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Abstract

Robust measurements of network dynamics are increasingly important to the design and operation of
large internetworks like the Internet. However, administrative diversity makes it impractical to monitor
every link on an end-to-end path. At the same time, it is difficult to determine the performance character-
istics of individual links from end-to-end measurements ofunicast traffic. In this paper, we introduce the
use of end-to-end measurements ofmulticasttraffic to infer network-internal characteristics. The band-
width efficiency of multicast traffic makes it suitable for large-scale measurements of both end-to-end
and internal network dynamics.

We develop a Maximum Likelihood Estimator for loss rates on internal links based on losses ob-
served by multicast receivers. It exploits the inherent correlation between such observations to infer the
performance of paths between branch points in the tree spanning a multicast source and its receivers.
We derive its rate of convergence as the number of measurements increases, and we establish robustness
with respect to certain generalizations of the underlying model. We validate these techniques through
simulation and discuss possible extensions and applications of this work.

1 Introduction

Background and Motivation. Fundamental ingredients in the successful design, control and management

of networks are mechanisms for accurately measuring their performance. Two approaches to evaluating

network performance have been:

(i) Collecting statistics at internal nodes and using network management packages to generate link-level

performance reports; and

(ii) Characterizing network performance based on end-to-end behavior of point-to-point traffic such as

that generated by TCP or UDP.

A significant drawback of the first approach is that gaining access to a wide range of routers in an ad-

ministratively diverse network can be difficult. Introducing new measurement mechanisms into the routers

themselves is likewise difficult because it requires persuading large companies to alter their products. Also,
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the composition of many such small measurements to form a picture of end-to-end performance is not com-

pletely understood.

Regarding the second approach, there has been much recent experimental work to understand the phe-

nomenology of end-to-end performance (e.g., see [1, 2, 14, 19, 21, 22]). A number of ongoing measurement

infrastructure projects (Felix [5], IPMA [7], NIMI [13] andSurveyor [28]) aim to collect and analyze end-

to-end measurements across a mesh of paths between a number of hosts.pathchar [10] is under evaluation

as a tool for inferring link-level statistics from end-to-end point-to-point measurements. However, much

work remains to be done in this area.

Contribution . In this paper, we consider the problem of characterizing link-level loss behavior within a

network through end-to-end measurements. We present a new approach based on the measurement and

analysis of the loss behavior ofmulticastprobe traffic. The key to this approach is that multicast traffic

introduces correlation in the end-to-end losses measured by receivers. This correlation can, in turn, be used

to infer the loss behavior of the links within the multicast routing tree spanning the sender and receivers.

This enables the identification of links with higher loss rates as candidates for the origin of the degradation

of end-to-end performance.

Using this approach, we developmaximum likelihood estimators(MLEs) of the link loss rates within

a multicast tree connecting the sender of the probes to a set of receivers. These estimates are, initially,

derived under the assumption that link losses are describedby independent Bernoulli losses, in which case

the problem is that of estimating the link loss rates given the end-to-end losses for a series ofn probes. We

show that these estimates are strongly consistent (converge almost surely to the true loss rates). Moreover,

the asymptotic normality property of MLEs allows us to derive an expression for their rate of convergence

to the true rates asn increases.

We evaluate our approach for two-, four-, and eight-receiver populations through simulation in two

settings. In the first type of experiment, link losses are described by time-invariant Bernoulli processes.

Here we find rapid convergence of the estimates to their actual values as the number of probes increases.

The second type of experiment is based onns [18] simulations where losses are due to queue overflows as

probe traffic competes with other traffic generated by infinite data sources that use the Transmission Control

Protocol (TCP) [24]. In the two- and four- receiver topologies with few background connections we find fast

convergence although there are persistent, if small, differences between the inferred and actual loss rates.

The cause of these differences is that losses in our simulated network display spatial dependence (i.e.,

dependence between links), which violates the Bernoulli assumption. We believe that large and long-lasting

spatial dependence is unlikely in a real network such as the Internet because of its traffic and link diversity.

This is supported by experiments with an eight-receiver topology with diverse background traffic in which

we found closer agreement between inferred and actual loss rates. Furthermore, we believe that the intro-
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duction of Random Early Detection (RED) [6] policies in Internet routers will help break such dependence.

The potential for both spatial and temporal dependence of loss motivates investigation into their effect.

Our analysis shows that dependence introduces inference errors in a continuous manner: if the dependence

small, the errors in the estimates are also small. Furthermore, the errors are a second order effect: in the

special case of a binary tree with statistically identical dependent loss on sibling links, the Bernoulli MLE

of the marginal loss rates are actually unaffected for interior links of the tree. More generally, the MLE will

be insensitive to spatial dependence of loss within regionsof similar loss characteristics. Furthermore, the

analysis shows how prior knowledge of the likely magnitude of dependence–e.g. from independent network

measurements–could be used to correct the Bernoulli MLE.

We note that interference from TCP sources introduces temporal dependence (i.e., dependence between

different packets) that also violates the Bernoulli assumption. This dependence is apparent in our simulated

network, where probe losses often occur back-to-back due toburstiness in the competing TCP streams.

Such dependence has also been measured in the Internet, but rarely involves more than a few consecutive

packets [1]. The consistency of the estimator does not require independence between probes; it is sufficient

that the loss process be ergodic. This property holds, e.g.,when the dependence between losses has suffi-

ciently short range. However, the rate of convergence of theestimates to their true values will be slower.

We quantify this for Markovian losses by applying the Central Limit Theorem for the occupation times of

Markov processes. We use this approach to compare the efficacy of two sampling strategies in the presence

of Markovian losses. In our experiments, inferred loss rates closely tracked actual losses rates despite the

presence of temporal dependence.

The work presented in this paper assumes that the topology ofthe multicast tree is known in advance.

We are presently developing algorithms to infer the multicast tree from the probe measurements themselves.

We envisage deploying inference engines as part of a measurement infrastructure comprising hosts ex-

changing probes in a WAN. Each host will act as the source of probes down a multicast tree to the others.

A strong advantage of using multicast rather than unicast traffic is efficiency.N multicast servers produce

a network load that grows at worst linearly as a function ofN . On the other hand, the exchange of unicast

probes can lead to local loads which grow asN

2, depending on the topology. We illustrate this in Figure 1.

In this example,2N servers exchange probes. For unicast probes, the load on central link grows asN2; for

multicast probes it grows only as2N .

Related Work. There are a number of measurement infrastructure projectsin progress, all based on the ex-

change of unicast probes between hosts in the current Internet. Two of these, IPMA (Internet Performance

Measurement and Analysis) [7] and Surveyor [28], focus on measuring loss and delay statistics; in the for-

mer between public Internet exchange points, in the latter between hosts deployed at sites participating in

Internet 2. A third, Felix [5], is developing linear decomposition techniques to discover network topology,
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Figure 1: PROBE METHOD, LOAD AND TOPOLOGY: 2N servers exchange probes. For unicast probes,
load on central link grows asN2; for multicast probes it grows only as2N .

with an emphasis on network survivability. A fourth, NIMI (National Internet Measurement Infrastruc-

ture) [13], concentrates on building a general-purpose platform on which a variety of measurements can be

carried out. These infrastructure efforts emphasize the growing importance of network measurements and

help motivate our work. We believe our multicast-based techniques would be a valuable addition to these

measurement platforms.

There is a multicast-based measurement tool,mtrace [16], already in use in the Internet.mtrace reports

the route from a multicast source to a receiver, along with other information about that path such as per-hop

loss and delay statistics. Topology discovery throughmtrace is performed as part of thetracer tool [12].

However,mtrace suffers from performance and applicability problems in thecontext of large-scale mea-

surements. First,mtrace traces the path from the source to a single receiver by working back through the

multicast tree starting at that receiver. In order to cover the complete multicast tree,mtrace would need to

run once for each receiver, which does not scale well to largenumbers of receivers. In contrast, the inference

techniques described in this paper cover the complete tree in a single pass. Second,mtrace relies on mul-

ticast routers to respond to explicit measurement queries.Current routers support these queries. However,

Internet service providers may choose to disable this feature since it gives anyone access to detailed delay

and loss information about paths in their part of the network. In contrast, our inference techniques do not

rely on cooperation from any network-internal elements.

We now turn our attention to related theoretical work on inference methodologies. There has been

some ad hoc, statistically non-rigorous work on deriving link-level loss behavior from end-to-end multicast

measurements. An estimator proposed in [33] attributes theabsence of a packet at a set of receivers to loss

on the common path from the source. However, this is biased, even as the number of probesn goes to

infinity.

For a different problem, some analytic methods for inference of traffic matrices have been proposed

quite recently [30, 31]. The focus of these studies was to determine the intensities of individual source-

destination flows from measurements of aggregate flows takenat a number of points in a network. Although
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there are formal similarities in the inference problems with those of the present paper, the problem addressed

by the other papers was substantially different. The solutions are not always unique or easily identifiable,

sometimes needing supplementary methods to identify a candidate solution. This was a consequence of a

combination of the coarseness of the data (average data rates in the class of Poissonian traffic processes) and

the generality of the network topology considered.

Structure of the Paper. The remainder of the paper is structured as follows. In Section 2 we present a loss

model for multicast trees and describe the framework withinwhich analysis will occur. Section 3 contains

the derivation of the estimators themselves; the specific example of the two-leaf tree is worked out explicitly.

