs to process an immense amount of data. It needs to be
flexible since, due to changes in end user requirements and the need
to field ad-hoc queries, it is not possible to determine in advance a
set of aggregates that would support all potential queries. Indeed,
the requirement for flexibility is a reason that aggregate records
should not be formed at the router.

The flexibility of TAP is achieved by implementation of a do-
main specific languagetapquery that allows the users to write
high-level queries that the system then will run on the collection
servers. The language contains constructs that allow:

1. Definition of flow keys and outputs for aggregation. For ex-
ample, using source and destination IP address as the key and
flow bytes as output yields the host-to-host traffic matrix.

2. Joining the raw flow data with external data sources. For
example, joining with a table of IP address block used by
user groups yields traffic usage by user group.

3. Filtering. Some applications focus on a subset of traffic, e.g,
filtering by TCP/UDP port number can be used to restrict
scope to traffic using specific protocols or applications. Fil-
tering by interface also restricts focus to traffic associated
with a given user, or a given peer,

4. Smart sampling. As further explained in Section 2.5.4, smart
sampling selects a subset of NetFlow records as input for
queries or aggregation, and performs appropriate renormal-
ization of measured usage in order that usage estimates are
unbiased.

5. Correction for data loss in the raw measurement stream. Net-
Flow records may be lost in transmission from router to col-
lection server, or for other reasons. For example, a surge in
NetFlow records may occur during a denial of service attack
due to the presence of a large number of short flows with
spoofed source IP address. Correction enables the tracking
of actual network usage even if NetFlow records are lost.
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Figure 2: TAP Sampling Operations. See Section 2.5.6 for de-
scription of the examples.

Finally the aggregation systems allows computing multiple queries
at the same time, dynamically add, delete or change queries on the
fly, and dynamically use updated external data sources.

2.4 NetFlow Records
The fundamental measurements collected by routers in the TAP

architecture are flow records. We review how these are formed. An
IP flow is a set of packets, observed in the network within some
time period, and that share some common property known as its
key. The fundamental example is that of so-called “raw” flows: a
set of packets observed at a given network element, whose key is
the set of values of IP and other protocol header fields. A router
keeps records on active flows passing through it. When a packet ar-
rives at the router, the router performs a lookup on its cache of cur-
rently active flows, to determine if a flow is active for the packet’s
key. If not, is instantiates a new record for the packet’s key. The
record include counters for packets and bytes that are updated ac-
cording to each packet that matches the key.

When the flow is terminated, its record is flushed for export, and
the associated memory released for use by new flows. A router will
terminate the flow if any one of a number of criteria are met, includ-
ing (i) timeout: the interpacket time within the flow will not exceed
some threshold; (ii) protocol: e.g., observation a FIN packet of the
Transmission Control Protocol (TCP) [18] that terminates a TCP
connection; (iii) memory management: the flow is terminated in
order to release memory for new flows; (iv) aging: to prevent data
staleness, flows are terminated after a given elapsed time since the
arrival of the first packet of the flow. Flow definition schemes have
been developed in research environments, see e.g. [1, 5], and are
the subject of standardization efforts [16]. Flow records typically
include the properties that make up flows defining key, its start and
end times, and the number of packets and bytes in the flow.

In the TAP architecture, routers generate flow records from a
sampled subset of the packet stream using Sampled NetFlow [4].
In the following section we motivate and describe this and other
sampling methods used in the TAP architecture.

2.5 Sampling in the TAP Architecture
Sampling is employed in the TAP architecture in order to con-

trol resource usage. The set of sampling operations available is
illustrated in Figure 2. (The numbers relate to an example that is
worked in Section 2.5.6). The top line of the figure illustrates a
sequence of packets incident at the router. During the operation of

sampled NetFlow, a proportion of these packets are selected and
flow records constructed from them. Dropping of NetFlow records
in transit from the router to the aggregator can be viewed as another
type of sampling. In the aggregator, smart sampling is applied to
the flow records themselves. We describe each of these sampling
operations in the following paragraphs.

2.5.1 Renormalization of the Samples
Sampling progressively thins the information that flows through

TAP by discarding packets and flows. In order to obtain an unbi-
ased estimate of usage in the original traffic stream, it is necessary
to compensate for the effects of this discard by renormalizing the
usage that survives sampling. Specifically, the usage represented in
each surviving packet or flow must be divided by the probability of
its selection. We shall see in Section 4 that this yields an unbiased
estimate for the usage. So-called unequal probability sampling is
frequently used in sample design in order to sample preferentially
from amongst larger components of a population; see [15].

For each of TAP’s sampling operations described in the follow-
ing paragraph, we also describe the renormalization that is applied
to usage data that survives sampling.

2.5.2 Sampled NetFlow
In order to perform flow cache lookups at line rate, a high end

router would need to be equipped with large amounts of fast—
and hence expensive—memory, in order to maintain records on the
expected numbers of concurrently active flows. In order to limit
the frequency of flow cache lookups, sampled NetFlow forms flow
records from a substream of packets. In current implementations
this is performed by periodically selecting everyN th packet. Other
potential implementations include pseudorandom independent se-
lection of packets with probability1/N , and randomized selection
driven by the entropy of the packet contents itself; see [9]. What-
ever the implementation, in order to form unbiased usage estimates,
the usage attributed to each selected packet of sizeb is multiplied
by N (the reciprocal of the selection probability), yieldingNb.

A different approach to packet sampling has been taken in [10],
where prospective new flow cache entries are sampled, with only
those selected being instantiated. This favors the recording of longer
flows, while suppressing recording of short flows that contribute lit-
tle to usage. Other work has considered adapting packet sampling
rates in order to maintain estimation accuracy; see [3].

2.5.3 Dropping Flow Records
Routers export NetFlow records to the collector using UDP. Since

UDP possesses no ability to detect or correct for losses in transmis-
sion, flow records may be lost during periods of congestion. The
flow records contain a sequence number that enables the loss to be
detected by the collector, and to determine the rate at which loss oc-
curs. If the average rate of successful transmission isq, the number
of bytes reported is normalized through division byq.

2.5.4 Smart Sampling
In the collector, flow records are selected by a form of non-

uniform sampling called smart sampling. Smart sampling is con-
trolled through a parameter known as thesampling threshold, which
we shall denote byz. In smart sampling, a flow record repre-
senting a flow ofx bytes is sampled with probabilitypz(x) =
min{1, x/z}. Flows of size greater than the thresholdz are always
selected, while smaller flows are selected with probability propor-
tional to their size.

The motivation for smart sampling comes from the empirical fact
that flow sizes have a heavy tailed distribution; [13]. In this case,
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sampling with a uniform distribution over flow sizes is problematic
for usage estimation, since the estimates are very sensitive to omis-
sion of a single large flow. Smart sampling avoids this problem
by always selecting large flows. This approach was proposed in
[6, 7]. The probabilitypz represents an optimal trade-off between
the variancev of usage estimation, and expected numbern of flows
sampled in the following sense. Although in principle any non-zero
size-dependent probabilityp(x) may be used for flow sampling,
pz is distinguished by the property that it minimizesv + z2n, re-
gardless of the actual flow lengths. It is worth noting that, even
in the composite sampling scheme considered in this paper, once
the packet sampling periodN is specified, use of flow sampling
probabilitypz is still optimal in the above sense.

