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Abstract

Robust measurements of network dynamics are increasimglgritant to the design and operation of
large internetworks like the Internet. However, admirite diversity makes it impractical to monitor
every link on an end-to-end path. At the same time, it is diffito determine the performance character-
istics of individual links from end-to-end measurementsmitast traffic. In this paper, we introduce the
use of end-to-end measurementsrafiticasttraffic to infer network-internal characteristics. The dan
width efficiency of multicast traffic makes it suitable forde-scale measurements of both end-to-end
and internal network dynamics.

We develop a Maximum Likelihood Estimator for loss rates oteiinal links based on losses ob-
served by multicast receivers. It exploits the inherentadation between such observations to infer the
performance of paths between branch points in the tree gpgammulticast source and its receivers.
We derive its rate of convergence as the number of measutsinenecases, and we establish robustness
with respect to certain generalizations of the underlyiraglel. We validate these techniques through
simulation and discuss possible extensions and applicatbthis work.

1 Introduction

Background and Motivation. Fundamental ingredients in the successful design, daaritbmanagement
of networks are mechanisms for accurately measuring tlefopnance. Two approaches to evaluating
network performance have been:

(i) Collecting statistics at internal nodes and using nekwonanagement packages to generate link-level

performance reports; and

(i) Characterizing network performance based on endab{gehavior of point-to-point traffic such as
that generated by TCP or UDP.

A significant drawback of the first approach is that gainingeas to a wide range of routers in an ad-
ministratively diverse network can be difficult. Introdoginew measurement mechanisms into the routers
themselves is likewise difficult because it requires peatgalarge companies to alter their products. Also,
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the composition of many such small measurements to formtargiof end-to-end performance is not com-
pletely understood.

Regarding the second approach, there has been much repenineantal work to understand the phe-
nomenology of end-to-end performance (e.g., see [1, 2,921, 22]). A number of ongoing measurement
infrastructure projects (Felix [5], IPMA [7], NIMI [13] an&urveyor [28]) aim to collect and analyze end-
to-end measurements across a mesh of paths between a ndrhbstsgpathchar [10] is under evaluation
as a tool for inferring link-level statistics from end-taekpoint-to-point measurements. However, much
work remains to be done in this area.

Contribution . In this paper, we consider the problem of characterizing-level loss behavior within a
network through end-to-end measurements. We present a prewwaeh based on the measurement and
analysis of the loss behavior afulticastprobe traffic. The key to this approach is that multicasffitraf
introduces correlation in the end-to-end losses measwyreedeivers. This correlation can, in turn, be used
to infer the loss behavior of the links within the multicasuiting tree spanning the sender and receivers.
This enables the identification of links with higher losesas candidates for the origin of the degradation
of end-to-end performance.

Using this approach, we develapaximum likelihood estimato(MLES) of the link loss rates within
a multicast tree connecting the sender of the probes to af seteivers. These estimates are, initially,
derived under the assumption that link losses are deschip@dependent Bernoulli losses, in which case
the problem is that of estimating the link loss rates givendghd-to-end losses for a series:gfrobes. We
show that these estimates are strongly consistent (comabmgost surely to the true loss rates). Moreover,
the asymptotic normality property of MLEs allows us to deran expression for their rate of convergence
to the true rates as increases.

We evaluate our approach for two-, four-, and eight-recepapulations through simulation in two
settings. In the first type of experiment, link losses arecdiesd by time-invariant Bernoulli processes.
Here we find rapid convergence of the estimates to their betiaes as the number of probes increases.
The second type of experiment is basedsl8] simulations where losses are due to queue overflows as
probe traffic competes with other traffic generated by irdidita sources that use the Transmission Control
Protocol (TCP) [24]. In the two- and four- receiver topolegjivith few background connections we find fast
convergence although there are persistent, if small,réifiees between the inferred and actual loss rates.

The cause of these differences is that losses in our sinduhetvork display spatial dependence (i.e.,
dependence between links), which violates the Bernowdliagption. We believe that large and long-lasting
spatial dependence is unlikely in a real network such asrieeriet because of its traffic and link diversity.
This is supported by experiments with an eight-receiveology with diverse background traffic in which
we found closer agreement between inferred and actual ébss.rFurthermore, we believe that the intro-



duction of Random Early Detection (RED) [6] policies in Imtet routers will help break such dependence.

The potential for both spatial and temporal dependencessfitaotivates investigation into their effect.
Our analysis shows that dependence introduces inferermes @ a continuous manner: if the dependence
small, the errors in the estimates are also small. Furtherntloe errors are a second order effect: in the
special case of a binary tree with statistically identicgbeindent loss on sibling links, the Bernoulli MLE
of the marginal loss rates are actually unaffected for iotdinks of the tree. More generally, the MLE will
be insensitive to spatial dependence of loss within regodisémilar loss characteristics. Furthermore, the
analysis shows how prior knowledge of the likely magnitutiéependence—e.g. from independent network
measurements—could be used to correct the Bernoulli MLE.

We note that interference from TCP sources introduces temhgependence (i.e., dependence between
different packets) that also violates the Bernoulli asstionp This dependence is apparent in our simulated
network, where probe losses often occur back-to-back dumitstiness in the competing TCP streams.
Such dependence has also been measured in the Internedrddytinvolves more than a few consecutive
packets [1]. The consistency of the estimator does not reguilependence between probes; it is sufficient
that the loss process be ergodic. This property holds,wtgen the dependence between losses has suffi-
ciently short range. However, the rate of convergence oettenates to their true values will be slower.
We quantify this for Markovian losses by applying the Cednitieit Theorem for the occupation times of
Markov processes. We use this approach to compare the gfi€awo sampling strategies in the presence
of Markovian losses. In our experiments, inferred losssatesely tracked actual losses rates despite the
presence of temporal dependence.

The work presented in this paper assumes that the topolotpeohulticast tree is known in advance.
We are presently developing algorithms to infer the mustiteee from the probe measurements themselves.

We envisage deploying inference engines as part of a measatenfrastructure comprising hosts ex-
changing probes in a WAN. Each host will act as the source afgs down a multicast tree to the others.
A strong advantage of using multicast rather than unica#ftdiis efficiency. N multicast servers produce
a network load that grows at worst linearly as a functiomvofOn the other hand, the exchange of unicast
probes can lead to local loads which growa$, depending on the topology. We illustrate this in Figure 1.
In this example2 NV servers exchange probes. For unicast probes, the load tralderk grows asV?; for
multicast probes it grows only &sV.

Related Work. There are a number of measurement infrastructure prajeptsgress, all based on the ex-
change of unicast probes between hosts in the current &itéfwo of these, IPMA (Internet Performance
Measurement and Analysis) [7] and Surveyor [28], focus oasudng loss and delay statistics; in the for-
mer between public Internet exchange points, in the lagéréen hosts deployed at sites participating in
Internet 2. A third, Felix [5], is developing linear decongitton techniques to discover network topology,
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Figure 1: ROBE METHOD, LOAD AND TOPOLOGY. 2N servers exchange probes. For unicast probes,
load on central link grows a& ?; for multicast probes it grows only &sV.

with an emphasis on network survivability. A fourth, NIMI &onal Internet Measurement Infrastruc-

ture) [13], concentrates on building a general-purpostegsta on which a variety of measurements can be
carried out. These infrastructure efforts emphasize tbeigig importance of network measurements and
help motivate our work. We believe our multicast-basednepies would be a valuable addition to these
measurement platforms.

There is a multicast-based measurement tatiace [16], already in use in the Internentrace reports
the route from a multicast source to a receiver, along witleinformation about that path such as per-hop
loss and delay statistics. Topology discovery throogtace is performed as part of theacer tool [12].

Howevermtrace suffers from performance and applicability problems indbetext of large-scale mea-
surements. Firsintrace traces the path from the source to a single receiver by wgiack through the
multicast tree starting at that receiver. In order to colierdcomplete multicast tremtrace would need to
run once for each receiver, which does not scale well to langebers of receivers. In contrast, the inference
technigues described in this paper cover the completeriraesingle pass. Secomnaijrace relies on mul-
ticast routers to respond to explicit measurement que@estent routers support these queries. However,
Internet service providers may choose to disable this feagince it gives anyone access to detailed delay
and loss information about paths in their part of the netwdmkcontrast, our inference techniques do not
rely on cooperation from any network-internal elements.

We now turn our attention to related theoretical work on liefeee methodologies. There has been
some ad hoc, statistically non-rigorous work on derivimdglievel loss behavior from end-to-end multicast
measurements. An estimator proposed in [33] attributealtisence of a packet at a set of receivers to loss
on the common path from the source. However, this is biasexh) as the number of probesgoes to
infinity.

For a different problem, some analytic methods for infeeent traffic matrices have been proposed
quite recently [30, 31]. The focus of these studies was terdghe the intensities of individual source-
destination flows from measurements of aggregate flows t@k@number of points in a network. Although



there are formal similarities in the inference problemswtliose of the present paper, the problem addressed
by the other papers was substantially different. The smhstare not always unique or easily identifiable,
sometimes needing supplementary methods to identify aidatedsolution. This was a consequence of a
combination of the coarseness of the data (average dasamétee class of Poissonian traffic processes) and
the generality of the network topology considered.