Section 4 analyzes the rates of convergence of estimators asthe number of probes is increased. In particular,

we obtain a simple approximation for estimator variance in the regime of small loss probabilities. In Section

5 we present an algorithm for computing packet loss estimates, and tests for consistency of the data with the

model. Section 6 presents the results of simulation experiments that validate our approach. Motivated in part

by the experimental results, we continue by examining the effects of violation of the Bernoulli assumption.

In Section 7 we analyze the effects of spatial dependence on our estimators. We show how to correct for

them on the basis of some a priori knowledge of their magnitude; we show that in any case they deform

the estimates based on the Bernoulli assumption only to second order. In Section 8 we analyze the effect

of temporal dependence on the loss process. We show that the asymptotic accuracy of the Bernoulli-based

estimator is unaffected, although it may converge more slowly. We conclude in Section 9 with a summary

of our contributions and proposals for further work. Some ofthe proofs are deferred to Section 10.

2 Model & Framework

2.1 Description of Logical Multicast Trees

Let T = (V; L) denote the logical multicast tree from a given source, consisting of the set of nodesV ,

including the source and receivers, and the set of linksL. A link is ordered pair(j; k) 2 V � V denoting a

link from nodej to nodek. The set of children of a nodej is denoted byd(k) (i.e. d(j) = fk 2 V : (j; k) 2

Lg). For each nodej 2 V apart from the root0, there is a unique nodek = f(j), the parent ofj, such that

(j; k) 2 L. We shall definefn(k) recursively byfn(k) = f(f

n�1

(k)). We say thatj is a descendant ofk

if k = f

n

(j) for some integern > 0.

The root0 2 V will represent the source of the probes. The set of leaf nodesR � V (those with no

children) will represent the set of receivers. The logical multicast tree has the property that every node has

at least two descendants, apart from the root node (which hasone) and the leaf-nodes (which have none).

On the other hand, nodes in the full (as opposed to logical) multicast tree can have only one descendant.

The logical multicast tree is obtained from the full multicast tree by deleting all nodes which have a single

child (apart from the root0) and adjusting the links accordingly. More precisely, ifi = f(j) = f

2

(k) are
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Figure 2: (a) A multicast tree with two receivers. (b) The corresponding logical multicast tree.

nodes in the full tree and#d(j) = 1, then we assign to the logical tree only the nodesi; k and the link(i; k).

Applying this rule to all suchi; j andk in the full multicast tree yields the logical multicast tree.

A two receiver example is illustrated in Figure 2. A source multicasts a sequence of probes to two

receivers,R
1

andR
2

. The probes traverse the multicast tree illustrated in Figure 2(a). Figure 2(b) illustrates

the logical multicast tree, where each path between branch points in the tree depicted in Figure 2(a) has been

replaced by a single logical link.

2.2 Modeling the Loss of Probe Packets

We model the loss of probe packets on the logical multicast tree by a set of mutually independent Bernoulli

processes, each operating on a different link. Losses are therefore independent for different links and dif-

ferent packets. In the introduction we discussed the reasons why network traffic can be expected to violate

these assumptions; in Sections 7 and 8 we discuss the extent to which they affect the estimators described

below, and how these effects can be corrected for.

We now describe the loss model in more detail. With each nodek 2 V we associate a probability

�

k

2 [0; 1] that a given probe packet is not lost on the link terminating at k. We model the passage of

probes down the tree by a stochastic processX = (X

k

)

k2V

where eachX
k

takes a value inf0; 1g;X
k

= 1

signifies that a probe packet reaches nodek, and0 that it does not. The packets are generated at the source,

soX
0

= 1. For all otherk 2 V , the value ofX
k

is determined as follows. IfX
k

= 0 thenX
j

= 0 for

the childrenj of k (and hence for all descendants ofk). If X
k

= 1, then forj a child ofk, X
j

= 1 with

independent probability�
j

, andX
j

= 0 with probability�
j

= 1 � �

j

. (We shall write1 � a asa in

general). Although there is no link terminating at0, we shall adopt the convention that�
0

= 1, in order to

avoid excluding the root link from expressions concerning the�
k

. We display in Figures 3 and 4 examples

of two- and four-leaf logical multicast trees which we shalluse for analysis and experiments.
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Figure 3: A two-leaf logical multicast tree

α1

α2 α3

0

1

2 3

4 5

α4 α5

6 7

α6 α7

Figure 4: A four-leaf logical multicast tree

2.3 Data, Likelihood, and Inference

In an experiment, a set of probes is dispatched from the source. We can think of each probe as a trial, the

outcome of which is a record of whether or not the probe was received at each receiver. Expressed in terms

of the random processX , each such outcome is the set of values ofX

k

for k in the set of leaf nodesR, i.e.

the random quantityX
(R)

= (X

k

)

k2R

, an element of the space
 = f0; 1g

R of all such outcomes. For a

given set of link probabilities� = (�

k

)

k2V

, the distribution of the outcomes(X
k

)

k2R

will be denoted by

P

�

. The probability mass function for a single outcomex 2 
 is p(x;�) = P

�

(X

(R)

= x).

Let us dispatchn probes, and, for each possible outcomex 2 
, let n(x) denote the number of probes

for which the outcomex obtained. The probability ofn independent observationsx1; : : : ; xn (with each

x

m

= (x

m

k

)

k2R

) is then

p(x

1

; : : : ; x

n

;�) =

n

Y

m=1

p(x

m

;�) =

Y

x2


p(x;�)

n(x) (1)

Our task is to estimate the value of� from a set of experimental data(n(x))
x2


. We focus on the

class ofmaximum likelihood estimators(MLEs): i.e. we estimate� by the value�� which maximizes

p(x

1

; : : : ; x

n

;�) for the datax1; : : : ; xn. Under very mild conditions, which are satisfied in the present situ-

ation, MLEs exhibit many desirable properties, includingstrong consistency, asymptotic normality, asymp-

totic unbiasedness, and asymptotic efficiency(see [11]). Strong consistency means that MLEs converge

almost surely (i.e., with probability 1) to their target parameters as the sample size increases. The last three

properties mean that, if the sample size is large, we can compute confidence intervals for the parameters

at a given confidence level, the estimators are approximately unbiased, and there is no other estimator that

would give the same level of precision with a smaller sample size.

Because of these properties, when a parametric model is available, MLEs are usually the estimators of

choice. Moreover, the confidence intervals allow us to estimate the accuracy of the estimates of�, and in
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particular their rate of convergence to the true parameter� as the number of samplesn becomes large. This

is important for understanding the number of probes which must be sent in order to obtain an estimate of�

with some desired accuracy. Furthermore, in view of the possibility of large time-scale fluctuation in WANs,

e.g. Internet routing instabilities as reported by Paxson [19], the period over which probes are sent should

not be unnecessarily long.

3 The Analysis of the Maximum Likelihood Estimator

In this section we establish the form of the MLE and determinethe rate at which it converges to the true

value as the number of probes increases; this can be used to make prediction for given models, and also

to estimate the likely accuracy of estimates derived from actual data. We work this out completely for the

two-leaf tree of Figure 3.

3.1 The Likelihood Equation and its Solution

It is convenient to work with the log-likelihood function

L(�) = log p(x

1

; : : : ; x

n

;�) =

X

x2


n(x) log p(x;�); (2)

In the notation we suppress the dependence ofL onn andx1; : : : ; xn. Sincelog is increasing, maximizing

p(x

1

; : : : ; x

n

;�) is equivalent to maximizingL(�).

We introduce the notation thatk � k

0 for k; k0 2 V wheneverk is a descendant ofk0 or k = k

0 and

k � k

0 wheneverk � k

0 butk 6= k

0. We shall say that a linkk is at level` = `(k) if there is a chain of̀

ancestorsk = f

0

(k) � f(k) � f

2

(k) : : :� f

`

(k) = 0 leading back to the root0 of T . Levels0 and1 have

only one node. We will occasionally useU to denoteV n f0g. LetT (k) = (V (k); L(k)) denote the subtree

within T rooted at nodek. R(k) = R \ V (k) will be the set of receivers which are descended fromk. Let


(k) be the set of outcomesx in which at least one receiver inR(k) receives a packet, i.e.,


(k) = fx 2 
 :

_

j2R(k)

x

j

= 1g: (3)

Set

k

= 


k

(�) = P

�

[
(k)]. An estimate of

k

is

b


k

=

X

x2
(k)

bp(x); where bp(x) :=

n(x)

n

; (4)

is the observed proportion of trials with outcomex. We will show that� can be calculated from
 =

(


k

)

k2V

, and that the MLE

�� = arg max
�2[0;1]

#R

L(�) (5)
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can be calculated in the same manner from the estimatesb
. The relation between� and
 is as follows.

Define�
k

= P[
(k) j X

f(k)

= 1]. The�
k

obey the recursion

�

k

= �

k

+ �

k

Y

j2d(k)

�

j

; k 2 V nR; (6)

�

k

= �

k

; k 2 R: (7)

Then




k

= �

k

`(k)

Y

i=1

�

f

i

(k)

: (8)

Theorem 1 LetA = f(�

k

)

k2U

: �

k

> 0g, andG = f(


k

)

k2U

: 


k

> 0 8k; 


k

<

P

j2d(k)




j

8k 2 U nRg.

There is a bijection� fromA toG. Moreover,� and��1 are continuously differentiable.

The proof of Theorem 1 relies of the following Lemma whose proof is given in Section 10.