More generally, one can consider the trade-off between packet
sampling and flow sampling. From Section 2.5.2 it is clear that
some amount of packet sampling is required at the router. In ex-
periments it is found that when further sampling is required, smart
sampling yields smaller bandwidth for a given variance of usage
estimates [7]. This is because it can capitalize on the compression
inherent in the formation of flow records, as compared with reports
on the constituent packets.

In order to form an unbiased estimate of the original usage, a
flow that reportsx bytes, is normalized through division by the
selection probability, i.e., its contribution to the usage estimate is
x/pz(x) = max{x, z} bytes. Thus flows whose size exceeds the
thresholdz are (always) reported unaltered. Flows whose size is
less thanz, have their size reported atz, if they survive sampling.

2.5.5 Comparing Smart and Uniform Sampling
Smart sampling allows vastly improved estimation accuracy, as

compared with uniform sampling, for a given volume of collected
flow records. As an illustrative application, we compare the effi-
cacy of the two sampling methods in estimating usage in classes of
traffic. Raw NetFlow records were collected from a router over a
24 hour period. The task is to estimate byte usage by network news
(nntp) traffic, as identified by application port number. This traffic
comprised roughly 0.55% of all observed traffic. Smart sampling
and uniform sampling were applied to each of the raw NetFlow
records for a range of sampling parameters. Figure 3 shows the es-
timated byte usage for smart sampling (left) and uniform sampling

(right), expressed as an average byte rate over 10 minute intervals.
Table 1 shows the effective sampling periods (i.e. the reciprocal of
the average rate at which flows are sampled), and the relative errors
between estimated and actual rates, maximized over the set of 10
minute intervals.

In Figure 3(left) the points for smart sampling with thresholdz
up to 1MByte are virtually indistinguishable from the true values
(i.e. those with no sampling). With this threshold, about 1 in 127
flows are sampled, and the relative error is about0.02. With uni-
form sampling at a comparable flow sampling rate, 1 inN = 100,
the relative error is 3.1, i.e. over 150 times larger. This is re-
flected in Figure 3(right), in which the estimated byte rates can
differ greatly from the true rates. By contrast, when smart sam-
pling thresholdz = 10MBytes, i.e., sampling a little less than 1 in
1,000 flows on average, the systematic variation in byte rate can
still be clearly discerned. An example showing the accuracy of
smart sampling in estimating per address usage is described in [6].

2.5.6 Composition of Sampling and Renormalization
Although sampling in TAP occurs in a specific order (packet

sampling, followed by flow dropping, followed by smart sampling)
the corresponding renormalizations may be applied in any order
without biasing usage estimates. In the TAP architecture, renor-
malization for packet sampling is applied first, followed by smart
sampling, finishing with flow dropping. The flow dropping normal-
ization is applied last because the average drop rate is determined
only after flow records have been aggregated.

Method Parameter Flows Sampled Period Rel. Error
No sampling 328,198,000 1 0
Smart z = 100kBytes 13,468,500 24 0.0028
Smart z = 1MByte 2,574,900 127 0.020
Smart z = 10MBytes 326,222 1006 0.23
Smart z = 100MBytes 33,117 9910 0.81
Uniform N = 25 13,127,900 25 1.2
Uniform N = 100 3,281,980 100 3.1

Table 1: COMPARISON OF SAMPLING M ETHODS: method;
parameters; flow records sampled; proportion of flow records
sampled; maximum relative error for 10 minute average rates.



We illustrate with the examples in Figure 2. The packet sampling
period isN = 3, the packet transmission probability isq = 0.75,
and the smart sampling threshold isz = 9. For simplicity we set
all packets to have the nominal size of 1 byte.

The first sampled flow record hasb = 4 bytes, and survives
transmission. It enters smart sampling reportingNb = 12 bytes.
This exceeds the smart sampling threshold ofz = 9, and hence
this flow is smart sampled with probability1, reporting 12 bytes.
Finally, the reported bytes are normalized through division byq,
yielding16 bytes.

The second sampled flow record hasb = 2 bytes, and sur-
vives transmission. It enters smart sampling reportingNb = 6
bytes. Since this is less thanz, it is smart sampled with probability
Nb/z = 2/3. In happens to be discarded.

The third sampled flow record hasb = 1 byte, and happens to be
lost in transmission.

The fourth sampled flow has sizeb = 1 byte, and is trans-
mitted successfully. It enters smart sampling reportingNb = 3
bytes. Since this is less thanz, it is smart sampled with probability
Nb/z = 1/3. It happens to be selected, and exits smart sampling
reportingmax{z, Nb} = 9 bytes. Finally, the reported bytes are
normalized through division byq, yielding12 bytes.

The total bytes reported is 28; the total number of bytes of the
original packet stream (top row) was 24.

3. MODELING SAMPLING PROCESSES
The aim of this section is to model the effect of sampling upon

usage measurements. In doing so we regard the set of packets and
flows sizes of the traffic asdeterministicquantities, representing
the actual usage that is to be estimated. The only randomness that
enters is due to the sampling itself. In applications we wish to
estimate the usage for each traffic class of interest. The statistical
properties of the underlying traffic, which may be very complex,
do not enter the estimates.

3.1 Model for Sampled NetFlow
Within the functional requirement of sampling packets at a given

rate, different implementations are possible. In Sampled NetFlow
as provided by Cisco [4] packets are selected periodically, i.e., ev-
ery N th packet is selected for some periodN . Another possibility
is to sample packets independently with probability1/N–e.g. as
performed by sFlow [14], then compile flow records from the sam-
pled packets. To what extent do the implementation details have
ramifications for modeling the sampling process?

Periodic sampling introduces correlations into the sampling pro-
cess: when a packet is selected, none of the followingN−1 packets
are selected. Although this does not bias against selection of any
one packet, it can bias against selection of multiple packets from
short flows. We do not believe this effect would be important for
sampling from high speed links that carry many flows concurrently.
In this case, successive packets of a given flow would be inter-
spersed by many packets from other flows, effectively randomizing
packet selection from the given flow. While such randomization
may not be effective at lower speed routers carrying fewer flows
(e.g. edge routers), packet sampling is not expected to be crucial
for flow formation in this case. For these reasons, we will model
the sampling of packets from a given flow as being independent.

3.2 Model for Dropping of Flow Reports
We assume that flow records are transmitted independently with

some probabilityq. Thus, we can view record loss as equivalent
to independent sampling with probabilityq. Note that, in princi-
ple, more complex patterns of dependent loss amongst flow records

could also be detected from the received sequence numbers, and an
appropriate model constructed. We do not pursue this here.