Structure of the Paper. The remainder of the paper is structured as follows. Ini&e& we present a loss
model for multicast trees and describe the framework witttinch analysis will occur. Section 3 contains
the derivation of the estimators themselves; the specifimgke of the two-leaf tree is worked out explicitly.
Section 4 analyzes the rates of convergence of estimattne asimber of probes is increased. In particular,
we obtain a simple approximation for estimator variancééregime of small loss probabilities. In Section
5 we present an algorithm for computing packet loss estsnatel tests for consistency of the data with the
model. Section 6 presents the results of simulation exggristhat validate our approach. Motivated in part
by the experimental results, we continue by examining tfextf of violation of the Bernoulli assumption.
In Section 7 we analyze the effects of spatial dependenceipestimators. We show how to correct for
them on the basis of some a priori knowledge of their magmituee show that in any case they deform
the estimates based on the Bernoulli assumption only tonskecader. In Section 8 we analyze the effect
of temporal dependence on the loss process. We show thagyhw#otic accuracy of the Bernoulli-based
estimator is unaffected, although it may converge more Iglowe conclude in Section 9 with a summary
of our contributions and proposals for further work. Soméhefproofs are deferred to Section 10.

2 Model & Framework
2.1 Description of Logical Multicast Trees

Let 7 = (V, L) denote the logical multicast tree from a given source, «timgj of the set of node¥,

including the source and receivers, and the set of linka link is ordered pairj, k) € V' x V denoting a
link from nodej to nodek. The set of children of a nodeis denoted byl (k) (i.e. d(j) = {k € V : (j, k) €

L}). For each nodg € V apart from the roob, there is a unique node= f(j), the parent of, such that
(j, k) € L. We shall defingf™ (k) recursively byf™ (k) = f(f" ' (k)). We say thay is a descendant df

if £ = f"(j) for some integen. > 0.

The root0 € V will represent the source of the probes. The set of leaf nétles V' (those with no
children) will represent the set of receivers. The logicaltinast tree has the property that every node has
at least two descendants, apart from the root node (whicloh@sand the leaf-nodes (which have none).
On the other hand, nodes in the full (as opposed to logicaljicast tree can have only one descendant.
The logical multicast tree is obtained from the full mulstéree by deleting all nodes which have a single
child (apart from the roob) and adjusting the links accordingly. More precisely, i f(j) = f*(k) are
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Figure 2: (a) A multicast tree with two receivers. (b) Theresponding logical multicast tree.

nodes in the full tree angtd(j) = 1, then we assign to the logical tree only the nodésand the link(z, k).
Applying this rule to all such, j andk in the full multicast tree yields the logical multicast tree

A two receiver example is illustrated in Figure 2. A sourceltimasts a sequence of probes to two
receivers 2, andR;. The probes traverse the multicast tree illustrated infeéi@ga). Figure 2(b) illustrates
the logical multicast tree, where each path between braoiciigin the tree depicted in Figure 2(a) has been
replaced by a single logical link.

2.2 Modeling the Loss of Probe Packets

We model the loss of probe packets on the logical multicastlty a set of mutually independent Bernoulli
processes, each operating on a different link. Losses areftte independent for different links and dif-
ferent packets. In the introduction we discussed the resastiy network traffic can be expected to violate
these assumptions; in Sections 7 and 8 we discuss the eatetiich they affect the estimators described
below, and how these effects can be corrected for.

We now describe the loss model in more detail. With each node V' we associate a probability
ar € [0,1] that a given probe packet is not lost on the link terminating.aWe model the passage of
probes down the tree by a stochastic process (X )rcv Where eachY, takes a value iq0, 1}; X, =1
signifies that a probe packet reaches nbdand( that it does not. The packets are generated at the source,
so Xy = 1. For all otherk € V, the value ofX}, is determined as follows. IK; = 0 thenX; = 0 for
the children;j of &£ (and hence for all descendantsigf If X, = 1, then for; a child ofk, X; = 1 with
independent probability;, and X; = 0 with probabilitya; = 1 — «;. (We shall writel — « as@ in
general). Although there is no link terminatinglatwe shall adopt the convention tha = 1, in order to
avoid excluding the root link from expressions concerntmgt;.. We display in Figures 3 and 4 examples
of two- and four-leaf logical multicast trees which we shedé for analysis and experiments.



Figure 3: A two-leaf logical multicast tree Figure 4: A four-leaf logical multicast tree

2.3 Data, Likelihood, and Inference

In an experiment, a set of probes is dispatched from the soMiee can think of each probe as a trial, the
outcome of which is a record of whether or not the probe wasived at each receiver. Expressed in terms
of the random proces¥, each such outcome is the set of valueXgffor % in the set of leaf nodeg, i.e.
the random quantitXz) = (Xx)rer, an element of the spaée = {0, 1}* of all such outcomes. For a
given set of link probabilitiesr = (ay)rev, the distribution of the outcoméesX ) e r will be denoted by
P... The probability mass function for a single outcome Q is p(z; @) = P, (X(r) = ).

Let us dispatch probes, and, for each possible outcame €2, let n(z) denote the number of probes
for which the outcome: obtained. The probability of independent observations, ..., 2" (with each

2™ = (2]')rer) is then

ity aa) = I p™a) = [T plase)"® (1)

m=1 rEQN

Our task is to estimate the value affrom a set of experimental data(z)),cq. We focus on the
class ofmaximum likelihood estimatodILEs): i.e. we estimatex by the valuea which maximizes
p(zl, ... 2™ «)forthe datas!, . .., 2”. Under very mild conditions, which are satisfied in the pn¢séu-
ation, MLEs exhibit many desirable properties, includétigong consistency, asymptotic normality, asymp-
totic unbiasedness, and asymptotic efficiease [11]). Strong consistency means that MLEs converge
almost surely (i.e., with probability 1) to their target pareters as the sample size increases. The last three
properties mean that, if the sample size is large, we can gtengonfidence intervals for the parameters
at a given confidence level, the estimators are approxisnatédiased, and there is no other estimator that
would give the same level of precision with a smaller samjzie.s

Because of these properties, when a parametric model isbhgiMLEs are usually the estimators of
choice. Moreover, the confidence intervals allow us to estifnthe accuracy of the estimatescgfand in
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particular their rate of convergence to the true parametes the number of samplesbecomes large. This
is important for understanding the number of probes whicktrbe sent in order to obtain an estimatevof
with some desired accuracy. Furthermore, in view of theipdig of large time-scale fluctuation in WANSs,
e.g. Internet routing instabilities as reported by Pax4®j, [the period over which probes are sent should

not be unnecessarily long.

3 The Analysis of the Maximum Likelihood Estimator

In this section we establish the form of the MLE and deterntiveerate at which it converges to the true
value as the number of probes increases; this can be usedk®prediction for given models, and also
to estimate the likely accuracy of estimates derived fromaaata. We work this out completely for the
two-leaf tree of Figure 3.

3.1 The Likelihood Equation and its Solution

It is convenient to work with the log-likelihood function

L(a) =logp(z',...,a"a) = n(z)logp(;a), )
€L
In the notation we suppress the dependencg o andz!, ..., z". Sincelog is increasing, maximizing
p(zl, ... 2™ «)is equivalent to maximizing («).

We introduce the notation that < &’ for k, k' € V wheneverk is a descendant df or k¥ = &’ and
k < k' whenevert < k' butk # k’. We shall say that a link is at level¢ = ¢(k) if there is a chain of
ancestorg = fO(k) < f(k) < f2(k)... < f‘(k) = 0 leading back to the rodtof 7. Levels0 and1 have
only one node. We will occasionally ugeto denotel” \ {0}. Let7 (k) = (V(k), L(k)) denote the subtree
within 7 rooted at nodé. R(k) = R NV (k) will be the set of receivers which are descended frorhet
Q(k) be the set of outcomesin which at least one receiver (k) receives a packet, i.e.,

Qk)={ee: \/ z;=1}. (3)
JER(K)
Sety, = vi(a) = P,[Q2(k)]. An estimate ofy;, is

o= 3 Be), where p(r) = "), @)

n
zefl(k)

is the observed proportion of trials with outcorne We will show thata can be calculated fromy =
(vk)kev, and that the MLE

& = argmax o j#rL(a) ®)



can be calculated in the same manner from the estimatdse relation between and~y is as follows.
Define 3y = P[Q(k) | Xy = 1]. The 5, obey the recursion

By = @+a [[ B, keV\R, (6)
J€d(k)
ﬁk = Qg, k € R. (7)
Then
(k)
v =Bk [ [ esiny- (8
=1

Theorem 1 Let A = {(ag)ker : ax > 0}, andG = {(vi)ker : v > 0Vk; 75 < Zjed(k) v; Vk € U\ R}.
There is a bijectior” from .4 to G. Moreover' andI'~! are continuously differentiable.

The proof of Theorem 1 relies of the following Lemma whosegpiie given in Section 10.

Lemma 1l LetC be the set of = (¢;)i=12,....im.. Withe; € (0,1) and) ", ¢; > 1. The equatior{l — z) =
[I;(1 = ¢;z) has a unique solution(c) € (0, 1). Moreover,z(c) is continuously differentiable off.