Lemma 1 LetC be the set ofc = (c

i

)

i=1;2;:::;i

max

with c
i

2 (0; 1) and
P

i

c

i

> 1. The equation(1� x) =

Q

i

(1� c

i

x) has a unique solutionx(c) 2 (0; 1). Moreover,x(c) is continuously differentiable onC.

Proof of Theorem 1: The

k

have been expressed as a function of the�

k

, and clearly�
k

> 0 8k 2 U

implies the conditions forG. Thus it remains to show that the mapping fromA to G is injective. Let

A

k

=

Q

`(k)

i=0

�

f

i

(k)

. From (8) we have




k

= A

k

; k 2 R; (9)

while combining (6) and (8) we find

H

k

(A

k

; 
) := (1� 


k

=A

k

)�

Y

j2d(k)

(1� 


j

=A

k

) = 0; k 2 U nR: (10)

SinceH
k

(A

k

; 
) = h(


k

=A

k

; f


j

=


k

: j 2 d(k)g) from Lemma 1, there is a uniqueA
k

> 


k

which

solves (10). We recover the�
k

uniquely from theA
k

by taking the appropriate quotients (and setting

A

0

= �

0

= 1):

�

k

= A

k

=A

f(k)

; k 2 U: (11)

Clearly� is continuously differentiable; that��1 is also follows from the corresponding statement forx(c)

in Lemma 1.

Candidates for the MLE are solutions of thelikelihood equationfor the stationary points� of L:

@L

@�

k

(�) = 0; k 2 U: (12)

Theorem 2 Whenb
 2 G, the likelihood equation has the unique solutionb� := �

�1

(b
).
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Note that in the notation we have suppressed the dependence of �� andb� onn andx1; : : : ; xn. We defer

the proof of Theorem 2 to Section 10. That done, we must complete the argument by showing that the

stationary point does have maximum likelihood. For this we must impose additional conditions.b� is not

precluded from being either a minimum or a saddle for the likelihood function, the maximum falling on the

boundary of[0; 1]#U . For some simple topologies we are able to establish directly thatL(�) is (jointly)

concave in the parameters at� = b�, which is hence the MLE��. For more general topologies we use an

argument which establishes thatb� = �� for all sufficiently largen, and whose proof also establishes some

useful asymptotic properties ofb�.

If �
k

= 0 for some linkk, thenX
k

= 0 for all j 2 R(k), regardless of the values of�
j

for j descended

from k, and hence these cannot be determined. For this reason we nowrestrict attention to the case that all

�

k

> 0, by passing to a subtree if necessary; see Section 5.

Theorem 3 Assume�
k

2 (0; 1]; k 2 U .

(i) The model isidentifiable, i.e.,�; �0 2 (0; 1]

#R andP
�

= P

�

0 implies� = �

0.

(ii) Asn!1, ��! � andb�! �, P
�

almost surely.

(iii) Assume also�
k

< 1; k 2 U . With probability 1, for sufficiently largen, �� = b�.

Maximum Likelihood Estimator for the Two-leaf Tree Denote the 4 points of
 = f0; 1g

2 byf00; 01; 10; 11g.

Then

b


1

= bp(11) + bp(10) + bp(01); b


2

= bp(11) + bp(10); b


3

= bp(11) + bp(01): (13)

The equations (10) forbA
k

in terms of theb

k

can be solved explicitly; combining with (11) we obtain the

estimates

b�

1

=

b


2

b


3

b


2

+ b


3

� b


1

=

(bp(01)+ bp(11))(bp(10) + bp(11))

bp(11)

(14)

b�

2

=

b


2

+ b


3

� b


1

b


3

=

bp(11)

bp(01) + bp(11)

(15)

b�

3

=

b


2

+ b


3

� b


1

b


2

=

bp(11)

bp(10) + bp(11)

(16)

Note that although it is possible thatb�
1

> 1 for some finiten, this will not happen whenn is sufficiently

large, due to Theorem 3(ii).

There is a simple interpretation of the estimates in (15) and(16). With thebp’s replaced by their corre-

sponding true probabilitiesp, (15) would give the probability of receiving a probe at node1, given that it

known to be received at node 2. For independent losses, this is just the marginal probability that the probe is

received at node 1. We have found, however, the corresponding formulas when there are more than 2 sibling

nodes do not allow such a direct interpretation.
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4 Rates of Convergence of Loss Estimator

4.1 Large Sample Behavior of the Loss Estimator

In this section we examine in more detail the rate of convergence ofb� and the MLE�� to the true value�.

We can apply some general results on the asymptotic properties of MLEs in order to show that
p

n(��� �)

is asymptotically normally distributed asn ! 1; some general properties of MLEs ensure that the same

hold for
p

n(b���), and with the same asymptotic variance. We can use these results in two ways. First, for

models of loss processes with typical parameters, we can estimate the number of probes required to obtain

an estimate with a given accuracy. Secondly, we can estimatethe likely accuracy ofb� from actual probe

data and associate confidence intervals to the estimates.

The fundamental object controlling convergence rates of the MLE �� is theFisher Information Matrixat

�. This is defined for each� 2 (0; 1)

#U as the#U -dimensional real matrixI
jk

(�) := Cov

�

@L

@�

j

(�);

@L

@�

k

(�)

�

.

It is straightforward to verify thatL satisfies conditions (see Section 2.3.1 of [27]) under whichI is equal

to the following more convenient expression which we will use in the sequel:

I

jk

(�) = �E

@

2

L

@�

j

@�

k

(�) (17)

On the other hand, a direct calculation of the asymptotic variance ofb� follows from the Central Limit

Theorem. The random variablesb
 are asymptotically Gaussian asn!1 with

p

n (b
 � 
)

D

�! N (0; �); (18)

where�
jk

= lim

n!1

nCov(b


j

; b


k

), for j; k 2 U . Here D

�! denotes convergence in distribution. Since

by Theorem 1,��1 is continuously differentiable onG, then by the Delta method (see Chapter 7 of [27])

b� = �

�1

(b
) is also asymptotically Gaussian, so establishing the first part of the following theorem. We

note that the matrices� andI�1(�) agree on the interior of the parameter space, but, as we shallsee below,

I(�) may be singular on the boundary. LetD
ij

(�) =

@�

�1

i

@


j

(�(�)) andDT denotes the transpose.

Theorem 4 (i) When�
k

2 (0; 1]; k 2 U , then asn!1,

p

n (b�� �)

D

�! N (0; �); where � = D(�) � � �D

T

(�): (19)

(ii) When�
k

2 (0; 1); k 2 U thenI(�) is non-singular andI�1(�) = �.

(iii) When�
k

2 (0; 1); k 2 U ,
p

n (�� � �) converges in distribution asn ! 1 to a#U -dimensional

Gaussian random variable with mean 0 and covariance matrixI

�1

(�).

Theorem 4 enables us to determine, for example, that asymptotically for largen, with probability1� �,

theb� will lie between the points

�

k

� z

�=2

s

I

�1

kk

(�)

n

; (20)
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wherez
�=2

denotes the number that cuts off an area�=2 in the right tail of the standard normal distribution.

This is used for a confidence interval of level1 � �. As we are interested in a 95% confidence interval for

single link measurements, we takez
�=2

� 2.

Confidence Intervals for Parameters. With slight modification, the same methodology can be used to

obtain confidence intervals for the parametersb� derived from measured data fromn probes. Following [4]

we use theobserved Fisher Information:

b

I

jk

(b�) = �

@

2

L

@�

j

@�

k

(b�); where b� = �

�1

(b
): (21)

Now, the proof of Theorem 2 (see particularly (57)) shows that the@L=@�
k

depend on then(x) only through

the combinationsnb

k

. Hence the same is true for the@2L=@�
j

@�

k

. SinceP
b�

[
(k)] = �(�

�1

(b
))

k

= b


k

,

we havebI(b�) = I(b�).

We then use confidence intervals forb�
k

of the form

b�

k

� z

�=2

s

I

�1

kk

(b�)

n

: (22)

This allows us to find simultaneous confidence regions from the asymptotic distribution for� for a given

tree. An issue for further study is to understand how the confidence intervals change as the tree grows.

Example: Confidence Intervals for the Two-leaf Tree An elementary calculation shows that the inverse

of the Fisher information matrix governing the confidence intervals for models in (20) is

I

�1

(�) =

0

B

B

@

�

1

(�

3

��

2

(1+�

3

(�

1

�2)))

�

2

�

3

��

2

�

3

�

3

��

2

�

3

�

2

��

2

�

3

�

3

�

2

�

2

�

1

�

3

��

2

�

3

�

1

��

2

�

3

�

2

��

2

�

3

�

1

�

3

�

3

�

1

�

2

1

C

C

A

: (23)

Here, the order of the coordinates is�
1

; �

2

; �

3

. The inverse of the observed Fisher information governing

the confidence intervals for data in (22) is obtained by inserting (14)–(16) into (23). We note that in this

caseI is singular at the boundaries�
2

= 1 and�
3

= 1.