3.3 Model for Smart Sampling
We assume that, conditioned on the set of packet and flows pre-

sented in the traffic, the selections of flows during smart sampling
are mutually independent. This property is sometimes called con-
ditional independence. Conditionally independent selection occurs
when an independent random variateω in [0, 1] is generated for
each flow, a flow of sizex being selected ifω ≤ pz(x). This man-
ner of sampling can be implemented using a pseduorandom genera-
tor (such as [17]) for theω. Note that the potentially complex statis-
tical properties of the the traffic process— such as heavy tailedness
of flow lengths and correlations amongst flows and packets—do
not play a role because we condition on the single “sample-path”
of traffic that is actually present. (On the other hand, if one aver-
aged over a distribution of sample-paths that exhibited dependence
between flow length, flow selection would be dependent).

An alternative approach to random selection is to use the flow
sizes themselves as a source of randomness; see [8]. This is com-
putationally simpler, but does incur some dependence between se-
lection of different flows. However, similar arguments to those we
made above for periodic packet sampling lead us to expect that de-
pendence will be weak when considering flows of a given key. This
was found to be the case in experiments.

3.4 Sparse Flows and Splitting
Packet sampling can increase the number of measured flows.

Given a sampling periodN and a flow interpacket timeoutT , we
say that a given original flow of packets issparseif the typical
time between sampled packets exceedsT . In this case, a single
original flow may give rise to multiple flow records, each sampled
packet giving rise to one measured flow record. To see more pre-
cisely when this can happen, consider an original flow comprising
n packets distributed over an interval of durationt. The typical
time between sampled packets istN/n, thus sparseness requires
than tN/(nT ) > 1. It also requires that there is typically more
than one sampled packet, i.e.,n/N > 1. Combining, we can say
that the threshold for sparseness is crossed when

t

T
>

n

N
> 1. (1)

From these conditions, we see that sparseness is most likely to arise
for flows containing many packets occurring with relatively low
frequency. In experiments, it is found that streaming and multime-
dia applications generate sparse flows at what may be reasonable
settings for sampled flow measurement: sampling periodN = 100
and flow interpacket timeoutT = 30s. See [7] for further details.

In this paper our interest in sparseness lies in understanding its
impact, if any, on the variance of usage estimates, and the volume
of flow records. Although splitting may increase or decrease the
estimation variance, a simple bound we obtain is unaffected, re-
gardless of splitting. In order to calculate the effect on the volume
of measured flows, we shall need to adopt a particular model of the
distribution of packets in the flow.

4. SAMPLING ERROR IN USAGE ESTIMATES
Reduction by sampling of the volume of sampled data comes at

the cost of inherent uncertainty over the estimates of network usage
derived therefrom. Smart sampling has been tailored to optimize
the trade off between sample volume and estimator accuracy, and to
mitigate against the high variability of estimation that would occur
if flow records were uniformly sampled.



4.1 Bounds on the Sampling Error
We aim to estimate the total usageX =

Pn
i=1 xi from n flows

of sizesx1, . . . , xn, for example, flows in a given traffic class of in-
terest. Each flowi in comprisesmi packets of sizesbi1, . . . , bimi ;
hencexi =

Pmi
j=i bij . We construct an estimatorbX of the usageX

according to the sampling operations and normalizations described
in Section 2.5, as modeled in Section 3. We will use random indi-
cators (variables taking the value 0 or 1) to writebX as a random
sum over all packets and flows. The variance ofbX derives entirely
from the statistical properties of these indicators. The quantitiesn,
mi andbij are considered fixed in any given estimation problem.

Estimation takes the following form in each stage of sampling.
An object (a packet or a flow) of some sizebx > 0 is selected with
some probabilityp(bx) > 0 that may depend onbx. The sizebx
may itself be a random quantity arising from an earlier stage of
sampling. Letw be an indicator random variable, conditionally
independent ofbx, that takes the value1 with probabilityp(bx). Then
we form an estimateby = bx · w/p(bx), i.e., by multiplying with the
random quantityw/p(bx). If the object is not selected,w = 0,
i.e., usage which is not sampled makes no contribution to usage
estimates. On the other hand, if the object is selected,w = 1, the
the contributionbx to usage is scaled up by a factor1/p(bx) relative
to the actual usage. But for a given value ofbx, w/p has expectation
1, and henceby is an unbiased estimator ofbx in the sense that the its
conditional expectation obeysE[by | bx] = bx.

We also need to treat the special casebx = 0 which arises when
the object was not selected in some previous stage of sampling. In
this case we want to haveby = 0 too. However, it is useful to have
the definitionby = bx·w/p(bx) work transparently in the calculations.
A potential problem arises ifp(0) = 0; this happens for smart
sampling but not for packet sampling. A general approach is to
assume thatx/p(x) is continuous from the right atx = 0. (This
is true for smart sampling). Then whenp(0) = 0 we can define
x/p(x) atx = 0 by continuity. As a resultby = 0 as required, since
eitherp(0) > 0 (in which casex/p(x) = 0 atx = 0), or p(0) = 0
(in which casew is 0 with probability1 whenx = 0).

In preparation for analyzing the statistical properties of the us-
age estimates, we use the scheme just described to write the usage
estimates in terms of the underlying packet and flow sizes, and the
indicator random variables for sampling.

• Packet Sampling:The total estimated bytes from packets
from flow i areN

Pmi
j=1 uijbij where theuij are mutually

independent indicator random variables taking the value1 if
packetj of flow i is sampled. Thusuij = 1 with the proba-
bility that a packet is sampled, namely1/N .

• Flow Record Loss:The application to loss of flow records is
achieved through further multiplying byvi/q, where thevi

are mutually independent indicator random variables taking
the1 if flow record i would survive transmission, i.e., with
probabilityq. The resulting unbiased estimate ofxi is

bxi = Nq−1
miX
j=i

viuijbij . (2)

• Smart Sampling:the application to smart sampling is com-
plicated slightly by the fact, mentioned in Section 2.5.6,
that usage renormalization to compensate for the loss of flow
records is performed only after smart sampling. The size re-
ported in the normalized sampled flow record presented for
smart sampling isqbxi. Given a smart sampling thresholdz,
then assuming no splitting of flows, the record survives smart

sampling with probabilitypz(qbxi) = pz/q(bxi). If so, its re-
ported size, after normalization withq, isq−1 max{z, qbxi} =
max{zq−1, bxi}; see Section 2.5.4. Thus, estimated usage
arising from smart sampling of the measured flow (if any)
produced by sampling the packets of original flowi isbyi = wi max{zq−1, bxi}, (3)

where thewi are mutually independent indicator random vari-
ables taking the value1 if flow record i would be selected
during smart sampling, i.e., with probabilitypz/q(bxi).

The final estimatebX of total usage resulting from all packets is
obtained by summing over all original flowsi:

bX =
X

i

byi = q−1
X

i

wi max{z, N

miX
j=1

viuijbij} (4)

In order to determine the variance ofbX we apply a conditioning
equality for variances for each stage of sampling. LetA andB be
random variables and define the conditional variance ofA givenB
by

Var(A|B) = E[(A− E[A | B])2|B]; (5)

see, e.g., Problem 8 of Chapter 1 in [20]. Then the conditional and
unconditional variance ofA are related by

Var(A) = E[Var(A | B)] + Var(E[A | B]) (6)

Consider again the unbiased estimateby = bx · w/p of bx. Then one
can separate out the component of the variance ofby that is due to
the estimation step from the inherent variance ofbx as follows:

LEMMA 1. Var(by) = E[bx2 1− p(bx)

p(bx)
] + Var(bx).