Proof of Theorem 1: The~; have been expressed as a function of dheand clearlyay, > 0Vk € U
implies the conditions fof;. Thus it remains to show that the mapping fronto G is injective. Let
Ay = Hf(:ko) ayi(y)- From (8) we have

Ve = Ak, kER, (9)
while combining (6) and (8) we find
Hy(Ary) = (1= /A = [] (1 =7/4) =0, keU\R. (10)
J€d(k)

Since Hy(Ag,v) = h(ve/Ax,{v;/v : j € d(k)}) from Lemma 1, there is a uniqué&; > ~; which
solves (10). We recover the; uniquely from theA; by taking the appropriate quotients (and setting
Ag =g = 1)

ar = Ap/Appy, kel (11)

ClearlyT is continuously differentiable; that~ is also follows from the corresponding statement:f¢r)
inLemma 1=

Candidates for the MLE are solutions of tlileelihood equatiorfor the stationary points of £:

o

G (@) =0, kEU. (12)

Theorem 2 Wheryy € G, the likelihood equation has the unique solution= I'~*(7).



Note that in the notation we have suppressed the dependéticanalc onn andz?, . .., z". We defer
the proof of Theorem 2 to Section 10. That done, we must camphe argument by showing that the
stationary point does have maximum likelihood. For this westimpose additional conditiong: is not
precluded from being either a minimum or a saddle for thdililk®d function, the maximum falling on the
boundary ofl0, 1]#¥. For some simple topologies we are able to establish dyréiwéit £(«) is (jointly)
concave in the parametersat= &, which is hence the MLEr. For more general topologies we use an
argument which establishes that= « for all sufficiently largen, and whose proof also establishes some
useful asymptotic properties af

If o, = 0 for some linkk, thenX; = 0 for all j € R(k), regardless of the values af for j descended
from k£, and hence these cannot be determined. For this reason wesiet attention to the case that all
ay > 0, by passing to a subtree if necessary; see Section 5.

Theorem 3 Assumey;, € (0,1],k € U.
(i) The model isdentifiable i.e.,a, o’ € (0, 1]#% andP,, = P, impliesa = «'.
(i) Asn — 00, @ - aanda — «, P, almost surely.
(i) Assume alsav, < 1, k£ € U. With probability 1, for sufficiently large, & = a.

Maximum Likelihood Estimator for the Two-leaf Tree  Denote the 4 points & = {0, 1}* by {00,01, 10, 11}.
Then

71 =Dp(1) +p(10) + p(01), 72 = p(11) +p(10), 73 = p(11) + p(01). (13)

The equations (10) fort, in terms of they, can be solved explicitly; combining with (11) we obtain the

estimates
&, = 8 _ (P(01)+p(11A))(p(10) + p(11)) (14)
Yo+ — Tt p(11)
& = 2tBom_ bl (15)
3 p(01) + p(11)
g, = 2tBom_ bl (16)
Y2 p(10) + p(11)

Note that although it is possible that > 1 for some finiten, this will not happen when is sufficiently
large, due to Theorem 3(ii).

There is a simple interpretation of the estimates in (15)(@8J. With thep’s replaced by their corre-
sponding true probabilities, (15) would give the probability of receiving a probe at nddeiven that it
known to be received at node 2. For independent lossesstjustithe marginal probability that the probe is
received at node 1. We have found, however, the correspghaimulas when there are more than 2 sibling
nodes do not allow such a direct interpretation.

10



4 Rates of Convergence of Loss Estimator
4.1 Large Sample Behavior of the Loss Estimator

In this section we examine in more detail the rate of convergefa and the MLE® to the true valuer.
We can apply some general results on the asymptotic prepetiMLEs in order to show thafn(a — «)
is asymptotically normally distributed as— oo; some general properties of MLEs ensure that the same
hold for,/n (& — «), and with the same asymptotic variance. We can use thedesrigstwo ways. First, for
models of loss processes with typical parameters, we canastthe number of probes required to obtain
an estimate with a given accuracy. Secondly, we can estithatikely accuracy ofv from actual probe
data and associate confidence intervals to the estimates.
The fundamental object controlling convergence rates@MhE & is theFisher Information Matrixat

«. Thisis defined for each € (0, 1)#V as the#U-dimensional real matriX;; («) := Cov (%(a), %(a)).
It is straightforward to verify that satisfies conditions (see Section 2.3.1 of [27]) under wifich equal
to the following more convenient expression which we wikk s the sequel:

0*L
Jda; 00y,

Zik(e) = —E () 17)

On the other hand, a direct calculation of the asymptoticanae ofa follows from the Central Limit
Theorem. The random variablesare asymptotically Gaussian as— oo with

Vi (F =) 25 N(0,0), (18)

whereo;; = lim,_ ., n Cov(¥;,7k), for j, k € U. Here -2+ denotes convergence in distribution. Since
by Theorem 1I'~! is continuously differentiable o6, then by the Delta method (see Chapter 7 of [27])
a = I'"1(¥) is also asymptotically Gaussian, so establishing the fast @f the following theorem. We
note that the matricesand7Z ! (cv) agree on the interior of the parameter space, but, as wessealielow,

Z(«) may be singular on the boundary. Lig; (a) = 8;@;1 (I'(«)) and DT denotes the transpose.

Theorem 4 (i) Whenay € (0,1], k € U, then asy — oo,
Vi (@ - a) = N(0,v), where v = D(a)-o-D(a). (19)
(i) Whenay, € (0,1), k € U thenZ(«) is non-singularand ! (a) = v.

(i) Whenay, € (0,1), k € U, v/n (& — «) converges in distribution as — oo to a #U-dimensional
Gaussian random variable with mean 0 and covariance matrix(«).

Theorem 4 enables us to determine, for example, that asyicgdtpfor largen, with probability1 — §,
thea will lie between the points

I
ap £ o259 kkn( )7 (20)

11



wherezs/, denotes the number that cuts off an af¢in the right tail of the standard normal distribution.
This is used for a confidence interval of level- §. As we are interested in a 95% confidence interval for
single link measurements, we taigq2 ~ 2.

Confidence Intervals for Parameters With slight modification, the same methodology can be used t
obtain confidence intervals for the parameterderived from measured data fromprobes. Following [4]
we use thebserved Fisher Information

*L
B 80&j80&k (a)7
Now, the proof of Theorem 2 (see particularly (57)) showsthed L/ d«y, depend on the(z) only through

Zn(@) = where a=T"'(9). (21)

the combinations”;. Hence the same is true for théL /da;day,. SincePz[Q(k)] = D0~ @)k = Tk,
we haveZ (a) = Z(@).
We then use confidence intervals for of the form

7, (@)

ak :i: 25/2 (22)

This allows us to find simultaneous confidence regions froenasymptotic distribution foe: for a given

tree. Anissue for further study is to understand how the denfie intervals change as the tree grows.

Example: Confidence Intervals for the Two-leaf Tree An elementary calculation shows that the inverse
of the Fisher information matrix governing the confidenderivals for models in (20) is

on(@—an(ltos(a1=2))) —ana =203
Qg as a2
I_l (Oé) — —5253 EQOQ —5253 X (23)
as Qg =
—opds —opds Qsog
g aq a1 a2

Here, the order of the coordinatesis, oo, 3. The inverse of the observed Fisher information governing
the confidence intervals for data in (22) is obtained by itsgr(14)—(16) into (23). We note that in this
case7 is singular at the boundaries = 1 andas = 1.

4.2 Dependence of Loss Estimator Variance on Topology

The variance ofv determines the number of probes which must be used in ordestéon an estimate of
a given desired accuracy. Thus it is important to underskenvd the variance depends on the underlying
topology. Growth of the variance with the size of the tree mhigreclude application of the estimator to
large internetworks. Long timescale instability has bebreoved in the Internet [19]; if the timescale
required for accurate measurements approaches that dt wariability occurs, the estimator’s requirement
of stationarity would be violated. In this section we shoatttihe asymptotic varianeeof & is independent
of topology for loss ratios approaching zero.

12
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Figure 5: AsymMPTOTIC ESTIMATOR VARIANCE AND Figure 6: ASYMPTOTIC ESTIMATOR VARIANCE AND
BRANCHING RATIO Depth 2 tree, 2 to 7 leaves. VarianceTREE DEPTH Binary Tree of depth 2, 3 or 4. Variance
decreases towards linear approximatieny as branching increases with tree depth.

ratio increases.

The following theorem characterizes the behaviar tdr small loss ratio, independently of the topology
of the logical tree. Sefa|| = maxger @y. Setd;; = 1if j = k and0 otherwise.

Theorem 5 v, = aidjr + O(||@]|?) as||@|| — 0.

Theorem 5 says that the variancecofs, to first order ina, independent of topology. However, nothing
is said about higher order dependence, and in particulath@héhe difference between; andayd;;
converges to zero uniformly for all topologies@s— 0. For a section of trees we used computer algebra to
calculate the maximum asymptotic variance over links:;. v for a selection of trees, as a function of the
uniform Bernoulli probabilityv;, = . We use the notatiof(rq, rs, . . ., r,) denote the tree of depth+ 1
(depth = maximum level of any leaf) with successive branching ratios, r», . . ., r,, i.e. the root node

0 has the single descendent nddehich hasr; descendents, each of which haglescendents, and so on.
We show the dependence on branching ratio in Figure 5 fos wédepth 2. In these examples, increasing
the branching ratio decreases the variance. In Figure 6haw the dependence on tree depth for binary
trees of depth 2, 3 and 4. In this example, estimator variameases with tree depth, roughly linearly.
In all examples, estimator variance is approximately lifea@ less than about 0.1, and independent of
topology, in keeping with Theorem 5. For largerit appears from these examples that the change in
estimator variance of moving from simple topologies to mmwmplex ones is governed by two opposing
effects; variance reduction with increasing branchingraind variance growth with increasing tree depth.
The reason for this appears to be that increasing the bragchiio increases the size &f k) (the set of
leaf-nodes descended frdm so providing more data points for estimation, while insieg the tree depth
increases cumulative error per link in estimation.
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5 Data Consistency and Parameter Computation

In this section we address computational issues associatedhe estimatorr. We specify consistency
checks which must be applied to the data beforis computed. We describe an algorithm for computa-
tion of @ and discuss its suitability for implementation in a netwarkparticular the extent to which it is
distributable.