4.2 Dependence of Loss Estimator Variance on Topology

The variance ofb� determines the number of probes which must be used in order toobtain an estimate of

a given desired accuracy. Thus it is important to understandhow the variance depends on the underlying

topology. Growth of the variance with the size of the tree might preclude application of the estimator to

large internetworks. Long timescale instability has been observed in the Internet [19]; if the timescale

required for accurate measurements approaches that at which variability occurs, the estimator’s requirement

of stationarity would be violated. In this section we show that the asymptotic variance� of b� is independent

of topology for loss ratios approaching zero.
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The following theorem characterizes the behavior of� for small loss ratio, independently of the topology

of the logical tree. Setk�k = max

k2U

�

k

. Set�
jk

= 1 if j = k and0 otherwise.

Theorem 5 �

jk

= �

k

�

jk

+O(k�k

2

) ask�k ! 0.

Theorem 5 says that the variance ofb� is, to first order in�, independent of topology. However, nothing

is said about higher order dependence, and in particular whether the difference between�
jk

and�
k

�

jk

converges to zero uniformly for all topologies as�! 0. For a section of trees we used computer algebra to

calculate the maximum asymptotic variance over linksmax

k

�

kk

for a selection of trees, as a function of the

uniform Bernoulli probability�
k

= �. We use the notationT (r
1

; r

2

; : : : ; r

n

) denote the tree of depthn+ 1

(depth = maximum level̀ of any leaf) with successive branching ratios1; r

1

; r

2

; : : : ; r

n

, i.e. the root node

0 has the single descendent node1 which hasr
1

descendents, each of which hasr
2

descendents, and so on.

We show the dependence on branching ratio in Figure 5 for trees of depth 2. In these examples, increasing

the branching ratio decreases the variance. In Figure 6, we show the dependence on tree depth for binary

trees of depth 2, 3 and 4. In this example, estimator varianceincreases with tree depth, roughly linearly.

In all examples, estimator variance is approximately linear for � less than about 0.1, and independent of

topology, in keeping with Theorem 5. For larger� it appears from these examples that the change in

estimator variance of moving from simple topologies to morecomplex ones is governed by two opposing

effects; variance reduction with increasing branching ratio, and variance growth with increasing tree depth.

The reason for this appears to be that increasing the branching ratio increases the size ofR(k) (the set of

leaf-nodes descended fromk) so providing more data points for estimation, while increasing the tree depth

increases cumulative error per link in estimation.
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5 Data Consistency and Parameter Computation

In this section we address computational issues associatedwith the estimatorb�. We specify consistency

checks which must be applied to the data beforeb� is computed. We describe an algorithm for computa-

tion of b� and discuss its suitability for implementation in a network, in particular the extent to which it is

distributable.

5.1 Data Consistency

In this section we describe tests for consistency of the empirical probabilitiesb
 with the model. The valida-

tions of the methodology carried out in this paper are all within controlled simulations. So we do not address

here the additional consistency checks which would be required for applications to real network data, such

as tests for stationarity.

The rest of this section focuses on range checking and tree surgery. An arbitrary data set(n(x))
x2


may

not give rise tob
 2 �((0; 1)

#U

). If this is because some of theb

k

take values 0 or 1, then it can be dealt

with by reducing the tree. In particular, when one of theb

k

is 0, not all of the�
k

can be inferred from the

data. Those which cannot must be removed from consideration. In other cases, the data is not consistent

with the assumptions that loss occurs independently on different links. We discuss these now.

(i) If b

k

= 0 for any k 2 V , we construct a new tree by deleting nodek and all its descendants, and

perform the analysis on this pruned tree instead. We are unable to distinguish between the various

ways in which

k

may be zero, e.g.�
k

= 0, or�
k

> 0 but�
j

= 0 for childrenj 2 d(k).

(ii) If b�
k

= 1 for anyk 2 U then we can assign probability1 to�
k

. Then, for the purposes of calculation

only, we consider a reduced tree obtained by excising nodek in the same manner as nodes with a

single descendant are excised from the physical multicast tree to generate the logical multicast tree;

see Section 2.1.

(iii) Any b�
k

> 1 is a nonphysical value, since the link probabilitiesare required to lie in[0; 1] (subject to (i)

and (ii) above). Theorem 3 tells us this will not occur for sufficiently largen. Thus in implementations

of the inference algorithm, this event may be used to triggerthe dispatch of further probes.

(iv) The conditionb

k

=

P

j2d(k)

b


j

for any k 2 U n R prevents the calculation ofbA
k

and hence also

link probabilities for links that includek as a vertex, namelyb�
k

=

b

A

k

=

b

A

f(k)

and b�
j

=

b

A

j

=

b

A

k

for j 2 d(k). Instead, we estimate only the probabilitiesf�
k

�

j

: j 2 d(k)g on the composite

links from f(k) to the elements ofd(k), estimating[�
k

�

j

= A

j

=A

f(k)

; j 2 d(k). The possibility

b


k

>

P

j2d(k)

b


k

. is precluded by the relations (25) and (26) below. Equalityoccurs only if the

observed losses satisfy the strong dependence property that each packet reaching a receiver inR(k)

reaches no other receiver inR(k).
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5.2 Computation of the Estimator on a General Tree

In this section we describe the algorithm for computingb� on a general tree. An important feature of the

calculation is that it can be performed recursively on trees. First we show how to calculate theb

k

. Denote by

(

b

X

k

(i))

k2R;i=1;2;:::;n

the measured values at the leaf nodes of processX for n. Define the binary quantities

(

b

Y

k

(i))

k2V;i=1;2;:::;n

recursively by

b

Y

k

(i) =

b

X

k

(i); k 2 R (24)

b

Y

k

(i) =

_

j2d(k)

b

Y

j

(i); k 2 V nR (25)

so that

b


k

= n

�1

n

X

i=1

b

Y

k

(i): (26)

For simplicity we assume now thatb
 2 �((0; 1)

#U

), so that, if necessary, steps (i) and (ii) of Section 5.1

have been performed on the data and/or the logical multicasttree in order to bring it to this form. The

calculation ofb� can be done by another recursion. We formulate both recursions in pseudocode in Figure 7.

The procedurefind gamma calculates thebY
k

andb

k

, assumingbY
k

initializes to bX
k

for k 2 R and 0

otherwise. The procedureinfer calculates theb�
k

. The procedures could be combined. The full set of link

probabilities is estimated by executingmain(1) where node1 is the single descendant of the root node0.

Here, an empty product (which occurs when the first argument of infer is a leaf node) is understood to

be zero. We assume the existence of a routinesolvefor that returns the value of the first symbolic argument

which solves the equation specified in its second argument. We know from Theorem 1 that under the

conditions forb
 a unique such value exists.

5.3 Implementation of Inference in a Network

The recursive nature of the algorithm has important consequences for its implementation in a network set-

ting. Observe that the calculation ofb

k

andA
k

depends onX only through the(bY
j

)

j2d(k)

. Put another

way, if j is a child ofk, the contribution to the calculation ofb�
k

of all data measured at the set of receivers

R(j) descended fromj, is summarized throughbY
j

. In a networked implementation this would enable the

calculation to be localized in subtrees at a representativenode, the computational effort at each node being

at worst proportional to the depth of the tree (for the node that is the representative for all distinct subtrees

to which it belongs).

Moreover, estimates from measurements at receiversR(k) descended from a nodek are consistent with

those from the full set of receivers in the following sense. Executingmain(k) yields theA
k

calculated by

main(1) as the value forb�
k

. Thus is the effective probability that a probe traverse a (fictitious) link from the

root 0 directly tok. But when the full inferencemain(1) is performed, it is not hard to see that theb� obey

A

k

=

Q

`(k)

i=0

b�

f

i

(k)

, i.e the probability of traversing the path from0 to k without loss.
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procedure main (k ) f
find gamma (k ) ;
infer ( k, 1 ) ;

g

procedure find gamma (k ) f
foreach ( j 2 d(k) ) f

b

Y

j

= find gamma (j ) ;
foreach ( i 2 f1; : : : ; ng ) f

b

Y

k

[i] = bY
k

[i] _

b

Y

j

[i] ;
g

g

b


k

= n

�1

P

n

i=1

b

Y

k

[i] ;
return bY

k

;
g

procedure infer ( k, A ) ;
A

k

= solvefor(A
k

, (1� b

k

=A

k

) ==
Q

j2d(k)

(1� b


j

=A

k

) );
b�

k

= A

k

=A ;
foreach ( j 2 d(k) ) f

infer ( j , A
k

) ;
g

g

Figure 7: PSEUDOCODE FORINFERENCE OFL INK PROBABILITIES

6 Simulation Results

We evaluated our inference techniques through simulation and verified that they performed as expected.

This work had two parts:model simulationsandTCP simulations. In the model simulations, losses were

determined by time-invariant Bernoulli processes. These losses follow the model on which we based our

earlier analysis. In the TCP simulations, losses were due toqueue overflows as multicast probes competed

with other traffic generated by infinite TCP sources. We used TCP because it is the dominant transport

protocol in the Internet [29]. The following two subsections describe our results from these two simulation

efforts.

6.1 Model Simulations

Topology. For the model simulations, we used ad hoc software written in C++. We simulated the two

tree topologies shown in Figures 3 and 4. Node 0 sent a sequence of multicast probes to the leaves. Each

link exhibited packet losses with temporal and spatial independence. We could configure each link with a

different loss probability that held constant for the duration of a simulation run. We fed the losses observed

by the leaves to a separate Perl script that implements the inference calculation described earlier.
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Figure 8: CONVERGENCE OFINFERRED LOSS PROBABILITIES TO ACTUAL LOSS PROBABILITIES IN

MODEL SIMULATIONS . Left: Two-leaf tree of Figure 3 with parameters�
1

= 0:02; �
2

= �

3

= 0:05.
Right: Selected links from four-leaf tree of Figure 4, with parameters�

1

= 0:01; �
2

= 0:1; �
3

= �

4

=

�

5

= �

6

= 0:01; �
7

= 0:5. The graphs show that inferred probabilities converge to within 0.01 of the
actual probabilities after 2,000 or fewer observations.