Applying this Lemma to each sampling stage in the formation ofbX, we obtain the following results for the variance ofbX, which are
proved, along with Lemma 1, in the Appendix. Letxmax denote
the maximum flow size andbmax the maximum packet size.

THEOREM 1. Assume independent packet sampling with period
N and smart flow sampling with thresholdz.

(i) bX is an unbiased estimator ofX.

(ii) Var bX =

nX
i=1

E[bxi max{zq−1 − bxi, 0}]+

1− q

q

nX
i=1

(

miX
j=1

bij)
2 +

N − 1

q

nX
i=1

miX
j=1

b2
ij .

(iii) Var bX ≤ q−1X (z + (1− q)xmax + (N − 1)bmax).

(iv) When flows can be split, the same bound (iii) holds for the
varianceVar bX ′ of corresponding usage estimatebX ′.

4.2 Interpretation of Theorem 1
The expressions in Theorem 1(ii) and (iii) are sums over contri-

butions due to the different types of sampling: the first from smart
sampling, the second from loss of flow records, and the third from
packet sampling. We now interpret the meanings of the terms.
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1 1 1500 1 500 0% 3.16% 2.74% 0.00% 4.18%
10 1 1500 1 500 0% 1.00% 0.87% 0.00% 1.32%

0.1 1 1500 1 500 0% 10.00% 8.65% 0.00% 13.22%
1 1 1500 10 500 0% 10.00% 2.74% 0.00% 10.37%

10 1 1500 1 500 0% 1.00% 0.87% 0.00% 1.32%
1 1 1500 1 5000 0% 3.16% 8.66% 0.00% 9.22%
1 1 1500 1 50 0% 3.16% 0.86% 0.00% 3.28%
1 1 1500 1 500 10% 3.16% 2.88% 1.05% 4.41%
1 1 1500 1 500 50% 3.16% 3.87% 3.16% 5.91%
1 1 1500 1 500 90% 3.16% 8.65% 9.49% 13.22%

Table 2: SAMPLING STANDARD ERRORS: broken down for
packet sampling, flow loss, and smart sampling.

4.2.1 Computational Issues
Observe that whenq = 1 (no transmission loss) the bound (iii)

needs only two broad characteristics of the traffic: the total volume
X to be estimated, and the maximum packet sizebmax. The lat-
ter can in turn be bounded above by the Maximum Transmission
Unit of the network under measurement. By comparison, the exact
expression (ii) requires knowing the characteristics of each flow;
it requires far more detailed measurements (including packet sizes,
which may not be available), and it computationally more inten-
sive. We shall see in Section 7 that the bound in fact gives a very
close approximation to the actual variance in cases examined.

4.2.2 The Effect of Sparse Flows
Although the upper bound Theorem 1(iii) is unaffected by split-

ting of sparse flows, the expression (ii) is generally impacted. Vari-
ance due to flow loss decreases, since flows are split across multiple
reports. Variance due to packet sampling is unchanged. The smart
sampling variance may increase or decrease.

4.2.3 Large Flows and Estimator Variance
Note that whenX is dominated by the contribution of one very

large flow, the last term in the variance bound may be close to
(1−q)/q. The the standard error may be quite large if the dropping
rate is also large. This is not surprising: smart sampling was ap-
plied in the collector precisely so as to mitigate against the effects
on accuracy of uniform sampling of flow records whose reported
sizes have a heavy-tailed distribution. For this reason, we recom-
mend that the bandwidth for transmission of raw flow records and
computational resources on the collector be sufficiently large to ac-
commodate the records without loss under normal operation. Later
in this paper, we provide estimates for the required bandwidth.

4.2.4 Comparing Variance: Packet, Smart Sampling
Assuming that our recommendation to dimension collection in-

frastructure for no report loss is followed, the bound of Theorem 1(iii)
takes a simple form:Var X ≤ X(z + (N − 1)bmax). From this
bound, we expect the ratio of variance due to smart sampling to that
due to packet sampling is aboutz/(Nbmax). Thus for typical val-

uesbmax = 1, 500 Bytes,N = 100, the smart sampling variance
exceeds the packet sampling variance only whenz > 150 kBytes.

4.2.5 Resampling of Aggregates
In the TAP infrastructure, smart sampled flow records may be ag-

gregated over time, and the resulting aggregates subject to further
smart sampling with a thresholdz2. What is the effect on estimator
variance? Without aggregation, it was shown in [7] that composi-
tion ofn smart sampling stages with thresholdsz1 . . . , zn is equiv-
alent to a single smart sampling with thresholdmaxn

i=1 zi. With
aggregation, we have found no such simple relation. However, an
application of Lemma 1, together with the bounding methods used
to establish Theorem 1(iii), show that the additional variance inbX ′

introduced is bounded above byq−1Xz2.

4.2.6 Application and Examples
The bound of Theorem 1(iii) is independent of any distribution

details of the flow sizes themselves. This enables us to construct
simple bounds on estimator variance in term ofaverageproper-
ties of flows. We have tabulated the bound for the standard errorp

Var bX/X in Table 2 for the case of no report loss:q = 1. For
comparison, we include a version of the same bound forq < 1, but
based on the assumption that all flows have the same length. As
remarked in Section 4.2.4, the actual variance due to flow report
loss may be much larger due to the random selection of long flows.

4.3 Composed Sampling and Estimating
Variance from Measurements

Theorem 1 bounds estimator variance in terms of the packet and
flow sizes of the unsampled data. But in practice we will want to
determine estimator variance directly knowing only the sampled
data values. For example, only usage of packets sampled in the
router will reach the collector. However, in practice we wish to
estimate the variance of our usage estimates directly from the data
that survives sampling. The TAP architecture encompasses mul-
tiple levels of sampling (packet sampling, report loss, smart sam-
pling) and aggregation (packets into flows, aggregation of smart
sampled flows) and it is desirable to estimate the total variance con-
tributed by each stage of sampling and aggregation.

4.3.1 Estimating Sampling Variance
As before, consider sampling an objects of sizex with probabil-

ity p(x), and letw be the indicator random variable for sampling
the object, i.e.,w is conditionally independent ofx and takes the
value1 with probabilityp(x). We have seen thatbx = x · w/p(x)
is an unbiased estimator ofx. It is straightforward to show (see
[6]) that bx has variancev(x) = x2(1 − p(x))/p(x). Similarly to
before, we can form an unbiased estimator ofv(x) by renormal-
izing the quantityv(x) for those objects that are selected during
sampling. Thus (see [6])

LEMMA 2. bv(x) = v(x) · w/p(x) is an unbiased estimator of
v(x): E[bv(x)] = v(x).

Note that the variance estimator isnot simply a sum ofv(x) over
sampled objects. This would underestimate the variance. It is nec-
essary to divide by the sampling probabilityp(x).

The two applications of Lemma 2 in this paper are:

• Uniform Sampling:Herep(x) = 1/N . We write the vari-
ance ofbx asvu(N, x) = x2(N − 1). The corresponding
variance estimator isbvu(N, x) = x2N(N − 1).