5.1 Data Consistency

In this section we describe tests for consistency of the Bogbprobabilitiesy with the model. The valida-
tions of the methodology carried out in this paper are atimitontrolled simulations. So we do not address
here the additional consistency checks which would be reduor applications to real network data, such
as tests for stationarity.

The rest of this section focuses on range checking and trgersuAn arbitrary data sé€t.(z)),cq may
not give rise tay € I'((0,1)#Y). If this is because some of thg take values 0 or 1, then it can be dealt
with by reducing the tree. In particular, when one of fds 0, not all of thea;, can be inferred from the
data. Those which cannot must be removed from consideraltioather cases, the data is not consistent
with the assumptions that loss occurs independently oardifit links. We discuss these now.

(i) If 3. = 0 foranyk € V, we construct a new tree by deleting nddand all its descendants, and
perform the analysis on this pruned tree instead. We arelenalistinguish between the various
ways in whichy; may be zero, e.gx, = 0, ora, > 0 bute; = 0 for childrenj € d(k).

(i) If ax = 1foranyk € U then we can assign probabilityto «;.. Then, for the purposes of calculation
only, we consider a reduced tree obtained by excising roitethe same manner as nodes with a
single descendant are excised from the physical multicasttdo generate the logical multicast tree;
see Section 2.1.

(iii) Any a; > 1isanonphysicalvalue, since the link probabilities aresnesgl to lie in[0, 1] (subject to (i)
and (ii) above). Theorem 3 tells us this will not occur forfaiéntly largen. Thus in implementations
of the inference algorithm, this event may be used to trigigedispatch of further probes.

(iv) The conditiony, = Zjed(k) 7; foranyk € U \ R prevents the calculation of, and hence also
link probabilities for links that includé as a vertex, namelg; = Ak/Af(k) anda; = A;/A;
for j € d(k). Instead, we estimate only the probabilitigs,«; : j € d(k)} on the composite
links from f (k) to the elements of(k), estimatingiza; = A;/A;y, j € d(k). The possibility
Vi > Zjed(k) ~r. is precluded by the relations (25) and (26) below. Equalitgurs only if the
observed losses satisfy the strong dependence propettyatia packet reaching a receiverfik)
reaches no other receiver it(k).
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5.2 Computation of the Estimator on a General Tree

In this section we describe the algorithm for computingn a general tree. An important feature of the
calculation is that it can be performed recursively on tré&@st we show how to calculate thg. Denote by
()A(k(i))kemzmwm the measured values at the leaf nodes of progegs ». Define the binary quantities

(Yi(4))keviz1,2,..n recursively by

Yi(i) = Xi(i), keR (24)
V(i) = \/ Yi(), keV\R (25)

J€d(k)

so that .
T o= 0O Vi(i) (26)

=1

For simplicity we assume now thate I'((0, 1)#Y), so that, if necessary, steps (i) and (i) of Section 5.1
have been performed on the data and/or the logical multicastin order to bring it to this form. The
calculation ofa can be done by another recursion. We formulate both rems$iopseudocode in Figure 7.
The procedurdind_gamma calculates the’;, and?;, assumingY}, initializes to X, for k € R and0
otherwise. The proceduiefer calculates thé&. The procedures could be combined. The full set of link
probabilities is estimated by executingin(1) where nodd is the single descendant of the root ndde

Here, an empty product (which occurs when the first argumeinfer is a leaf node) is understood to
be zero. We assume the existence of a rowgoieeforthat returns the value of the first symbolic argument
which solves the equation specified in its second argumerg. kiidw from Theorem 1 that under the

conditions fory a unique such value exists.

5.3 Implementation of Inference in a Network

The recursive nature of the algorithm has important consecgs for its implementation in a network set-
ting. Observe that the calculation ©f and A, depends onY only through the()%)jed(k). Put another
way, if j is a child of, the contribution to the calculation &f. of all data measured at the set of receivers
R(j) descended fromj, is summarized througﬁ}. In a networked implementation this would enable the
calculation to be localized in subtrees at a representatde, the computational effort at each node being
at worst proportional to the depth of the tree (for the nods ththe representative for all distinct subtrees
to which it belongs).

Moreover, estimates from measurements at receNét$ descended from a nodeare consistent with
those from the full set of receivers in the following sensgedttingmain(k) yields theA; calculated by
main(1) as the value fotv;. Thus is the effective probability that a probe traversedifibus) link from the
root 0 directly tok. But when the full inferencenain(1) is performed, it is not hard to see that th@bey
Ap = Hf(:ko) si(), 1.€ the probability of traversing the path frdnto & without loss.
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procedure main (k) {
find_gamma (k) ;
infer (k,1);

}

procedure find_.gamma (k) {
foreach (j € d(k) ) {
Y; =find_gamma (j ) ;
foreach (i € {1,...,n}){
Yili] = Ye[i] V Y5[1]

}
} N
Y =0T YT Vil
return Yy ;

1

procedure infer (&, A);
Ay, = solvefor( Ay, , (1 =7k /Ar) == [Tje a1 = 75/Ak) )i

ak:Ak/A;
foreach (j € d(k) ) {

infer ( j, Ag ) ;
}

Figure 7: BEUDOCODE FORINFERENCE OFLINK PROBABILITIES

6 Simulation Results

We evaluated our inference techniques through simulatimhverified that they performed as expected.
This work had two partsmodel simulationend TCP simulations In the model simulations, losses were

determined by time-invariant Bernoulli processes. Thessds follow the model on which we based our
earlier analysis. In the TCP simulations, losses were dagei¢oie overflows as multicast probes competed
with other traffic generated by infinite TCP sources. We us€® Dbecause it is the dominant transport
protocol in the Internet [29]. The following two subsectsatescribe our results from these two simulation
efforts.

6.1 Model Simulations

Topology. For the model simulations, we used ad hoc software writteG-+. We simulated the two
tree topologies shown in Figures 3 and 4. Node 0 sent a seguémaulticast probes to the leaves. Each
link exhibited packet losses with temporal and spatial pahelence. We could configure each link with a
different loss probability that held constant for the dimaiof a simulation run. We fed the losses observed
by the leaves to a separate Perl script that implements thieirce calculation described earlier.
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Figure 8: GONVERGENCE OFINFERRED LOSS PROBABILITIES TO ACTUAL LOSS PROBABILITIES IN

MODEL SIMULATIONS. Left: Two-leaf tree of Figure 3 with parametefs = 0.02; @, = @3 = 0.05.

Right: Selected links from four-leaf tree of Figure 4, witarametergy; = 0.01; @, = 0.1; @3 = @4 =

@s = ag = 0.01; @7y = 0.5. The graphs show that inferred probabilities converge thiwi0.01 of the
actual probabilities after 2,000 or fewer observations.

Convergence Figure 8 compares inferred packet loss probabilities taeddoss probabilities. The left
graph shows results for all three links in our two-leaf tamy, while the right graph shows results for
selected links in the four-leaf topology. In all cases, tifelired probabilities converge to within 0.01 of the
actual probabilities after 2,000 observations.

Figure 9 compares the empirical and theoretical 95% configlémervals of the inferred loss proba-
bilities for the two-leaf topology. The empirical intergalvere calculated over 100 simulation runs using
100 different seeds for the random number generator thariiesl the Bernoulli processes. The theoretical
intervals are as predicted by (20). As shown, simulatiorches theory extremely well — we show the two
graphs separately because the two sets of curves are mglithable when plotted together. For 2,000
observations, the confidence intervals lie with within 20¢he true probabilities.

It may seem that thousands of probes constitute too manyonletesources to expend and too long to
wait for a measurement. However, it is important to note thatream of 200-byte packets every 20 ms
represents only 10 Kbps, equivalent to a single compresséiod &ransfer. Furthermore, a measurement
using 5,000 such packets lasts less than two minutes. Tireidg exist a number of MBone “radio”
stations that send long-lived streams of sequenced msifieekets. In some cases we can use these existing
multicast streams as measurement probes without addittosa Overall, we feel that multicast-based
inference is a practical and robust way to measure netwar&mjcs.
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Figure 9: AGREEMENT BETWEEN SIMULATED AND THEORETICAL CONFIDENCE INTERVALS. Left:
Results from 100 model simulations. Right: Predictiongfi@0). The graphs show two-sided confidence
estimates at 2 standard deviations for link 2 of the foufdeze of Figure 4. Parameters wete = 0.01;

@y =0.1; @3 = @y = @5 = ag = 0.01; @7 = 0.5. Simulation matches theory extremely well — the two sets
of curves are indistinguishable when plotted in the samphgra

6.2 TCP Simulations

Topology. For the TCP simulations, we used thenetwork simulator [18]. We configurets to simulate
tree topologies shown in Figures 3, 4 and 11. All links hadMtps of bandwidth, 10 ms of propagation
delay, and were served by a FIFO queue with a 4-packet lirhiisTa packet arriving at a link was dropped
when it found four packets already queued at the link.