Convergence. Figure 8 compares inferred packet loss probabilities to actual loss probabilities. The left

graph shows results for all three links in our two-leaf topology, while the right graph shows results for

selected links in the four-leaf topology. In all cases, the inferred probabilities converge to within 0.01 of the

actual probabilities after 2,000 observations.

Figure 9 compares the empirical and theoretical 95% confidence intervals of the inferred loss proba-

bilities for the two-leaf topology. The empirical intervals were calculated over 100 simulation runs using

100 different seeds for the random number generator that underlies the Bernoulli processes. The theoretical

intervals are as predicted by (20). As shown, simulation matches theory extremely well – we show the two

graphs separately because the two sets of curves are indistinguishable when plotted together. For 2,000

observations, the confidence intervals lie with within 20% of the true probabilities.

It may seem that thousands of probes constitute too many network resources to expend and too long to

wait for a measurement. However, it is important to note thata stream of 200-byte packets every 20 ms

represents only 10 Kbps, equivalent to a single compressed audio transfer. Furthermore, a measurement

using 5,000 such packets lasts less than two minutes. There already exist a number of MBone “radio”

stations that send long-lived streams of sequenced multicast packets. In some cases we can use these existing

multicast streams as measurement probes without additional cost. Overall, we feel that multicast-based

inference is a practical and robust way to measure network dynamics.
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Figure 9: AGREEMENT BETWEEN SIMULATED AND THEORETICAL CONFIDENCE INTERVALS. Left:
Results from 100 model simulations. Right: Predictions from (20). The graphs show two-sided confidence
estimates at 2 standard deviations for link 2 of the four-leaf tree of Figure 4. Parameters were�

1

= 0:01;
�

2

= 0:1; �
3

= �

4

= �

5

= �

6

= 0:01; �
7

= 0:5. Simulation matches theory extremely well – the two sets
of curves are indistinguishable when plotted in the same graph.

6.2 TCP Simulations

Topology. For the TCP simulations, we used thens network simulator [18]. We configuredns to simulate

tree topologies shown in Figures 3, 4 and 11. All links had 1.5Mbps of bandwidth, 10 ms of propagation

delay, and were served by a FIFO queue with a 4-packet limit. Thus, a packet arriving at a link was dropped

when it found four packets already queued at the link.

In each topology, node 0 sent multicast probe packets generated by a source with 200-byte packets and

interpacket times chosen randomly between 2.5 and 7.5 msec.The leaf nodes received the multicast packets

and monitored losses by looking for gaps in the sequence numbers of arriving probes. We fed the losses

observed by the multicast receivers to the same inference implementation used for the model simulations

described above. We also hadns report losses on individual links in order to compare inferred losses with

actual losses.

In the two- and four-receiver topologies, each node maintained TCP connections to its child nodes.

These connections used the Tahoe variant of TCP, sent 1,000-byte packets, and were driven by an infinite

data source. Links to left children carried one such TCP stream, while links to right children carried two

TCP streams. The link between nodes 0 and 1 also carried one TCP stream.

In the eight-receiver topology, the traffic more more diverse, with 52 TCP connections between different

pairs of nodes, giving rise to approximately 8 connections per link on average.

Convergence. Figure 10 compares inferred loss rates to actual loss rateson selected links of our two- and
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Figure 10: TRACKING OF ACTUAL LOSS RATES BY INFERRED LOSS RATES IN TCP SIMULATIONS .
Left: Two-leaf tree of Figure 3. Right: Selected links from four-leaf tree of Figure 4 (some pairs of
probabilities are offset for clarity). The graphs show thatthe inferred loss rates closely track the actual loss
rates over 10,000 observations.
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WITH DIVERSE BACKGROUND TRAFFIC. LEFT: Eight-leaf binary tree. RIGHT: Close tracking of actual
loss rates by estimated loss rates as number of observationsis increased up to 1,000.

four-leaf topologies. As shown, the inferred rates closelytrack the actual rates over 10,000 observations.

Figure 11 compares inferred and actual loss rates in the eight-receiver topology with diverse background

traffic; in this case the tracking is even closer.

We note that the inferred values are accurate even though queue overflows due to TCP interference

do not obey our temporal independence assumption. TCP is a bursty packet source, particularly in the

region of exponential window growth during a slow start [9].In our simulations, multicast probes are often

lost in groups as they compete for queue space with TCP bursts. This phenomenon is readily apparent

when watching animations of our simulations with thenam tool [17]. Inspection of the autocorrelation

function of the time series of packet losses for a series of experiments predominantly showed correlation

indistinguishable from zero beyond a lag of 1 (i.e. greater than back-to-back losses). As we explain in more
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Figure 12: ACCURACY OF INFERENCE IN TCP SIMULATIONS . Left: Two-leaf tree of Figure 3. Right:
Four-leaf tree of Figure 4. The graphs show normalized root mean square differences between actual and
inferred loss rates, computed across 100 simulations. After an initial transient, inferred loss rates settle down
to within 8 to 15% (in the two-leaf tree) and 4 to 18% (in the four-leaf tree) of actual loss rates, depending
on the link. The RMS error was reduced to approximately 1% by modifying the MLEs to correct for spatial
loss dependence.

detail in Section 8, the estimatorb� is still asymptotically accurate for large numbers of probes when losses

have temporal dependence of sufficiently short range. However, the rate of convergence of the estimates to

their true values will be slower.

Figure 12 shows the Root Mean Square (RMS) differences between the inferred and actual loss rates

in the two- and four-leaf topologies. These differences were calculated over 100 simulation runs using 100

different seeds for the random number generator that governs the time between probe packets. As shown,

the differences can drop significantly during the first 2,000observations. However, at some point they level

off and do not drop much further, if at all. This persistence reveals a systematic, although small, error in the

inferred values because of spatial loss dependence. In our simulations, the same multicast probe is lost on

sibling links more often than the spatial independence assumption dictates. These dependent losses lead the

inference calculation to underestimate losses on the sibling links and to overestimate losses on the parent

link.

We can quantify the spatial loss dependence present in the simulations. We can also calculate the ef-

fect of such dependence on the inferred loss probabilities by extending our previous analysis. Thus a prior

estimate of the degree of dependence could be used to obtain corrections to the Bernoulli inference. We

discuss this in more detail for spatial dependence in Section 7 and give an example of how to apply the

correction. Applied to the inferences on the two-leaf tree summarized in Figure 10, they reduce an RMS

error of between 8 and 15% to one of around 1%. The key observation behind these analyzes is that the

error in the inferred values varies smoothly with the degreeof spatial dependence. The greater the depen-

dence in the network, the larger the error. We can arrange forcorrelated losses in a simulated network,
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for example by creating synchronized interference streamson sibling links. However, the results for the

eight-receiver topology with diverse background traffic support our belief that large and long-lasting spatial

loss dependence is unlikely in real networks like the Internet because of their traffic and link diversity.

7 The Analysis and Correction of Spatial Dependence

7.1 Analysis of Spatial Dependence

When spatial dependence present in packet losses, the Bernoulli model assumption is violated. But even

with such dependence, we can still ask what are themarginal loss probabilities for each link separately.

In this section we quantify the effects of this dependence and show how they may be corrected for on the

basis of a priori knowledge of them. We propose that this knowledge should be obtained by independent

measurements on instrumented networks. Moreover, we establish that dependence deforms the Bernoulli

estimatescontinuouslyin the sense that small divergences from independence of thelosses lead to small

divergence of the estimates of the marginal loss probabilities from their true values. For binary trees we find

that the effect of such dependence on the estimates of marginal loss probabilities for links in the interior

of the network is second order, and become negligible in regions of the network across which loss and

dependence change little.

One motivation for considering dependent losses comes fromthe well-known example of synchroniza-

tion between TCP flows which can occur as a result of the slow-start after packet loss; see [9]. Flows

which have experienced common loss on a linkk will then have some degree of dependence. Viewed as

background traffic against which the probe packets compete,they can be expected to give rise to dependent

losses of probe packets on links on the subtree descended from k. However, the dependence of probe loss

can be expected to decrease on progressing down the tree fromk. This happens if we assume that flows

which became dependent though losses a given nodek typically have a spread of destination address; then

their paths through the network will subsequently diverge.Then the fraction of the total traffic contributed

on links descended fromk will decrease on progressing down the tree fromk; hence the dependent influence

of such flows on probe loss will decrease likewise.