• Smart Sampling:p(x) = pz(x). We write the variance ofbx
asvs(z, x) = x max{z−x, 0}. The corresponding variance



estimator isbvs(z, x) = z max{z − x, 0}. As one might ex-
pect, there is no sampling variance associated with objects of
size associated with objects larger than the sampling thresh-
old: vs(z, x) = 0 for x ≥ z.

4.3.2 Estimated Variance in Composed Sampling
We now show how to estimate the incremental variance incurred

by each stage of sampling from the objects that are selected at that
stage. As before, consider the unbiased estimatorby = bx · w/p(bx)
arising from sampling an object as sizebx, which is itself a ran-
domly sampled quantity. The incremental contribution to sampling
variance due to composed sampling is described by the following
result, which can be regarded as combination of Lemmas 1 and 2.

LEMMA 3. wbx2 1− p(bx)

p2(bx)
+ bv(bx) is an unbiased estimator of

Var(by).

4.3.3 Estimated Variance in Aggregation
Assume unbiased estimators{bxi} of actual usages{xi}, with

associated unbiased variance estimators{bv(xi)}. When sampling
is mutually independent for differenti, the aggregate unbiased es-
timator

P
i bxi has variance whose unbiased estimator is

P
i bv(xi).

4.3.4 Example
To make the results of Sections 4.3.2 and 4.3.3 concrete, we de-

scribe the total variance estimator in the following composition of
four sampling and aggregation operations: packet sampling, smart
sampling of flow records, aggregation of flow records, and further
smart sampling of the aggregated flow records.

• Packet Sampling with Probability1/N . Packets are sampled
at a router, prior to formation of flow records. Consider flows
i comprising packets with sizes{bij} for j = 1, . . . , mi.
The unbiased variance estimator is

P
i

Pmi
j=1 uijb

2
ijN(N −

1) whereuij is the selection indicator for packetj of flow i.
Since individual packet sizes are not reported in flow record,
we can usefully bound this expression above bybmax(N −
1)
P

i bxi wherebxi = N
Pmi

j=1 uijbij is the unbiased esti-
mator of usage in flowi.

• Smart Sampling with Thresholdz1 of Raw Flows.The flow
records are smart sampled in the collector/aggregators. Each
flow recordi gives rise to a smart sampled usage estimatebyi = vi max{z1, bxi}, wherevi is the indicator for selection
of flow i. The variance associated with smart samplingbxi is
viz1 max{z1 − bxi, 0}.

• Aggregation of Smart Sampled Flows.So far the cumulative
sampling corresponds to the sampling operations of Theo-
rem 1 with no report loss:q = 1.) At the collector, flow
records matching keys in a given set are aggregated over
time. Partition the set{1, . . . , n} of flows into disjoint sets
Ik. Herek labels a key, andIk is the set of flows with keyk.
Aggregate usage of flows with each key, yielding the usage
estimatesbYk =

P
i∈Ik

yi. The sampling variance forbYk is
the sum of the sampling variance of each componentbyi.

• Smart Sampling with Thresholdz2 of Aggregated Flows.The
aggregates undergoing further smart sampling (with a differ-
ent threshold) e.g. prior to long term storage. Each aggre-
gated flow over keyk gives rise to a smart sampled usage
estimatebSk = wk max{z2, bYk}, wherewk is the indicator
for selection of aggregate flowk. The variance associated
with smart samplingbYk is wkz2 max{z2 − bYk, 0}.

Combining these contributions, we arrive at the following unbiased
estimate for the sampling variance:bV =

X
i

miX
j=1

uijb
2
ijN(N − 1) +

X
i

viz1 max{z1 − bxi, 0}

+
X

k

wkz2 max{z2 − bYk, 0}. (7)

Using the bound mentioned above for packet sampling,bV can be
bounded above by the positively biased variance estimatorbV ′ = bmax(N − 1)

X
i

bxi +
X

i

viz1 max{z1 − bxi, 0}

+
X

k

wkz2 max{z2 − bYk, 0}. (8)

The effect of the indicatorsvi and wk is to restrict the sums in
which they occur to run over only terms that survive sampling.
When used with actual data, each sum runs over only data points
selected in sampling, with the accompanying indicators set to one.
Thus, at each stage of sampling, the additional contribution to esti-
mator variance can be computed from the information at hand.

5. PREDICTING THE PRODUCTION RATE
OF FLOW RECORDS AT A ROUTER

In the next two sections of the paper we show how to predict the
usage of TAP’s resources from measured traffic statistics, and in
particular its dependence on the sampling parameters. In this sec-
tion we show how to predict the rate of production of flow records
at the router. In Section 6 we show how to predict the rate of pro-
duction of smart sampled flow records, and resources required to
further aggregate them.

5.1 The Need to Model Bandwidth Usage
We argued in Section 4.2.3 thatanyamount of uniform (i.e. size

independent) dropping of flow records is undesirable due to poten-
tial for large resulting variance in usage estimators. This motivates
provisioning the collection bandwidth for flow reports to be suffi-
ciently large to accommodate all reports. The rate of production
of Sampled NetFlow records depends in a detailed way upon the
composition of the network traffic that is being measured, and on
the sampling parameters (theN of 1 in N sampling) and the flow
interpacket timeout. Using a model for the distribution of packets
within a flow, we estimate the mean number of flow records pro-
duced by sampling packets from a given original flow. Combined
with either a model for distribution of original flow lengths and du-
rations, or original flow records collected from actual traffic, we
are able to estimate the rate of production of packet-sampled flow
records

5.2 Modeling Packets within Flows
In order to determine the number of measured flows, we need

a model for the splitting of sparse original flows. Consider a flow
comprisingn packets distributed over an interval of durationt. We
adopt a model in which packets of the original flow are assumed
to be independently and uniformly distributed in the interval of du-
ration t. Packet are sampled independently with probability1/N ;
hence the number of sampled packets follows the binomial distri-
bution B1/N (n), and the sampled packets are independently and
uniformly distributed in the interval.

Note this model does suffer from some “edge effects” in that
the first and last packets of the flow are not constrained to occur
at the ends of the interval. Whereas it is possible to incorporate



this constraint in a more complex model, the resulting difference
is small for increasingN since the first or last packets are selected
with probability only 1/N . Moreover, multiple measured flows
will only occur whenn > N , so again the details of placement of
one packet will make little difference to subsequent results.

We note that another model for the distribution of packets has
been considered in [8], namely that packets in the original flow
are evenly spaced with the mean interpacket separation, and that
packets are sampled periodically with random initial phase. In ex-
periments we have found that the model of this paper is, in most
cases, more accurate in predicting the average rate of production of
measured flows.

5.3 Rate of Packet Sampled Flow Records
We now estimate the mean number of measured flows produced

from an original flow under sampling. We take interpacket timeout
as the only flow termination mechanism. We ignore the possibility
of protocol-based termination, e.g. by observation of a TCP packet
with the FIN flag set. On the other hand, only1 in N of such
packets will be sampled on average, so termination by observation
of a FIN packet would be increasingly rare asN increases. We
also ignore flow age as a criterion for termination. However, if
the unsampled flows are measured flows, their ages do not exceed
the allowed maximum. The same holds for a sampled flow, since
its age cannot exceed that of the unsampled flow from which it is
derived. Finally, we do not model termination for cache memory
management.