In each topology, node 0 sent multicast probe packets gexaog a source with 200-byte packets and
interpacket times chosen randomly between 2.5 and 7.5 misedeaf nodes received the multicast packets
and monitored losses by looking for gaps in the sequence ewsdj arriving probes. We fed the losses
observed by the multicast receivers to the same inferenpkeimentation used for the model simulations
described above. We also haslireport losses on individual links in order to compare irgdrfosses with
actual losses.

In the two- and four-receiver topologies, each node maiethiTCP connections to its child nodes.
These connections used the Tahoe variant of TCP, sent byi@(packets, and were driven by an infinite
data source. Links to left children carried one such TCPRasatrevhile links to right children carried two
TCP streams. The link between nodes 0 and 1 also carried oResif&€am.

In the eight-receiver topology, the traffic more more dieersith 52 TCP connections between different

pairs of nodes, giving rise to approximately 8 connecticardipk on average.
Convergence Figure 10 compares inferred loss rates to actual loss oatsglected links of our two- and
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Figure 10: TRACKING OF ACTUAL LOSSRATES BY INFERRED LOSS RATES IN TCP SMULATIONS.
Left: Two-leaf tree of Figure 3. Right: Selected links frowuf-leaf tree of Figure 4 (some pairs of
probabilities are offset for clarity). The graphs show tift inferred loss rates closely track the actual loss
rates over 10,000 observations.
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Figure 11: TRACKING OF ACTUAL LOSS RATES BY INFERRED LOSS RATES IN TCP SMULATIONS
WITH DIVERSE BACKGROUND TRAFFIC. LEFT: Eight-leaf binary tree. RHT: Close tracking of actual
loss rates by estimated loss rates as number of observiimeseased up to 1,000.

four-leaf topologies. As shown, the inferred rates closedgk the actual rates over 10,000 observations.
Figure 11 compares inferred and actual loss rates in the-sighiver topology with diverse background
traffic; in this case the tracking is even closer.

We note that the inferred values are accurate even thougheqoeerflows due to TCP interference
do not obey our temporal independence assumption. TCP isstyljpacket source, particularly in the
region of exponential window growth during a slow start [®].our simulations, multicast probes are often
lost in groups as they compete for queue space with TCP bul$iss phenomenon is readily apparent
when watching animations of our simulations with teem tool [17]. Inspection of the autocorrelation
function of the time series of packet losses for a series péements predominantly showed correlation
indistinguishable from zero beyond a lag of 1 (i.e. grediantback-to-back losses). As we explain in more
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Figure 12: ACCURACY OF INFERENCE INTCP SMULATIONS. Left: Two-leaf tree of Figure 3. Right:
Four-leaf tree of Figure 4. The graphs show normalized rosamsquare differences between actual and
inferred loss rates, computed across 100 simulationsr Afténitial transient, inferred loss rates settle down
to within 8 to 15% (in the two-leaf tree) and 4 to 18% (in therfteaf tree) of actual loss rates, depending
on the link. The RMS error was reduced to approximately 1% bylifging the MLES to correct for spatial
loss dependence.

detail in Section 8, the estimataris still asymptotically accurate for large numbers of potden losses
have temporal dependence of sufficiently short range. Hewyéwe rate of convergence of the estimates to
their true values will be slower.

Figure 12 shows the Root Mean Square (RMS) differences leetwee inferred and actual loss rates
in the two- and four-leaf topologies. These differencesensaiculated over 100 simulation runs using 100
different seeds for the random number generator that gextemtime between probe packets. As shown,
the differences can drop significantly during the first 2,008ervations. However, at some point they level
off and do not drop much further, if at all. This persistermaals a systematic, although small, error in the
inferred values because of spatial loss dependence. Inrouladions, the same multicast probe is lost on
sibling links more often than the spatial independencerapsion dictates. These dependent losses lead the
inference calculation to underestimate losses on thengilhilnks and to overestimate losses on the parent
link.

We can quantify the spatial loss dependence present initindagions. We can also calculate the ef-
fect of such dependence on the inferred loss probabiliflesxkending our previous analysis. Thus a prior
estimate of the degree of dependence could be used to oloa@cions to the Bernoulli inference. We
discuss this in more detail for spatial dependence in Sedtiand give an example of how to apply the
correction. Applied to the inferences on the two-leaf tremsharized in Figure 10, they reduce an RMS
error of between 8 and 15% to one of around 1%. The key obsemféhind these analyzes is that the
error in the inferred values varies smoothly with the degregpatial dependence. The greater the depen-
dence in the network, the larger the error. We can arrangedoelated losses in a simulated network,
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for example by creating synchronized interference streamsibling links. However, the results for the
eight-receiver topology with diverse background traffipgort our belief that large and long-lasting spatial
loss dependence is unlikely in real networks like the Irdebecause of their traffic and link diversity.

7 The Analysis and Correction of Spatial Dependence
7.1 Analysis of Spatial Dependence

When spatial dependence present in packet losses, theulemodel assumption is violated. But even
with such dependence, we can still ask what arentlaeginal loss probabilities for each link separately.
In this section we quantify the effects of this dependenaksirow how they may be corrected for on the
basis of a priori knowledge of them. We propose that this Kedge should be obtained by independent
measurements on instrumented networks. Moreover, welisstahat dependence deforms the Bernoulli
estimatesontinuouslyin the sense that small divergences from independence dbs$ses lead to small
divergence of the estimates of the marginal loss probagslitom their true values. For binary trees we find
that the effect of such dependence on the estimates of nahigiss probabilities for links in the interior
of the network is second order, and become negligible inoregf the network across which loss and
dependence change little.

One motivation for considering dependent losses comes thenwell-known example of synchroniza-
tion between TCP flows which can occur as a result of the stawi-after packet loss; see [9]. Flows
which have experienced common loss on a linkill then have some degree of dependence. Viewed as
background traffic against which the probe packets competg,can be expected to give rise to dependent
losses of probe packets on links on the subtree descended:frélowever, the dependence of probe loss
can be expected to decrease on progressing down the treég:frdmis happens if we assume that flows
which became dependent though losses a given hdggically have a spread of destination address; then
their paths through the network will subsequently diverfleen the fraction of the total traffic contributed
on links descended fromwill decrease on progressing down the tree figrhence the dependent influence
of such flows on probe loss will decrease likewise.

The foregoing discussion motivates us to capture such diegpee to first order by considering, within
the class of dependent loss processes, those for which diepes only occurs between losses on sibling
links, i.e., between thos¥; and X, for which f(j) = f(j’). LetA = {{j1,...jn} C d(k),k € V\ R}
denote the set of subsets of sibling links. We charactehiegaint distribution of theé X )<y through the

family of joint conditional probabilitie$ay, .. x,. ) (i....i.1ea Where fork = f(j1) = ... = f(jn),
aj, . =PX;, =1,...,X;, = 11X, =1] (27)

(For Bernoulli lossa;, ..., = I _; «;,.). We now derive analogous relations to (6) in this case. Itis
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convenient to work initially with the quantities
&k == P[QE) | X = 1] = P[Qk) | Xpry = 1/P[Xr = 1| Xy = 1] = B/ eu (28)

Forn < #d(k) letd, (k) denote the set of subsets d(ft) of cardinalityn. By the Inclusion-Exclusion
Principle (see e.g. Chapter 5.2 of [25])

#d(k)
PIQK)] =P [UjeayQ()] = D (=)™ > PRGYN...NQI, (29)
n=1 {71,-2dn }Cdn(k)

from which we find using (27) and (28) that

#
§w = (1) > Uy seojnin -+ - (30)

1 {i15esin} Cdn (k)

s
—_
ko
=

n

Reexpressed in term of the we obtain the following analog of (10) fare U \ R:

#d(k)
. Vi v Vin
Hi(Ag, 5 9) = y/Ax = Y (=)™ | Z Vit esdn W =0 5D
n=1 {j1+dn}Cdn (k)

wherev;, i = aj G /(e coag,) and we write = (1, ) () iavea- FOr a given loss model
one can in principle computg and computet; from ~;. Rather than do this, however, we establish some
structural results.

We can compare the actual valuég(v>) which solve (31) for4, with those obtained from (10) with
the Bernoulli assumption, which we can write4g(1). The following theorem shows that the deformation
from Ay () to Ax(1) is continuous in the neighborhood of the Bernoulli values: 1 (i.e. ¢;, . ;. =1
forall {j1,...,7,} € A).

Theorem 6 Letay > 0. There exists a neighborhoodof= 1 in R#4 on whichi — Ay (1) is continuous.

Proof of Theorem 6: The result then follows from the Implicit Function Theorese¢ [26]) provided that

8Aka(Ak(1)7771) 7£ 0. But Hk(Ak7771) = Hk(Ak77) = h(7k/Ak7{7j/7k 1 J € d(k)}) appearing
in (10) and Lemma 1, and so the result follows froph(z(c), ¢) < 0 as established during the proof of
Lemma 1m

7.2 Spatially Dependent Losses in Binary Trees

WhenT is a binary tree we can obtain explicit results. Fax U\ R write 1)(¥) = ¥, whered(k) = {7, j'}
Then from (31) we have

Ay, ke R
'Yk:{ g (32)

i+ i+ Wy /Ay, ke U\R
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Let a(¢) be the true value of, i.e. that obtained by combining (32) with (11(1) is then the value
previously obtained using the Bernoulli assumption. ket 1 denote the single descendent of the root
nodeo.