The foregoing discussion motivates us to capture such dependence to first order by considering, within

the class of dependent loss processes, those for which dependence only occurs between losses on sibling

links, i.e., between thoseX
j

andX
j

0 for which f(j) = f(j

0

). Let� = ffj

1

; : : : j

n

g � d(k); k 2 V nRg

denote the set of subsets of sibling links. We characterize the joint distribution of the(X
k

)

k2V

through the

family of joint conditional probabilities(�
k

1

;:::;k

n

)

fj

1

;:::j

n

g2�

where fork = f(j

1

) = : : := f(j

n

),

�

j

1

;:::;j

n

:= P[X

j

1

= 1; : : : ; X

j

n

= 1jX

k

= 1] (27)

(For Bernoulli loss,�
j

1

;:::;j

n

=

Q

n

m=1

�

j

m

). We now derive analogous relations to (6) in this case. It is
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convenient to work initially with the quantities

�

k

:= P[
(k) j X

k

= 1] = P[
(k) j X

f(k)

= 1]=P[X

k

= 1 j X

f(k)

= 1] = �

k

=�

k

(28)

For n � #d(k) let d
n

(k) denote the set of subsets ofd(k) of cardinalityn. By the Inclusion-Exclusion

Principle (see e.g. Chapter 5.2 of [25])

P[
(k)] = P

�

[

j2d(k)


(j)

�

=

#d(k)

X

n=1

(�1)

n+1

X

fj

1

;:::;j

n

g�d

n

(k)

P [
(j

1

) \ : : :\ 
(j

n

)] ; (29)

from which we find using (27) and (28) that

�

k

=

#d(k)

X

n=1

(�1)

n+1

X

fj

1

;:::;j

n

g�d

n

(k)

�

j

1

;:::;j

n

�

j

1

: : : �

j

n

(30)

Reexpressed in term of the

k

we obtain the following analog of (10) fork 2 U nR:

H

k

(A

k

; 
;  ) := 


k

=A

k

�

#d(k)

X

n=1

(�1)

n+1

X

fj

1

;:::;j

n

g�d

n

(k)

 

j

1

;:::;j

n




j

1

: : : 


j

n

A

n

k

= 0 (31)

where 
j

1

;:::;j

n

= �

j

1

;:::;j

n

=(�

j

1

: : :�

j

n

) and we write = ( 

j

1

;:::;j

n

)

fj

1

;:::;j

n

g2�

. For a given loss model

one can in principle compute and computeA
k

from 


k

. Rather than do this, however, we establish some

structural results.

We can compare the actual valuesA
k

( ) which solve (31) forA
k

, with those obtained from (10) with

the Bernoulli assumption, which we can write asA
k

(1). The following theorem shows that the deformation

from A

k

( ) to A
k

(1) is continuous in the neighborhood of the Bernoulli values = 1 (i.e.  
j

1

;:::;j

n

= 1

for all fj
1

; : : : ; j

n

g 2 �).

Theorem 6 Let�
k

> 0. There exists a neighborhoodof = 1 inR#� on which 7! A

k

( ) is continuous.

Proof of Theorem 6: The result then follows from the Implicit Function Theorem (see [26]) provided that

@

A

k

H

k

(A

k

(1); 
; 1) 6= 0. ButH
k

(A

k

; 
; 1) = H

k

(A

k

; 
) = h(


k

=A

k

; f


j

=


k

: j 2 d(k)g) appearing

in (10) and Lemma 1, and so the result follows from@
x

h(x(c); c) < 0 as established during the proof of

Lemma 1.

7.2 Spatially Dependent Losses in Binary Trees

WhenT is a binary tree we can obtain explicit results. Fork 2 U nRwrite (k)

=  

jj

0 whered(k) = fj; j

0

g

Then from (31) we have




k

=

�

A

k

; k 2 R




j

+ 


j

0

+  

(k)




j




j

0

=A

k

; k 2 U nR

(32)
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Let �( ) be the true value of�, i.e. that obtained by combining (32) with (11).�(1) is then the value

previously obtained using the Bernoulli assumption. Letk = 1 denote the single descendent of the root

node0.

Theorem 7 LetT be a binary tree.

(i) There is a bijection�
 

fromA toG such that��1
 

(
) = �( ), with�
1

= � from Theorem 1.

(ii)

�

k

( ) =

8

<

:

�

1

(1)= 

(1)

; k = 1

�

k

(1) 

(f(k))

; k 2 R

�

k

(1) 

(f(k))

= 

(k)

; otherwise
(33)

Proof of Theorem 7: From (32),A
k

( ) = (


j

+ 


j

0

� 


k

)=(


j




j

0

 

(k)

) = A

k

(1)= 

(k). The form of (ii)

then follows from (11); this is used as the definition of�

�1

 

for (i).

Theorem 7(ii) has the interesting interpretation that in the interior of the network (i.e. except for node1

and the leaf-nodes) the error in using�
k

( ) in place of�
k

(1) is a second order effect. For the error depends

only on the on the relative magnitude of correlations at adjacent nodes through the quotient (f(k))

= 

(k). If

the link probabilities and dependencies are (approximately) equal at each node of the tree, then this quotient

will be (approximately) one, and so the Bernoulli estimateb�
k

(1) := �

�1

1

(b
) will be (approximately) equal

to �

�1

 

(b
), for interior k. Thus we see that the presence of dependent losses in binary trees perturbs the

Bernoulli-based estimator little for links within the interior of regions across which the degree of dependence

is similar. On the other hand, at the boundaries between suchregions, a priori knowledge of the degree of

dependence can help make the estimates more accurate. This motivates future work both in simulation

studies and instrumentation of heterogeneous networks in order to establish the degree of dependence is

influenced by dynamic factors such as utilization, and (comparatively) static factors such link technology

and relative link speeds.

It is interesting to see that the TCP Simulations of the 4-leaf tree display some of the features one might

expect from the above discussion. Observe in the RHS of Figure 10 that for the leaf-links (6 and 7) the

inferred loss rate underestimates the actual loss rate, while for link 1 it overestimates it. For the interior link

3, the inferred and actual values are almost identical. Thisis consistent with the above discussion if 

k

> 1

and 
3

�  

f(3)

=  

1

. Note that ford(k) = fj; j

0

g,

 

k

> 1 () �

jj

0

> �

j

�

j

0

() E[X

j

X

j

0

j X

k

= 1] > E[X

j

j X

k

= 1]E[X

j

0

j X

k

= 1]: (34)

In other words, 
k

> 1 iff X
j

andX
j

0 are (conditional onX
k

= 1) positively correlated. We expect this to

be the case when synchronized losses occur as described at the start of this section.
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RMS difference from actual loss
adjusted original

link 1 0.012 0.142
link 2 0.009 0.114
link 3 0.007 0.089

Table 1: CORRECTING FORSPATIAL DEPENDENCE: RMS proportional difference of inferred from actual
losses innssimulation of two-leaf tree in Figure 3, after 10,000 probes. Adjustment of inference to account
for dependence (left column) shows order of magnitude improvement over original inference (right column)

7.3 Correction for Spatial Dependence in Binary Trees

If some knowledge of the degree of dependence in the traffic isavailable, then this can be used to adjust

the inferred loss probabilities accordingly. This motivates experimental studies of real networks with instru-

mented links in order to ascertain the magnitude of the dependence. We intend to undertake these experi-

ments in the future. Here we show how knowledge of dependencecan be used to correct the Bernoulli-based

estimates of link probabilities for non-interior nodes. Weconsider the set of leaf-nodesfj; j 0g 2 d(k). Let

Y

j

have the the distribution ofX
j

conditioned onX
k

= 1. Suppose we know a priori an estimateb� for the

correlation ofY
j

andY
j

0 . Now the theoretical value of the correlation is

� =

Cov(Y

j

; Y

j

0
)

p

Var(Y

j

)Var(Y

j

)

=

�

jj

0
� �

j

�

j

0

p

�

j

�

j

�

j

0

�

j

0

=  

(k)

�

1�

r

�

j

�

j

0

�

j

�

j

0

�

(35)

Thus we expect to improve our estimatesb�
j

(1) by usingb�
j

(1)

b

 

(k) instead where (k) is obtained from (35)

by usingb� andb�(1) in place of� and�.

To test this approach, we measured the loss dependence in anns simulation of 10,000 probes in the

two-leaf tree, then conducted 100 furtherns simulations of 10,000 probes, and adjusted the inferred link

probabilities in this manner. Comparing the actual, adjusted, and originally inferred loss ratios we see this

provides improvement: the root mean square error goes down from between 8 and 15% (depending on the

link) to about 1% in this case; see Table 1.

8 Temporal Dependence and Convergence Rates

8.1 Ergodicity and Asymptotic Accuracy

In this section we investigate the impact of temporal dependence on the estimatorb�. Denote byX(n) =

(X

k

(n))

k2V

the (spatial) process of thenth probe. The first observation is that, if we replace the assumption

of independence between probes to merely assuming that the (temporal) process(X(n))

n2N

is stationary

and ergodic, thenb� still converges to� almost surely as the number of observations grows to1. This is

because, by definition, the observed probabilitiesb
 of the ergodic process converge almost surely to the long
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term averages. By stationarity, these are just the
 = �(�) as before, where the� are the (time)-marginal

distributions of the link probabilities. A simple argumentinvolving the Inverse Function Theorem (e.g.,

see [26]) shows that��1 is continuous on�((0; 1)#U), and henceb� ! � almost surely. Note we do not

rely onb� being the maximum likelihood estimator, with respect to some parameter space, for the marginal

probabilities� of the general process. Rather, we have shown that the Bernoulli estimator is asymptotically

accurate for stationary ergodic processes.