THEOREM 2. Let f(n, t; N, T ) denote the average number of
measured flows produced from a single original flow comprisingn
packets randomly distributed over an interval of durationt, sam-
pled independently with probability1/N , the measured flows hav-
ing interpacket timeoutT .

f(n, t; N, T ) = 1 +

�
κ− 1

N
+ 1

�n−1�
κ(n− 1) + 1

N
− 1

�
,

(9)
whereκ = max{0, 1− T/t}.

Theorem 2 can be used to estimates the rate of production of
sampled NetFlow records in the two settings mentioned above:

• Collected Unsampled Flow Records.Here we estimate the
average number of sampled flows that would be produced
from a given set of unsampled flows. considerm flows col-
lected over an interval of durationτ , flow i comprisingni

packets and having durationti. The total rate of sampled
NetFlow records is estimated as

R = τ−1
mX

i=1

f(ni, ti; N, T ) (10)

• Modeled Distribution.The results could also be used in con-
junction with a model of flow length distributions. Letr be
the arrival rate of original flows. Letp(n, t) denote the model
probability that a given flow comprisesn packets distributed
over a durationt. Then the total rate of sampled NetFlow
records is estimated as

R = r
X
n,t

p(n, t)f(n, t; N, T ) (11)

Note that (11) can be regarded as arising from averaging (10) over
a distribution of sample paths. However, since (10) is a sum over
flows, it is not affected by correlations between flows, hence only
the marginal distributionp(n, t) enters.

In a separate study we have compared the predictions of (10)
with values obtained from packet level traces subject to simulated
packet sampling and flow formation. In case examined, estima-
tion of the rate of packet sampled NetFlow records was accurate to
within 10%, and often closer, over a wide range of sampling rates
and flow interpacket timeouts.

5.4 Applications
We see two applications of the above estimates (10) and (11) for

the mean rate of production of flow records:

• Estimation from Unsampled Flows:unsampled flow records
are used to predict the rate at which packet sampled flow
records would be produced. In this case,N is the sampling
period for1 in N packet sampling.

• Estimation from Sampled Flows for Decreased Sampling Rate:
sampled flow records collected with1 in M sampling are
used to predict the rate of production were records to be col-
lected with1 in NM sampling forN > 1. In this case,N is
the factor by which the sampling period is to be increased.

6. PREDICTING THE PRODUCTION RATE
OF SMART SAMPLED FLOW RECORDS

In this section we show how to estimate the resources used by
the smart sampled flow records at the collector. We focus on two
cases. In the first, we estimate the output rate of flow records from
smart sampling at the collector. This enables dimensioning of the
storage and/or transmission resources required to accommodate the
sampled records. In the second case, we consider further aggrega-
tion of the smart sampled flow records, and estimate the number
of aggregate flows that result. In applications we expect aggrega-
tion to be performed over successive time windows. The estimates
enable dimensioning of memory required for the aggregation table.

We perform these estimates in two ways. In Section 6.1 we de-
rive an upper bound based on aggregate characteristics of the in-
coming stream of flow records. In Section 6.2 we obtain an esti-
mate based on the detailed statistics of measured flows.

6.1 Smart Sampling Resources: Upper Bound
In the appendix we prove the following:

THEOREM 3. Consider a stream of flow records arriving at av-
erage rateR, representing a data rateB. When this stream is
smart sampled with thresholdz, the expected rateRs at which flows
records are produced is bounded above as

Rs ≤ min{R, B/z}. (12)

Theorem 3 has two direct applications for the TAP architecture:
the output load of the smart sampler, and storage resources for ag-
gregation. In both casesB andz are the same: the data rate of
the traffic being measured, and the sampling threshold respectively.
The rate of productionR of flow records from routers is to be de-
termined from the methods of Section 5.

6.1.1 Bounding Output Rate of the Smart Sampler
R is the average rate at which flow records arrive at the smart

sampler,Rs bounds the average rate of production of smart sam-
pled flow records.

6.1.2 Bounding Resources for Aggregation
In TAP, the smart sampled raw flows are aggregated over a time

intervalτ (e.g. over one hour). The key used to aggregate may be



the just the raw flow key, or it may be coarser, e.g. a BGP routing
prefix. We want to estimate the number of aggregate flows gener-
ated over the intervalτ . Thus we want to determine the average
rateRs,agg at which unique keys (at the desired aggregation level)
presented by flows that survive smart sampling during the period of
lengthτ .

Clearly Rs,agg is bounded above byRs (consider the case that
all keys are unique). It must also be bounded above by the rate
Ragg, the average rate, over the interval, at which unique aggregate
keys become present in the NetFlow record prior to smart sampling.
SinceRagg ≤ R,

Rs,agg ≤ min{Ragg, B/z}. (13)

6.2 Smart Sampling Resources: Estimate
We now obtain a more detailed estimate that allows us to deter-

mine how tight the bound of Theorem 3 is. Ideally such an estimate
would proceed by finding the distribution of the number and packet
and byte lengths of the measured flows, then averaging the effect of
smart sampling over this distribution. However, such an approach is
computationally formidable; we opt instead for a simpler approach.
Consider raw flows labeled byi having packet, duration and bytes
(ni, ti, bi), collected over a period of durationτ . Packet sampled
NetFlow yields on averagef(ni, ti; N, T ) measured flows. We ap-
ply these to the two examples for which bounds were obtained in
Section 6.1.

6.2.1 Estimating Output Rate of the Smart Sampler
Assume thatb represented bytes are allocated evenly amongst

the average numberfi = f(ni, ti; N, T ) of flows. The expected
number of smart-sampled flows that would arise from the original
flow is fipz(bi/fi) = min{f, bi/z}. Thus we estimate the rate of
production of smart sampled flow records by

Rs ≈ τ−1
X

i

min{f(ni, ti; N, T ), bi/z} (14)

6.2.2 Estimating Resources for Aggregation
In TAP, the smart sampled raw flows are aggregated over a time

intervalτ (e.g. over one hour). The key used to aggregate may be
the just the raw flow key, or it may be coarser, e.g. a BGP routing
prefix. We want to estimate the number of aggregate flows gener-
ated over the intervalτ . Thus we want to determine the number of
unique keys (at the desired aggregation level) presented by flows
that survive smart sampling during the period of lengthτ .

A given original flowi produced on averagef(ni, ti; N, T ) mea-
sured flows with the same key. Suppose we can calculate the prob-
ability qi that at least one of these flows survive smart sampling.
Then the average rate at which aggregate flows are formed is

Rs,agg = τ−1
X

κ

 
1−

Y
i∈Iκ

(1− qi)

!
(15)

whereκ ranges over the set of aggregate flow keys present in the
raw flows, andIκ is the set of raw flows whose key matchesκ.