Theorem 7 Let7 be a binary tree.
i) There is a bijectior’,, from A to G such thaf™ ! (v) = a(v), with'; = T from Theorem 1.
K K

(ii)

ay (1) /40, k=1
ag() = { g (1)) keR (33)
ap (1)) 7 (R) - otherwise

Proof of Theorem 7: From (32),A1(v) = (v; + v; — &)/ (viv; ™) = Ar(1)/4*). The form of (ii)
then follows from (11); this is used as the definitiorﬂgj1 for (i). 1

Theorem 7(ii) has the interesting interpretation that mittterior of the network (i.e. except for notle
and the leaf-nodes) the error in usimg(+) in place ofay (1) is a second order effect. For the error depends
only on the on the relative magnitude of correlations at@ajanodes through the quotiefit (¥)) /(%) |
the link probabilities and dependencies are (approximpgejual at each node of the tree, then this quotient
will be (approximately) one, and so the Bernoulli estin@té1) := I';*(7) will be (approximately) equal
to F;lﬁ), for interior k. Thus we see that the presence of dependent losses in bieasygerturbs the
Bernoulli-based estimator little for links within the imter of regions across which the degree of dependence
is similar. On the other hand, at the boundaries betweenrggibns, a priori knowledge of the degree of
dependence can help make the estimates more accurate. dtivsites future work both in simulation
studies and instrumentation of heterogeneous networksdier do establish the degree of dependence is
influenced by dynamic factors such as utilization, and (caraively) static factors such link technology
and relative link speeds.

Itis interesting to see that the TCP Simulations of the 4#le® display some of the features one might
expect from the above discussion. Observe in the RHS of €igQrthat for the leaf-links (6 and 7) the
inferred loss rate underestimates the actual loss ratée ¥amilink 1 it overestimates it. For the interior link
3, the inferred and actual values are almost identical. iBliensistent with the above discussiomijf > 1
andys ~ 13y = ¢1. Note that ford(k) = {j,j'},

> 1 <= ;> ajop <= E[X;X; | Xi=1] > E[X; | X = 1JE[X; | Xi =1]. (34)

In other wordsy);, > 1 iff X; and.X;, are (conditional onX;, = 1) positively correlated. We expect this to
be the case when synchronized losses occur as describedséathof this section.
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RMS difference from actual loss
adjusted original

link 1 0.012 0.142

link 2 0.009 0.114

link 3 0.007 0.089

Table 1: ®RRECTING FORSPATIAL DEPENDENCE RMS proportional difference of inferred from actual
losses ims simulation of two-leaf tree in Figure 3, after 10,000 prab&djustment of inference to account
for dependence (left column) shows order of magnitude ingarent over original inference (right column)

7.3 Correction for Spatial Dependence in Binary Trees

If some knowledge of the degree of dependence in the trafiwadable, then this can be used to adjust
the inferred loss probabilities accordingly. This motesaéxperimental studies of real networks with instru-
mented links in order to ascertain the magnitude of the digere. We intend to undertake these experi-
ments in the future. Here we show how knowledge of dependeartbe used to correct the Bernoulli-based
estimates of link probabilities for non-interior nodes. @émsider the set of leaf-nod¢g, j'} € d(k). Let

Y; have the the distribution of ; conditioned onX;, = 1. Suppose we know a priori an estimatéor the
correlation ofY; andY;,. Now the theoretical value of the correlation is

Cov(Y:. YV e oy
e oY) g 050 (1— A ) (35)
y/Var(Yj)Var(Y;) ;e ;.

Thus we expect to improve our estimagg1) by usinga; (1)2(*) instead where>(*) is obtained from (35)
by usingx anda(1) in place ofs anda.

To test this approach, we measured the loss dependencensm amulation of 10,000 probes in the
two-leaf tree, then conducted 100 furthes simulations of 10,000 probes, and adjusted the inferrdd lin
probabilities in this manner. Comparing the actual, addsand originally inferred loss ratios we see this
provides improvement: the root mean square error goes da#m ietween 8 and 15% (depending on the
link) to about 1% in this case; see Table 1.

8 Temporal Dependence and Convergence Rates
8.1 Ergodicity and Asymptotic Accuracy

In this section we investigate the impact of temporal depand on the estimatar. Denote byX (n) =

(X1 (n))rev the (spatial) process of thé probe. The first observation is that, if we replace the assiomp

of independence between probes to merely assuming thateti@dral) processX (n)),.cx is stationary
and ergodic, the@ still converges tav almost surely as the number of observations growsstoThis is
because, by definition, the observed probabilfie$the ergodic process converge almost surely to the long
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term averages. By stationarity, these are justithe I'(«) as before, where the are the (time)-marginal
distributions of the link probabilities. A simple arguménvolving the Inverse Function Theorem (e.g.,
see [26]) shows thdt~! is continuous or’((0, 1)#Y), and henc& — « almost surely. Note we do not
rely ona being the maximum likelihood estimator, with respect to esgrarameter space, for the marginal
probabilities of the general process. Rather, we have shown that the Bémstimator is asymptotically
accurate for stationary ergodic processes.

In the remainder of this section we examine the rate of cgarere whenX possesses temporal depen-
dence. In an application of the method to measurement omedabrks however, inherent variability (due
do large scale events such as routing changes) may impdsedimthe durations over which we can expect
the loss process to be stationary. For this reason it is itapbto understand in more detail the impact of
time-dependent packet loss on convergence rates. We grapesamine this through models. Markovian
models of packet loss have been proposed on the basis of’abieas of the Internet (e.g., see [1]), although
some longer bursts of losses were also found. We shall seththprice of temporal dependence is slower
convergence than for the Bernoulli case. One can undergténdualitatively from the fact that burstiness
in the packet loss processes means that the long-term avefadakes longer to approach.

8.2 Convergence Rates for Markovian Congestion

The main tool in understanding convergence rates is theviailg. LetF,;1 denote the nodgé component
of I'"!, so thatay = ;' (). Suppose now that the random varialsfeare asymptotically Gaussian as
n — oo With

Vi (F =) 25 N(0,0), (36)

whereo;;, = lim,_,., nCov(¥;,7x), for j, k € U. Here—Z denotes convergence in distribution. Then by
the Delta method (see Chapter 7 of [27]), siﬂit;é is continuously differentiable o& (see Theorem 1),
' (7) is also asymptotically Gaussian:

Vi (TP A) — ax) 25 N(0,1), where v, = VI (7) -0 - VIT (7). (37)

In the remainder of this section we establish (36) withindbetext of Markov loss processes, and perform
some explicit calculations for the 2-leaf tree.

We expand the class of loss processes as follows. We willelefidarkov procesgY (n)),ecn, Where
Y (n) will describe the state of the network encountered by:ttieprobe; this description is used whether,
for example, the interprobe times are constant, variablamdom.Y is constructed as follows. For each
k € U let (Yi(n)),en be an independent Markov process on the state sfifade. We think ofYj(n) as
representing the state of lirkkat timen, taking the valué if the link is congested] if it is not. A probe
that encounters a congested link is lost. We represent yHisebprocess{ = (X (n))rev nen defined by
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letting X (n) be conditionally independent ¢X ; (1), Y;(m)), .. ., ., 9iven(X ) (n), Yi(n)), with

(Xelm) | Xy V) = { 32 ) 0

; (38)
WhenY},(-) is Bernoulli with probabilitye, to be in the staté, then theX (n) are independent for eaeh
with the X (n) distributed as described in Section 2.2.is not a Markov process, but rather is a function
of the Markov proces¥”. Moreover,X (n) is a some function of (n) alone, which we denote by. For
eachk € U, let®(k) be the set of configurationsof Y such thaty(y) has outcome (y) (g, in Q(k), i.e.,

®(k) = {y € {0, 1}* : x(y)(m) € QUK (39)

Let ) denote the transition matrix fdr, i.e.,Q = @reyQ(k) is the Kronecker product of the transition
matrices of the individua},. Letq(k) = {1 — ax, ai} and lety = @rerrq(k) be the corresponding product
distribution.

Theorem 8 With the above notation, assumg < (0, 1) forall £ € U. Then (37) holds with

Ok = Z Z Qy(5yz_qZ)+QZ( ve — Q)| (40)
m=1

yED(j) € (k)

where)™ denotes then-step transition matrix.

Observe that in the Bernoulli case, the second term in (79has, while the first depends only on the
marginal probabilitiesr. This means that the first term in (79) gives rise to the diagjelements of (23);
in what follows we can thus restrict our attention to the é&se in the asymptotic variance as specified by
the second term.