In the remainder of this section we examine the rate of convergence whenX possesses temporal depen-

dence. In an application of the method to measurement on realnetworks however, inherent variability (due

do large scale events such as routing changes) may impose limits on the durations over which we can expect

the loss process to be stationary. For this reason it is important to understand in more detail the impact of

time-dependent packet loss on convergence rates. We propose to examine this through models. Markovian

models of packet loss have been proposed on the basis of observations of the Internet (e.g., see [1]), although

some longer bursts of losses were also found. We shall see that the price of temporal dependence is slower

convergence than for the Bernoulli case. One can understandthis qualitatively from the fact that burstiness

in the packet loss processes means that the long-term average ofb
 takes longer to approach.

8.2 Convergence Rates for Markovian Congestion

The main tool in understanding convergence rates is the following. Let��1
k

denote the nodek component

of ��1, so thatb�
k

= �

�1

k

(b
). Suppose now that the random variablesb
 are asymptotically Gaussian as

n!1 with
p

n (b
 � 
)

D

�! N (0; �); (36)

where�
jk

= lim

n!1

nCov(b


j

; b


k

), for j; k 2 U . Here
D

�! denotes convergence in distribution. Then by

the Delta method (see Chapter 7 of [27]), since�

�1

k

is continuously differentiable onG (see Theorem 1),

�

�1

k

(b
) is also asymptotically Gaussian:

p

n (�

�1

k

(b
)� �

k

)

D

�! N (0; �

k

); where �

k

= r�

�1

k

(
) � � � r�

�1

k

(
): (37)

In the remainder of this section we establish (36) within thecontext of Markov loss processes, and perform

some explicit calculations for the 2-leaf tree.

We expand the class of loss processes as follows. We will define a Markov process(Y (n))
n2N

, where

Y (n) will describe the state of the network encountered by then

th probe; this description is used whether,

for example, the interprobe times are constant, variable orrandom.Y is constructed as follows. For each

k 2 U let (Y
k

(n))

n2N

be an independent Markov process on the state spacef0; 1g. We think ofY
k

(n) as

representing the state of linkk at timen, taking the value0 if the link is congested,1 if it is not. A probe

that encounters a congested link is lost. We represent this by the processX = (X

k

(n))

k2U;n2N

defined by
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lettingX
k

(n) be conditionally independent of(X
j

(m); Y

j

(m))

k�j;m<n

given(X
f(k)

(n); Y

k

(n)), with

(X

k

(n) j X

f(k)

(n); Y

k

(n)) =

�

0; X

f(k)

= 0

Y

k

(n); X

f(k)

= 1

(38)

WhenY
k

(�) is Bernoulli with probability�
k

to be in the state1, then theX(n) are independent for eachn,

with theX
k

(n) distributed as described in Section 2.2.X is not a Markov process, but rather is a function

of the Markov processY . Moreover,X(n) is a some function ofY (n) alone, which we denote by�. For

eachk 2 U , let�(k) be the set of configurationsy of Y such that�(y) has outcome�(y)
(R)

in 
(k), i.e.,

�(k) = fy 2 f0; 1g

#U

: �(y)

(R)

2 
(k)g: (39)

Let Q denote the transition matrix forY , i.e.,Q = 


k2U

Q(k) is the Kronecker product of the transition

matrices of the individualY
k

. Let q(k) = f1��

k

; �

k

g and letq = 


k2U

q(k) be the corresponding product

distribution.

Theorem 8 With the above notation, assume�
k

2 (0; 1) for all k 2 U . Then (37) holds with

�

jk

=

X

y2�(j)

X

z2�(k)

"

q

y

(�

yz

� q

z

) + 2

1

X

m=1

(Q

m

yz

� q

y

)q

z

#

; (40)

whereQm denotes them-step transition matrix.

Observe that in the Bernoulli case, the second term in (79) vanishes, while the first depends only on the

marginal probabilities�. This means that the first term in (79) gives rise to the diagonal elements of (23);

in what follows we can thus restrict our attention to the increase in the asymptotic variance as specified by

the second term.

We parameterize the transition matrix ofY
k

as

Q(k) =

�

1� �

k

!

k

�

k

!

k

�

k

!

k

1� �

k

!

k

�

; (41)

where!
k

2 (0; 1=maxf�

k

; �

k

g]. !
k

parameterizes the burstiness ofY
k

without changing its marginal

probabilities. Y
k

(m) andY
k

(m + 1) are positively (or negatively) correlated when!
k

> 0 (or !
k

<

0). When!
k

= 0, Y
k

is Bernoulli. By calculation of the matrix powers ofQ(k) through its spectral

decomposition, we find thatQn(k)
yz

q

z

(k) is given by the matrix

[Q

n

(k)

yz

] = !

n

k

F (k) +G(k); where F (k) = �

k

�

k

�

1 �1

�1 1

�

; G(k) = q(k)
 q(k): (42)

ExpandingQn = 


k2U

Q

n

(k) and summing overn we find

1

X

m=1

�

(Q

m

yz

� q

y

)q

z

�

=

X

W�U

g(W ) (


k2W

F (k))


�




k2UnW

G(k)

�

; (43)

whereg(;) = 0 and otherwiseg(W ) = (

Q

k2W

!

k

)=(1�

Q

k2W

!

k

).
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8.3 Example: the Two-leaf Tree

Taking gradients in (14)–(16) and reexpressing them in terms of� we find

r�

�1

1

(�(�)) =

(1;��

3

;��

2

)

�

2

�

3

; r�

�1

2

(�(�)) =

(�1; 1; �

2

)

�

1

�

3

; r�

�1

3

(�(�)) =

(�1; �

3

; 1)

�

1

�

2

; (44)

Using the notation(abc), with a; b; c 2 f0; 1g, to denote a value ofY (n), we have from (13):

�(1) = f(111); (110); (101)g; �(2) = f(111); (110)g; �(3) = f(111); (101)g: (45)

For simplicity we set the�
k

and!
k

equal to�; !. Then (43) becomes

1

X

m=1

�

(Q

m

yz

� q

y

)q

z

�

=

!

3

1� !

3

F (1)
 F (2)
 F (3) (46)

+

!

2

1� !

2

(F (1)
 F (2)
G(3) + F (1)
G(2)
 F (3) + G(1)
 F (2)
 F (3))

+

!

1� !

(F (1)
G(2)
G(3) + G(1)
G(2)
 F (3) + G(1)
 F (2)
G(3)) :

Combining (44), (45) and (46) in (37) in (46) with Theorem 8

I

�1

11

=

�� �(1 + �(�� 2))

�

; (47)

I

�1

22

= I

�1
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=

�

�

(48)
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2
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2

� �!

2

+ 2�

2

!

2

+ !

3

� �!

3

+ �

2

!

3

)

�(1 + !)(1� !

3
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(49)

�

2

= �

3

= I

�1

22

+

�!((�+ !)

2

+ !

2

(�

2

+ !))

�(1 + !)(1� !

3

)

(50)

From (42),! is the geometric decay rate of correlations. We can interpret � = 1=(1 � !) as the mean

correlation time of the losses;� = 1 for Bernoulli losses. In Figure 13 we display the increase inasymptotic

variance by plotting the ratio�
1

=I

�1

11

of the asymptotic variance with Markovian correlations to that without.

We do this for� 2 [:5; 1] and� 2 [1; 10]. �
2

=I

�1

22

displayed very similar behavior. The ratio is increasing

in correlation time� , and in the link transmission probability�.

8.4 Temporal Dependence and Probing Methodology

An approach to avoiding the effect of temporal dependence would be to time probes at intervals larger than

the typical correlation time of losses. Although this will reduce the number of probes required for a given

level of convergence, the absolute time of convergence may increase due to the increased time between

probes. Increasing the probes spacing by a factor�

0, but with all probes lying within a given measurement

period would increase the variance of the estimates by a factor � 0 for independent losses. With Markovian

losses, the effect of dependence between probes could be ameliorated by taking� 0 > � , the correlation
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Figure 13: IMPACT OF TEMPORAL DEPENDENCE ONCONVERGENCE OFESTIMATES: The ratio�
1

=I

�1

11

of the asymptotic variances ofb�
1

with and without temporal dependence. Ratio is increasing in correlation
time� , and in link transmission probability�.

time. But for the two-leaf tree we see from (47) that when� ! 1, then�
k

=I

�1

kk

! 1=(1 � !) = � for

k = 1; 2; 3. Thus for small loss probabilities, the slow-down in the rate of convergence ofb� is no worse than

that obtained by spacing probes to be approximately independent. In this example then, one may as well use

all probes irrespective of their mutual dependence, ratherthan try to space them out to avoid dependence.

We envisage that direct measurement of the correlation timeof received probes could be used, in combi-

nation with calculations of the previous section, to determine the number of probes, in an ongoing measure-

ment, that are required in order to infer the link probabilities for a given accuracy. In the example considered

we have seen that in order to estimate the increase in the asymptotic variation due to dependence between

losses of small probability, it is sufficient to determine the correlation time of observed losses. When losses

are heterogeneous, this will be conservative, since the autocorrelation will be dominated by the component

with slowest decay.

A related issue is the randomization of interprobe times in order to avoid bias in the selection of network

states which are observed via the probes. Probes with exponentially distributed spacings will see time

averages; this is the PASTA property (Poisson Arrivals See Time Averages; see e.g. [32]). This approach

has been proposed for network measurements [23] and is underconsideration in the IP Performance Metrics

working group of the IETF [8]. In the context of the above discussion, lengthening the interprobe time is to

be understood as increasing the mean of the exponential distribution.