Instead of calculatingqi exactly, we estimate it as follows. If
fi < 1 we treat it as the probability for exactly1 measured flow
to be submitted to smart sampling. With this interpretation,qi =
fipz(b/fi). If fi ≥ 1 we treat is as a number of flows which are
definitely submitted to smart sampling. Iffi were an integer, then
we would haveqi = 1 − (1 − pz(b/fi))

fi . We use the same
expression for allfi ≥ 1. Combining, our estimate is

Rs,agg ≈ τ−1
X

κ

 
1−

Y
i∈Iκ

(1− q′i)

!
, (16)
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Figure 4: Variance and variance bound: for total bytes per
flow, keyed by source address. Sampling periodN = 10; smart
sampling thresholdz = 10, 000; no transmission loss

where

q′i =

�
fipz(b/fi) fi < 1
(1− pz(b/fi))

fi fi ≥ 1
(17)

Note that for largez, qi approachesb/z. Consequently, in this
regimeRagg is approximatelyB/X for any aggregation scheme.
Another way to see this is that since theqi are small in this regime,
1−Qi∈Iκ

(1− qi) ≈
P

i∈Iκ
qi and so the chance for at least one

flow of a particular key to be selected is approximately the sum of
the individual selection probabilities. In smart sampling, this will
be their total represented bytes divided byz.

7. COMPARING ESTIMATES AND BOUNDS
In this section we compare the bounds and estimates on variance

in Section 4 and resource consumption in Section 5 and 6, and show
how to employ these results, using flow measurements taken from
network traffic.

7.1 Description of Flow Trace
Our dataset comprised raw unsampled NetFlow records collected

during a 1 hour on August 13, 2002. The data set recorded 2,019,840
raw flows containing 22,736,080,686 bytes distributed in 48,907,611
packets. The average data rate over the hour was thus 50.5 Mbits/sec.

7.2 Variance of Usage Estimates
We compare the simple bound of Theorem 1(iii) for the variance

of usage estimates with the corresponding exact expression of The-
orem 1(iii). We observed in Section 4 that it is highly preferable to
use the bound on the grounds of computational and data simplicity.
We now show that it provides a good approximation.

We performed the comparison over a joint range of packet sam-
pling periodsN from 1 to 10, 000 and smart sampling thresholdsz
from1 to109 bytes. The results shown in Figure 4, forN = 10 and
z = 10, 000 are typically. There is no transmission loss:q = 1.
Keying flows by source IP address, we show a scatter plot of stan-

dard error
p

Var bX/X againstX for estimation of the total usage
X in each color. Also shown is the bound of Theorem 1(iii). The
bound is quite close. The greatest divergence between bound and
variance typically occurs for largerX. Such usageX is more likely
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to include component flowsxi > z for which there will in fact be
no sampling error.

We now show that individual components of the variance also
have close upper bounds. We can identify in the variance of The-
orem 1(ii) the component due to smart sampling (the first term)
and that due to packet sampling (the last term). The correspond-
ing standard errors can be compared with their respective boundsp

z/X and
p

(N − 1)bmax/X. We do this forN = 100 and
z = 106 Bytes in Figure 5. Note that the bounds are individu-
ally tight: in each case there are variance points that lie on their
associated bounds.

7.3 Application Volumes of Flow Records
A breakdown of traffic by application was conducted on the basis

of well known application ports, as specified via RFC 3232[19]),
and other identification made on the basis of specific application
knowledge. 2,267 different such applications were identified. Six
of the applications these each accounted for more than 1% of the
byte total of the traffic; the percentage for each of these applica-
tions, along with the percentage bytes not attributable to an appli-
cation, are displayed in Table 3. Observe that one p2p application
constitutes nearly half the traffic volume.

Flows per MByte, givenN
application byte vol 1 10 102 103 104

kazaa 46.6% 30.29 12.18 5.67 1.03 0.12
gnutella 5.9% 68.08 36.20 11.21 2.08 0.23
napster 5.4% 12.65 11.24 8.69 1.95 0.22
www 2.9% 703.64 264.33 49.07 6.35 0.70
unidentified 2.6% 190.97 60.60 15.00 3.00 0.37
vrml-multi-use 1.2% 70.80 29.07 8.45 1.46 0.16
directx-gaming 1.1% 113.25 47.55 14.70 2.48 0.28

Table 3: Break down of percentage of byte volume, and by
application, for applications accounting for at least 1% of to-
tal bytes. Predicted volume of raw flows, according to (10), as
function of sampling period.
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Figure 6: Smart sampled records: volume per MByte of orig-
inal traffic, as function of smart sampling threshold for differ-
ent packet sampling periodsN . Also shown for eachN : bound
Rs from Theorem 1, where volume of packet sampled NetFlow
recordsR is estimated by application of (10) to unsampled raw
NetFlow records for eachN .

Using (10) we estimated the number of raw sampled NetFlow
records that would be produced per Mbyte of original traffic, as a
function of the sampling period. For the applications considered,
clearly a considerable reduction in the rate of generation of Net-
Flow records is obtained through packet sampling. There is consid-
erable variation in in the normalized rate of flow records amongst
the applications: note the large rate for www traffic. This is at-
tributable to the fact that users may be expected to run predom-
inantly web clients rather than servers; their inbound traffic will
comprise mainly http requests and ack packets for transfers. Web
flows outbound to users are expected to have a lower rate of bytes
per flow, while the packets per flow would be roughly the same. For
the largest component, kazaa, we expect less asymmetry between
inbound and outbound traffic: independent studies on similar links
have found rough parity between inbound and outbound data vol-
umes. However, it is not clear the extent to which this is due to
individual users acting as bona fide peers, i.e. both downloading
and serving content, as opposed to a balance in the aggregate be-
havior. These results underline the importance of understanding the
application mix when estimate the likely volume of flow records.

7.4 Volume of Smart Sampled Flow Records
We compare the upper bound of Theorem 3 on the rate of pro-

duction of smart sampled records with the corresponding estimate
of (14). Figure 6 shows this comparison as a function of the sam-
pling thresholdz for the five cases of the sampling period forN
from 1 to 10, 000. The bounds we obtained using the total byte
rateB of the raw unsampled flow records, and applying (10) to
determine the rateR of sampled raw flows for eachN . Note that
in an application, this number might be available directly from a
collection of sampled NetFlow records. The curves were obtained
by applying (14) to the raw unsampled flow statistics. For each
curve the bounds essentially join projections of the initial and final
portions. For largez the curves merge, since then most flows are
subject to the same smart samplingbxi < z, andz play the role of
the mean number of bytes represented per sampled flow.
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Figure 7: Aggregate flow: number of unique destination BGP
prefixes per hour, as function of smart sampling thresholdz,
for different packet sampling periods N . Also shown for each
N : bound Rs from Theorem 1, where rateRagg of presentation
of unique BGP prefixes is determined from NetFlow records.