We parameterize the transition matrixof as

auy = (1w B ), @)

wherew;, € (0,1/ max{a,@}]. wi parameterizes the burstinessYaf without changing its marginal
probabilities. Yy (m) and Yy (m + 1) are positively (or negatively) correlated whep > 0 (or w; <
0). Whenw;, = 0, Y} is Bernoulli. By calculation of the matrix powers @f(k) through its spectral
decomposition, we find th&" (k),,.q. (k) is given by the matrix

(@' (1), = F () + G0, where F() = o (1) G = a0 0. @)

Expanding?™ = @xerQ™ (k) and summing over we find

Y@QE - a)a] = D g(W) @rew F(k) @ (@renwG (k) (43)
m=1 wcU

whereg(0) = 0 and otherwisg (W) = ([T,cw wr)/(1 = [ Tpew wi)-
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8.3 Example: the Two-leaf Tree

Taking gradients in (14)—(16) and reexpressing them indesta we find

VI (P(a)) = L7070 gpop(ay) = ELL®)  gporpigy) = ELERL gy

[a D05} 103 a0y
Using the notatiofiabc), with a, b, ¢ € {0, 1}, to denote a value df (n), we have from (13):
®(1) = {(111), (110), (101)},  @(2) = {(111), (110)}, @(3) = {(111), (101)}. (45)

For simplicity we set they;, andw;, equal tow, w. Then (43) becomes

3@ - we] = 2P0 2 PRy 6 Fs) as)
+ﬁ (F()® F(2) @ GB) + F(1) @ G(2) ® F(3) + G(1) @ F(2) @ F(3))
+—— (F) ©G2) 0 G(3)+ G1) 0 G2) 0 FB3)+G(1) © F(2) 9 G(3)).

Combining (44), (45) and (46) in (37) in (46) with Theorem 8
a—o(l+ ala—2))

Iy = - : (47)

L o= Ii=- (48)
- 2 2 2 2 2,2 3 3 2,.,3

n = 11—11_|_0‘W(04 +ow+a w—l—c;(l—f;u)(i—_?o;;; + w? — aw® + 02w?) (49)

L (Gl e i G 0) (50)

all +w)(l —w3)

From (42),w is the geometric decay rate of correlations. We can intéefpre 1/(1 — w) as the mean
correlation time of the losses;= 1 for Bernoullilosses. In Figure 13 we display the increasasymptotic
variance by plotting the ratig, /Z;," of the asymptotic variance with Markovian correlationgtattwithout.
We do this fora € [.5,1] andr € [1,10]. v, /Z;; displayed very similar behavior. The ratio is increasing
in correlation timer, and in the link transmission probability

8.4 Temporal Dependence and Probing Methodology

An approach to avoiding the effect of temporal dependenaddime to time probes at intervals larger than
the typical correlation time of losses. Although this wibiuce the number of probes required for a given
level of convergence, the absolute time of convergence mengase due to the increased time between
probes. Increasing the probes spacing by a factdout with all probes lying within a given measurement
period would increase the variance of the estimates by arfatfor independent losses. With Markovian
losses, the effect of dependence between probes could Hm@atexl by takingr’ > 7, the correlation
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Figure 13: MPACT OF TEMPORAL DEPENDENCE ONCONVERGENCE OFESTIMATES: The ratiov; /77"
of the asymptotic variances af with and without temporal dependence. Ratio is increasirgpirelation
time 7, and in link transmission probability.

time. But for the two-leaf tree we see from (47) that wher~ 1, thenv,/Z;,' — 1/(1 — w) = 7 for

k = 1,2,3. Thus for small loss probabilities, the slow-down in therat convergence af is no worse than
that obtained by spacing probes to be approximately indigrgn In this example then, one may as well use
all probes irrespective of their mutual dependence, rati@r try to space them out to avoid dependence.

We envisage that direct measurement of the correlationdimeceived probes could be used, in combi-
nation with calculations of the previous section, to detemthe number of probes, in an ongoing measure-
ment, that are required in order to infer the link probalgitifor a given accuracy. In the example considered
we have seen that in order to estimate the increase in thepasijowariation due to dependence between
losses of small probability, it is sufficient to determine torrelation time of observed losses. When losses
are heterogeneous, this will be conservative, since thezautelation will be dominated by the component
with slowest decay.

Arelated issue is the randomization of interprobe timegdeoto avoid bias in the selection of network
states which are observed via the probes. Probes with erpialie distributed spacings will see time
averages; this is the PASTA property (Poisson Arrivals SeeTAverages; see e.g. [32]). This approach
has been proposed for network measurements [23] and is codgideration in the IP Performance Metrics
working group of the IETF [8]. In the context of the above dission, lengthening the interprobe time is to
be understood as increasing the mean of the exponentiabdisdn.

9 Summary and Future Work

In this paper, we introduced the use of end-to-end measuntsroémulticast traffic to infer network-internal
characteristics. We developed statistically rigoroutmégques for estimating packet loss rates on internal
links, and validated these techniques through simulata.showed that the inferred values quickly con-
verged to within a small error of the actual values. We alss@nted evidence that our techniques yield
accurate results even in the presence of moderate levedspioral and spatial loss dependence.

28



We are extending our work in several directions. First, wee agplying multicast-based inference to
metrics other than packet loss. In particular, we have dgesl estimators for link delay. We are also
investigating ways to infer link bandwidth and network ttggy using multicast probes. The ability to
determine topology would free our measurements from thenagson of a priori knowledge of topology or
of a separate topology-discovery tool.

Second, we plan to do more extensive simulations. We plaunistgute RED queueing for FIFO queue-
ing to study the effect of RED on loss dependence. We alsaplsubstitute Poisson probes for CBR probes
to avoid inadvertent synchronization of the probe traffitwmgieriodic network processes. At the same time,
we plan to simulate more complex topologies than the simmeples used throughout this paper. Topolo-
gies other than complete binary trees would stress our MLBdoeral trees, while larger topologies would
test the convergence properties of our techniques on largbtem instances. This will be complemented
by a theoretical analysis of the dependence of convergees on topology. Furthermore, we would like to
explore how closely loss rates experienced by our probegawith loss rates experienced by other network
applications and protocols, for example TCP. We expectdbamulticast-based measurements will yield
ambient loss rates that are meaningful in a broad context.

Third, we plan to experiment with multicast-based infegenan the Internet. As a preliminary step, we
plan to measure ambient dependence in the real network gdadmne the extent to which we need to adapt
our estimates to their presence. We also plan to deploy éeneince tools in multicast-enabled portions of
the Internet, including the MBone, to test our techniquea ozal network.

Finally, we would like to integrate our inference tools withe or more of the large-scale measurement
infrastructures under construction. NIMI seems partidylsuited because of its intended role as a general
framework where many types of measurement can be carried batchallenge will be to adapt a unicast-
based infrastructure to perform multicast-based measmtnand in particular to schedule measurements,
collect results, and perform inference calculations wiaegd numbers of receivers are involved.

In conclusion, we feel that multicast-based inference is\aguful approach to measuring Internet dy-
namics. The rigorous statistical analysis behind our tiegtes gives them a firm theoretical footing, while
the bandwidth efficiency of multicast traffic gives them muagsired scalability. Robust and efficient mea-
surements are increasingly important as the Internetwoesito grow in size and diversity.

10 Proofs of Theorems

Proof of Lemma 1: Let hy(2) = (1 — ), ho(z,¢) = ho(z) = [[;(1 — ¢z). Letg; = /(1 — ¢z).
Then forz € [0, 1] Y (z) = 0, h(z) = hao(z) {(Zi %) -3 qf} > 0. Henceh(z) = hy(z) — ho(z) is
strictly concave orf0, 1]. Now ~(0) = 0, ~(1) < 0 andh’(0) = —1+ >, ¢; > 0. So sinceh is concave
and continuous oif0, 1] there must be exactly one solutionf¢z) = 0 for = € (0,1). Now set write
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h(z,c) = hi(z) — ha(z, c). Letz(c) be the unique solutiontb(z(c), ¢) = 0. The above derivation implies
that?'(z(c)) = (0h(z,c)/02)|,=0() < 0, SO in particular, is different fromd. Sinceh is continuously
differentiable, then by the Implicit Function Theorem [26 isc — z(c). g

Proof of Theorem 2: The idea is to split up the sum (2) into portions on whfé% is constant. These
will be Q(k), theQ( (k) \ Q(f=L(k)) fori = 1,2,...,L(k), andQ(0)".

Consider first the case thate (k). Thenay occurs inp(z) as a factor, and henc—aé%k(l’) = 1/ay.
Whenz € Q(f (k) \ Q" (k)) fori = 1,2,..., ((k), thenp(z) = 5 si-1(;, Ri(x) whereRy (x) does not
depend ony; (or indeed on any; for j < f=1(k). Hence forz € Q(f (k) \ Q(f~(k)),

dlog p(z) _ 1 3Bfi—1(k) (51)
Jday, ﬁfi—l(k) Jday,
Similarly, whenz € ©(0)¢, _
80&]g BO 8ak
On combining these:
oL 1 1 053,
— = — Z n(z)+ =——-— Z n(z) (53)
Dok “k zeQ(k) Bo Otk zeQ(0)°
£(k) 3
1 8ﬁ 1—1
+Z{ﬂ a3 n<w>}
=t |\ Prtm TR o)
For the derivatives, some algebra with (7) shows that
P _
WBrwy _ ) =P By _ B H V) = By (55)
dou Bpmiy O W opzy By
The right hand term in equation (55) follows by iterating thigldle term. Observe that
g q
n(x) . . n(x ~
Z % = Vi) — Vo(k) and Z % =1-—"7p. (56)
z€Q(f (R)\Q(S 1 (K)) z€Q(0)°
Combining (53), (54), (55) and (56) we get
14£(k) ~ ~ i—1
oL . Yri(ky — Vfi-t Qpm(py — Bpm
%@—:'Vk_ﬁkz f(k_)‘ (k) f (k) fmk) (57)
oo i Prmw s P

Here we adopt the convention that the empty product fer 1 meansl, and that the symboj; ) that
occurs when = 1 4 ((k) meansl.
Setg forallk € V. Fork = 0, (57) yields0 = 5, — fo(1 — o)/ 8, whence

Yo = Bo = 7o (58)
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For any othek, combining (57) fork and; = f(k) yields
?k _ @ (a] _ak + (Oéj - ﬂj)7j) . whence ﬁ _ ﬁkoﬂ — E (59)
B Bi Yoo B
Together with (58) this give§, = v, forallk € V. g

Proof of Theorem 3: (i) By the strong law of large numbers, — I'(«), P, almost surely, ag — oo.
Sincel’ is, in particular, bijective, then the model is identifiatdancel' () = I'(a’) impliesa = «'.