9 Summary and Future Work

In this paper, we introduced the use of end-to-end measurements of multicast traffic to infer network-internal

characteristics. We developed statistically rigorous techniques for estimating packet loss rates on internal

links, and validated these techniques through simulation.We showed that the inferred values quickly con-

verged to within a small error of the actual values. We also presented evidence that our techniques yield

accurate results even in the presence of moderate levels of temporal and spatial loss dependence.
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We are extending our work in several directions. First, we are applying multicast-based inference to

metrics other than packet loss. In particular, we have developed estimators for link delay. We are also

investigating ways to infer link bandwidth and network topology using multicast probes. The ability to

determine topology would free our measurements from the assumption of a priori knowledge of topology or

of a separate topology-discovery tool.

Second, we plan to do more extensive simulations. We plan to substitute RED queueing for FIFO queue-

ing to study the effect of RED on loss dependence. We also planto substitute Poisson probes for CBR probes

to avoid inadvertent synchronization of the probe traffic with periodic network processes. At the same time,

we plan to simulate more complex topologies than the simple examples used throughout this paper. Topolo-

gies other than complete binary trees would stress our MLE for general trees, while larger topologies would

test the convergence properties of our techniques on largerproblem instances. This will be complemented

by a theoretical analysis of the dependence of convergence rates on topology. Furthermore, we would like to

explore how closely loss rates experienced by our probes agree with loss rates experienced by other network

applications and protocols, for example TCP. We expect thatour multicast-based measurements will yield

ambient loss rates that are meaningful in a broad context.

Third, we plan to experiment with multicast-based inference on the Internet. As a preliminary step, we

plan to measure ambient dependence in the real network, and determine the extent to which we need to adapt

our estimates to their presence. We also plan to deploy our inference tools in multicast-enabled portions of

the Internet, including the MBone, to test our techniques ona real network.

Finally, we would like to integrate our inference tools withone or more of the large-scale measurement

infrastructures under construction. NIMI seems particularly suited because of its intended role as a general

framework where many types of measurement can be carried out. The challenge will be to adapt a unicast-

based infrastructure to perform multicast-based measurements, and in particular to schedule measurements,

collect results, and perform inference calculations when large numbers of receivers are involved.

In conclusion, we feel that multicast-based inference is a powerful approach to measuring Internet dy-

namics. The rigorous statistical analysis behind our techniques gives them a firm theoretical footing, while

the bandwidth efficiency of multicast traffic gives them muchdesired scalability. Robust and efficient mea-

surements are increasingly important as the Internet continues to grow in size and diversity.

10 Proofs of Theorems

Proof of Lemma 1: Let h
1

(x) = (1 � x), h
2

(x; c) = h

2

(x) =

Q

i

(1 � c

i

x). Let q
i

= c

i

=(1 � c

i

x).

Then forx 2 [0; 1] h

00

1

(x) = 0, h00
2

(x) = h

2

(x)

n

(

P

i

q

i

)

2

�

P

i

q

2

i

o

> 0. Henceh(x) = h

1

(x)� h

2

(x) is

strictly concave on[0; 1]. Now h(0) = 0, h(1) < 0 andh0(0) = �1 +

P

i

c

i

> 0. So sinceh is concave

and continuous on[0; 1] there must be exactly one solution toh(x) = 0 for x 2 (0; 1). Now set write
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h(x; c) = h

1

(x)�h

2

(x; c). Letx(c) be the unique solution toh(x(c); c) = 0. The above derivation implies

thath0(x(c)) = (@h(x; c)=@x)j

x=x(c)

< 0, so in particular, is different from0. Sinceh is continuously

differentiable, then by the Implicit Function Theorem [26], so isc 7! x(c).

Proof of Theorem 2: The idea is to split up the sum (2) into portions on which@ log p(x)

@�

k

is constant. These

will be 
(k), the
(f i(k)) n 
(f i�1(k)) for i = 1; 2; : : : ; `(k), and
(0)c.

Consider first the case thatx 2 
(k). Then�
k

occurs inp(x) as a factor, and hence@ log p(x)
@�

k

= 1=�

k

.

Whenx 2 
(f

i

(k))n
(f

i�1

(k)) for i = 1; 2; : : : ; `(k), thenp(x) = �

f

i�1

(k)

R

k

(x)whereR
k
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depend on�
k
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j
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i�1

(k). Hence forx 2 
(f

i

(k)) n 
(f
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=
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f
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(k)
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(51)

Similarly, whenx 2 
(0)

c,
@ log p(x)

@�

k

=

1

�

0

@�

0

@�

k

(52)

On combining these:
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k

X
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�
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+

`(k)

X
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(f

i�1

(k))

n(x)

9

=

;

For the derivatives, some algebra with (7) shows that

@�

k
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k
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The right hand term in equation (55) follows by iterating themiddle term. Observe that

X
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Combining (53), (54), (55) and (56) we get
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Here we adopt the convention that the empty product fori = 1 means1, and that the symbolb

f(0)

that

occurs wheni = 1 + `(k) means1.

Set @L
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k

for all k 2 V . Fork = 0, (57) yields0 = b
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For any otherk, combining (57) fork andj = f(k) yields
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Together with (58) this givesb

k

= 


k

for all k 2 V .

Proof of Theorem 3: (i) By the strong law of large numbers,b
 ! �(�), P
�

almost surely, asn ! 1.

Since� is, in particular, bijective, then the model is identifiable, since�(�) = �(�

0

) implies� = �

0.

(ii) Convergence ofb
 to 
 (from (i)) and continuity of��1 (from Theorem 1) yield convergence of

b� = �

�1

(b
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(
) asn ! 1. We now establish convergence of��. Fix some�0 2 (0; 1)
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Observe thatp(x;�) is polynomial in the�
k

, and hence continuous. According to Lemma 7.54 in [27], it

suffices to show that, for each�0 6= �

0, there is an open setN
�

0 containing�0, such thatE
�

0
Z(N

�

0
; X) >

�1. (HereE
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0 is the expectation w.r.t.P
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0).

Look at the two terms inE
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#U . The first isE
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). This is finite sincep log p is bounded forp 2 [0; 1] and
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) > �1. Finally, we note that although it

is not mentioned there, Lemma 7.54 in [27] requires identifiability, which we proved in (i) above.

(iii) Now let � 2 (0; 1)

#U be the true set of link probabilities. From part (ii), withP
�

probability1,

the MLE �� ! � asn ! 1. Hence, for each sequence of probes we have that forn sufficiently large,��

lies in the interior of(0; 1)#U . For suchn, �� must then solve the likelihood equation (12). We know from

Theorem 2, that solutions of the likelihood equation are unique, and hence this�� = b�.

Proof of Theorem 4: (ii) Recall V (k) = fj 2 V : j � kg, R(k) = V (k) \ R andU = V n f0g. Set
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for which c � I � c = 0. But c � I � c is the variance of the mean-zero random variable

c � S(�), so then we would have thatc � S(�) = 0, P
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almost surely, or equivalently
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sinceP
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(fxg) > 0 for all x 2 
. We show that, in fact, (61) impliesc
k

= 0, first for k 2 R, then for all

k 2 U .
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Let x(0) 2 
 be such thatx(0)
j

= 1 for all j 2 R, and for somek 2 R let x(1)
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Combining the last two equations we findc
k

= 0.

We now proceed by induction. Fork 2 U assume thatc
j

= 0 for all j � k. We now prove thatc
k

= 0.
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where�
k

=

Q

j2d(k)

�

j

= P

�

[X

j

= 0 8j 2 R(k) j X

k

= 1]. Hence from (61)

c

k

(�

k

� 1)

�

k

+ �

k

�

k

+

X

j2V nV (k)

c

j

�

j

= 0; (66)

recalling the assumption thatc
j

= 0 for all j � k. For the same reason (61) reads

c
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Combining (66) and (67), then we findc
k

= 0. The equality of� with I�1 in the interior of the space of

parameters� is standard under the conditions established during the proof of Theorem 3; see, e.g., Chapter

6.4 of [11].

(iii) We refer to Theorem 7.63 of [27]. ClearlyL is 3-times continuously differentiable on(0; 1)#U ,

and has bounded expectation in some neighborhood of�. This establishes the relation (7.64) in [27].
@ log p(x;�)

@�

j

�

k

(�) is clearly finite on(0; 1)#U. HenceI is finite in (0; 1)

#U , so together with Theorem 3

and the non-singularity ofI established in (ii) above, we are able to conclude the result.

Proof of Theorem 5: Let j _ k denote the nearest common ancestor ofj andk, i.e. j _ k is the�-least

common upper bound ofj andk. The proof proceeds by a number of subsidiary results. Sinceprobes are

assumed independent, it suffices to evaluate all random quantities forn = 1 probes.

(i) As k�k ! 0,

(a) 1� A

k

= s(k) +O(k�k

2

); (b) �

k

= O(k�k); (c) 1� 


k

= s(k) + O(k�k

2

); (68)
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(70) then follows from (68) and the fact thatj _ k = j whenj � k.

(iii) As k�k ! 0,
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From (68) (b), this goes to0 ask�k ! 0. Finally, for all otherj, 
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does not depend on�
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, and so the

derivative is0. Summarizing, ask�k ! 0,
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Since matrix inversion is continuous in an open neighborhoodof the non-singular matrices, then (72) follows
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It remains to evaluate
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All other possiblei andk yield zero, as we now show. Ifi � k then i _ k = f(i) _ k = k, while
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Proof of Theorem 8: Since�
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