7.5 Volume of Aggregated Smart Sampled Flows
We compare the upper bound (13) on the rate of production

of aggregated smart sampled records with the corresponding es-
timate (16) obtained by modeling the smart sampling of individual
flows. Figure 7 shows this comparison as a function of the sampling
thresholdz for the five cases of the sampling period forN from 1
to 10, 000. Flow keys are aggregated on destination BGP prefix.
The bounds we obtained using the total byte rateB of the raw un-
sampled flow records;Ragg was determined by applying (16) to the
raw unsampled flow records. In applications,Ragg may be avail-
able by collecting aggregate sampled NetFlow records directly. As
with the unaggregated records, the curve merge for largez, which
takes the role of the mean number of bytes represented per aggre-
gated sampled flow. As remarked in Section 6.2.2, this property
will hold for anyaggregations scheme for large enoughz.

8. CONCLUSIONS AND APPLICATIONS
This paper has described a Traffic Analysis Platform (TAP): a

hierarchical infrastructure for the measurement and collection of
traffic flow records. Sampling of packets and flows is required to
manage consumption of TAP resources. This comes at the costs
of introducing statistical uncertainty into traffic usage, since this
must now be estimated from measurements. We gave a simple up-
per bound on the variance of usage estimates. This led us to the
guideline, that the system should be run (under normal operational
situations) in a way where flow loss is kept minimal and preferably
avoided altogether. We gave simple bounds for the consumption of
resources in the TAP architecture, and some estimates that make
use of detailed flow records. These results constitute a set of tools
that enable planning the resources of TAP infrastructure in order to
meet accuracy goals in the estimation of network usage.

Further applications for smart sampling exist in the TAP archi-
tecture. Long-term archival of flow records requires potentially
large amounts of storage. A further round of smart sampling can
be used to reduce storage volumes while retaining the ability to
recover detail from the archived data.

Appendix: Proofs of Theorems
Proof of Lemma 1: Using (6)Var(by) = E[Var(by | bx)]+Var(E[by |bx]). Now by = wbx/p(bx) wherew is an indicator random variable
that takes the value1 with probabilityp(bx). HenceVar(by | bx) =bx2(1− p(bx))/p(bx). (Note this is bounded atx = 0 due to the
assumption of right continuity ofx/p(x) at x = 0.) Finally, E[by |bx] = bx, and the result follows.

Proof of Theorem 1: (i) E[ bX | {bxi}] =
Pn

i=1 bxi andE[bxi] = xi.
(ii) Applying Lemma 1,

Var(byi) = E[bxi max{zq−1−bxi, 0}]+Var bxi ≤ zq−1xi +Var bxi.
(18)

Similarly, conditioning on{uij} and using (6) we find

Var bxi = E[Var(bxi | {uij})] + Var(E[bxi | {uij}]) (19)

= E[Var(Nq−1
miX
j=1

viuijbj | {uij})]

+ Var(E[Nq−1
miX
j=1

viuijbj |{uij}]) (20)

=
1− q

q
E[(N

miX
j=1

uijbj)
2] + Var(N

miX
j=1

uijbj)(21)

which yields the last two terms of (ii) after some algebra. The
bound (iii) then follows easily.

(iv) We label by(i, k) the measured flows arising from the split
of sampled packets from original flowi into `i measured flows la-
beled byk. The random variablerijk indicates the assignment of
a sample packet to a measured flow:rijk = 1 if packet j from
original flow i is sampled (uij = 1) and occurs in measured flow
(i, k); otherwiserijk = 0. We will not need to specify a law
for the{rijk}. Independent indicator variablesvik take the value
1 if measured flow(i, k) is not dropped, this with probabilityq,
and 0 otherwise. The usage estimate isbX ′ =

Pn
i=1 bx′i wherebx′i =

P`i
k=1 bx′ik, andbx′ik = Nq−1Pmi

j=1 vikuijrijkbj .
Since

Pm1
k=1 rijk = 1, bx′i is an unbiased estimator ofxi and

hencebX ′ is an unbiased estimator ofX. Repeating the decompo-
sition (18), we findVar( bX ′) ≤ zq−1X +

Pn
i=1 Var(bx′i). Condi-

tioning on{uij , rijk} and using (6),

Var(bx′i) = E[Var(bx′i | {uij , rijk})] + Var(E[bx′i | {uij , rijk}])
(22)

Now, by conditional independence ofbx′ik given {uij , rijk}, the
first term in (22) is

E[Var(bx′i | {uij , rijk})] = E[

`iX
k=1

Var(bx′ik | {uij , rijk})]

=
1− q

q
E[

`iX
k=1

(N

miX
j=1

uijrijkbij)
2]

≤ 1− q

q
E[(N

`iX
k=1

miX
j=1

uijrijkbij)
2]

=
1− q

q
E[(N

miX
j=1

uijbij)
2] (23)

since
P`i

k=1 rijk = 1. For the same last reason,E[bx′i | {uij , rijk}] =
E[bxi | {uij}], and so combining with (19), (20), (22) and (23), we
find Var(bx′i) ≤ Var(bxi), and the result follows.



Proof of Lemma 3: E[wbx2(1 − p(x))/p2(bx) | bx] = bx2(1 −
p(bx))/p(bx) and so the result follows from Lemma 1.

Proof of Theorem 2: Suppose there aren ≥ 2 packet in the orig-
inal flow and thatm ≥ 2 of these are selected. Letτ1, τ2, . . . , τm

be the (unordered) arrival times of them packets. These times have
joint probability distribution functionPDFgm(τ1, . . . , τm) = t−m.
Let the times between successive packets beσ1, . . . , σm−1. They
have jointPDF hm, where

hm(s1, . . . , sm−1) = m!

Z
τ1≤(t−Pm−1

i=1 si)

gm(τ1, . . . , τm)dτ1 . . . dτm

= m!(t−
m−1X
i=1

si)/tm, (24)

when
Pm−1

i=1 si ≤ t, and0 otherwise. ThePDF hm is invariant
under permutation of thesi, and hence all theσi have the same
marginal distributionh1

m, where

h1
m(s1) =

Z
Pm−1

i=2 si≤t−s1

hm(s1, . . . , sm−1)ds2 . . . dsm−1

= m(t− s1)
m−1t−m, (25)

for s1 ∈ [0, t], and0 elsewhere.
The number of measured flows is 1 plus the number ofsi that

exceedT . Hence the mean number of measured flows is1 +
(m − 1)P[σi > T ]. Note this expressions also holds for the
casem = 1. For T ≥ t, P[σi > T ] = 0. For T ∈ [0, t),
P[σi > T ] =

R T

t
h1

m(s1)ds1 = (1 − T/t)m. Combining these
we find P[σi > T ] = κm for all T ≥ 0. Thusf(n, t; N, T ) =Pn

m=1

�
n
m

�
N−m(1 − 1/N)n−m(1 + (m − 1)κm), which after

some algebra is seen to be equal to (9). Ifn = 1 thenf = 1/N ,
which agrees with (9) in this special case.

Proof of Theorem 3: As before, consider total bytesX having
an unbiased estimatorbX =

Pn
i=1 bxi comprising a sum ofn mea-

sured flows each of (random) sizebxi, collected over an interval of
durationτ . The expected average rate of smart sampled flows over
the interval is

Rs = τ−1
nX

i=1

Epz(bxi) =≤ τ−1
nX

i=1

min{1, Ebxi/z} (26)

= τ−1 min{n, X/z} = min{R, B/z} (27)
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