(i) Convergence ofy to v (from (i)) and continuity off~! (from Theorem 1) yield convergence of
a=I0"17F)toa =I"1y)asn — co. We now establish convergencedf Fix somea’ ¢ (0,1)#Y,
M c (0,1)*Y, 2 € Q and define

av)

Z(M,x) = allrgw log % = log p(z; ) — asllé%bg p(z;d). (60)

Observe thap(z; «) is polynomial in ther,, and hence continuous. According to Lemma 7.54 in [27], it
suffices to show that, for eaetf # o, there is an open seéf,,, containinge’, such tha€ . Z (N, X) >
—oo. (HereE,o is the expectation w.r.® o).

Look at the two terms irE o Z(M, X) for any M C (0,1)*Y. The first iSE o log p(X;a’) =
> seap(x;a®) log p(z; o). This is finite since log p is bounded fop € [0, 1] ands2 is finite. For the sec-
ond term, note thap(z;a/) < 1 = logp(z;a/) < 0 = supyeplogp(z;af) < 0 =
—supgreprlogp(a;a’) > 0= E o Z(M, X) > E,olog p(X;a®) > —oco. Finally, we note that although it
is not mentioned there, Lemma 7.54 in [27] requires idetiftg, which we proved in (i) above.

(iii) Now let « € (0,1)#Y be the true set of link probabilities. From part (i), wih, probability 1,
the MLE @ — « asn — oo. Hence, for each sequence of probes we have that &ufficiently large,a
lies in the interior of(0, 1)#U. For suchn, & must then solve the likelihood equation (12). We know from
Theorem 2, that solutions of the likelihood equation areuaj and hence this = a. g

Proof of Theorem 4: (ii) Recall V(k) = {j € V : j < k}, R(k) = V(k)n RandU = V \ {0}. Set
S(a) = (Sk(e))rev with Sp(a) = £2=(a) (the score vector). Theh,(a) = Cov(S;(a), Sy(a)) =
Eo(Sj(0) Sk()) SINCEE, (S1) = ¥,cq p(w, @) 7 log pl, ) = T, eq 72-p(x, 0) = 0,

Suppose thaf () is singular for somev = (ay)rer € (0,1)#Y. Then there exists some nonzero
vectore = (c)rer for whiche - Z - ¢ = 0. Butc - 7 - ¢ is the variance of the mean-zero random variable
¢ - S(«), so then we would have that S(«) = 0, P, almost surely, or equivalently

chmogapi(x’o‘):o Vo € Q (61)
keU U
sinceP,({z}) > 0 forall z € Q. We show that, in fact, (61) implies, = 0, first for k € R, then for all
keU.
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Letz(®) € Q be such thai:;o) = 1forall j € R, and for somé: € R let xgl) = 1for j # k ando for
j = k. Then

p(z(), H a;  while p(z! H a; (62)
jeu JEU\{k}
and so from (61)
Y S —0 while -4 Y Yoo (63)
‘ (&3} o . a;
= JEUN{k}

Combining the last two equations we find = 0.
We now proceed by induction. Fére U assume that; = 0 for all ; < £. We now prove that; = 0.
Let (%) be as before, and set

@ _ J 1 jeR\R(K)
Y —{OjeR@y (64)
Then
p(e®, @) = (@ + ardr) H o (65)
JEVAV(K)

whereg, = [y B; = PalX; = 0V € R(k) | X = 1]. Hence from (61)

cr(or — 1) _ C_j:07 (66)

) + Qo JeT (k) a;

recalling the assumption that = 0 for all ; < k. For the same reason (61) reads

Ly 2 (67)

A JEVAV (k) @

Combining (66) and (67), then we fing = 0. The equality of» with Z~! in the interior of the space of
parameters is standard under the conditions established during thef pfdl heorem 3; see, e.g., Chapter
6.4 of [11].

(iii) We refer to Theorem 7.63 of [27]. Clearlg is 3-times continuously differentiable g0, 1)#V

and has bounded expectation in some neighborhoaod off his establishes the relation (7.64) in [27].

dlogp(z,a)
dajyay

and the non-singularity of established in (ii) above, we are able to conclude the rggult

(@) is clearly finite on(0, 1)*Y. HenceZ is finite in (0,1)*Y, so together with Theorem 3

Proof of Theorem 5: Let j v k& denote the nearest common ancestof ahdk, i.e. j Vv k is the<-least
common upper bound gfandk. The proof proceeds by a number of subsidiary results. Sinaiges are
assumed independent, it suffices to evaluate all randontitjgarfior » = 1 probes.

(i) As |[a] — 0,

(a) 1= Ap = s(k) + O([@*);  (b) By =O[@l), (c) 1=y =s(k)+O([al"),  (68)
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where

s(k) =) _@;. (69)

ik
The relation (a) is clear by expanding = szk(l — @;). (b) follows by an inductive argument. Observe
from (6) that if (b) holds for alk € d(j), it also holds forj. But sinces;, = «y for leaf-nodes: € R, (b)
holds for allk. (c) then follows from the relation, = A (1 — Hjed(k) B;).
(i) As ||&|| — 0,

Cov(7;,7k) = s(j V k) + O(|[a]]*) (70)

To see this, we writ€ov(7;,7x) = E[7;7x] — E[7;]E[7x], andE[¥;] = v, by definition. Ifk is an ancestor
of j theny; = 1 = 7, = 1 and soE[y,7%] = ~;. Similarly, if j is an ancestor of, thenE[7;7;] = ~&.
Otherwisey; = 1,7, = 1 = ;v = 1, and so we writ€[7,7:] = P[7; = 1 | Xjvx = 1JP[Fx = 1 |
Xjvie = 1JP[X;jvi = 1] = P[3; = 1P[3) = 1]/P[X;vi = 1] = v;7%/Ajvk- Thus,

R(1 =) J=k
Cov(¥;,7k) = ¢ (1 — k) k= (71)
Yive(1/Ajvr — 1) otherwise
(70) then follows from (68) and the fact thav k = j whenj; > k.
(iii) As ||a]| — 0,
1 k=j
D(a) =D+ O(|[al]) where Dj,:=< -1 k= f(j) (72)
0 otherwise

To establish this, note first that(a) has inversé~!(«) whose elements afé (a)~1),; = dv,/da;. Now

dv;/0a; = v;/o; whenj > i. Whenj < ¢, then from the proof of Theorem 2

7)=400) B
11 11 B (73)
=1

m ked(fm()I\f™10)

i — A

Jda; -

¢
"
Jda; ‘o
From (68) (b), this goes to as||@|| — 0. Finally, for all otherj, v; does not depend om;, and so the
derivative is0. Summarizing, afa|| — 0,

1 i

0 otherwise (74)

D(@)™' =D+ 0O(|al) where D, := {

Since matrix inversion is continuous in an open neighbodiadohe non-singular matrices, then (72) follows
if we can show thaD;; andD;; are inverses. FirSC; Dy Di; = Dy; — Dy(); = x; as required. Second
S Di;Dj = Dig — Yjedth) D.i. The second term is only potentially non-zero wher i. In this case
the only term that contributes to the sum is whien ¢, giving —1. Hence) _, D;; D, = é;;, as required.

(iv) By (iii), and continuity of finite dimensional matrix pducts, we have dgv|| — 0 that

vik = Y Dijs(jV §') Dy + O(|[a@l]?). (75)

Ve
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It remains to evaluate

ZDZ']‘S(J' V j')Drjr = s(iV k) — s(iV f(k)) — s(f(i) V k) + s(f(i) V f(K)). (76)
53’
When: = k, theni vk =4, ¢V f(k) = f(¢) V f(k) = f(i) and so (76) yields(:) — s(f(7)) = @;,
All other possiblei and & yield zero, as we now show. If < ktheniVv k = f(i) V k = k, while
iV f(k) = f(i) v f(k) = f(k), and hence (76) is zero. The case< ¢ is similar. In all other cases
t,k<ivVkandsoaVvk=1tV f(k)=f(i)Vk=f(i)V f(k).n

Proof of Theorem 8: Sinceay, € (0,1), eachYy(-) is irreducible, and hence so ¥5(-), and sog is
the unique stationary distribution f@p, i.e. >°. Qy.q. = q,. Forn probesy; = - cq(;) 7y Where

gy=n"'>_ Syy (m)- By the Central Limit Theorem for Markov processes, see @lgapter 17 of [15]¢
is asymptotically Gaussian as— oo with

Vi (G = q) 5 N(0,€) (77)
where
&y = nli_}r{)lon(:ov((/]\y,?jz) = nh_}n(r)lo nt Z Z Cov(8y v (m)s 82y (m")) (78)
m=1m'=1
= qy(dy- _‘]2)‘|‘QZ( e = y) - (79)
m=1
n
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