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Abstract

End-to-end measurement is a common tool for network performance diagnosis, primarily because it
can reflect user experience and typically requires minimal support from intervening network elements.
However, pinpointing the site of performance degradation from end-to-end measurements is a challeng-
ing problem. In this paper we show how end-to-end delay measurements of multicast traffic can be used
to infer the underlying logical multicast tree and the packet delay variance on each of its links. The
method does not depend on cooperation from intervening network elements; multicast probing is band-
width efficient. We establish desirable statistical properties of the estimator, namely consistency and
asymptotic normality. We evaluate the approach through simulations, and analyze its failure modes and
their probabilities.

Keywords: multicast, end-to-end measurment, packet delay, statistical inference, topology discovery.

1 Introduction

1.1 Background and Motivation

Monitoring the performance of large communications networks and diagnosing the causes of its degrada-

tion is a challenging problem. There are two broad approaches to performance diagnosis. In theinternal

approach, direct measurements are made at or between network elements, e.g. of packet loss or delay, in-

volving possibly both active and passive measurements. This approach has a number of potential limitations:

(i) it may not be available for general users; (ii) coverage may not span paths of interest; (iii) measurements

may be disabled during period of high load; (iv) there are issues of scale gathering and correlating the mea-

surements in large networks; (v) how should per hop measurements be composed to form an end-to-end

view?

This motivatesexternalapproaches, diagnosing the network through end-to-end measurements, without

necessarily assuming the cooperation of network elements on the path. There has been much recent exper-

imental work to understand the phenomenology of end-to-endperformance (e.g., see [1, 2, 8, 16, 21, 24,
�This work was supported in part by DARPA and the Air Force Research Laboratory under agreement F30602-98-2-0238.
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Figure 1: Logical Multicast Tree (left) and two embedded tworeceivers trees (center and right).

25, 27]); There are presently several measurement infrastructure projects (including CAIDA [6], Felix [11],

IPMA [13], NIMI [15], Surveyor [31]) that collect and analyze end-to-end measurements across a mesh

of paths between a number of hosts. Theping andtraceroute diagnostic tools are widely used to

determine connectivity, roundtrip loss and delay in IP networks. pathchar [9] extends the approach of

traceroute to estimate hop-by-hop link capacities, packet delay and loss rates. These approaches have

several potential drawbacks: (i) delays may not be representative of regular traffic, since their generation of

Internet Control Message Protocol (ICMP) packets can have low priority in routers; (ii) roundtrip report-

ing and possibly asymmetric paths hinder the unambiguous attribution of delays to specific link directions;

(iii) encapsulation may hide the TimeToLive (TTL) field in the IP header from higher layers, and hence

approaches that depend on TTL manipulation–such astraceroute andpathchar–may only see single

composite hops between tunnel endpoints.

In response to some of these concerns, a multicast-based approach to active measurement has been

proposed in [3]. The idea is that correlation in performanceseen onintersectingend-to-end paths can be

used to draw inferences about the performance characteristics of their common portion, without cooperation

from the network. Multicast traffic is well suited for this since a given packet only occurs once per link in

the multicast tree. End-to-end characteristics seen at different endpoints are then highly correlated. In [3] it

was shown how to exploit these correlations in order to determine the per link loss rates in the underlying

logical multicast tree. Another advantage of using multicast is scalability. Suppose packets are exchanged

on a mesh of paths between a collection ofN measurement hosts stationed in a network. With unicast, the

probe load on the network may grow proportionally toN2 in some links of the network. With multicast, the

load grows proportionally only toN .

1.2 Contribution

In this paper we describe a method to infer the variance of internal link delays from measured end-to-end

delays of multicast probe packets. Furthermore, this data can be used to determine the logical multicast

topology if it is not supplied in advance. The method rests on(generalizations of) the following obser-

vation. We assume first that link delays are independent random variables, both spatially (i.e. between

different links) and temporally (i.e. between different packets). Consider the logical multicast topology of

Figure 1(left), in which packets are multicast from the root0 to receivers at leaf nodes. LetD
i

be the delay
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experienced by packets on linki, and letX
i

be the cumulative delay experienced along the path from the

root 0 to nodei. Focus on the embedded 2 leaf tree formed by the root0, leaf nodes 1 and 2 and their nearest

common ancestork; see Figure 1(center). From the independence of link delays, it follows that

Var(X

k

) = Cov(X

1

;X

2

); (1)

a more formal proof is given later. Similarly, consider the tree formed by the root0, the leaf nodes 1 and

3, and their nearest common ancestorj; see Figure 1(right). ThenVar(X
j

) = Cov(X

1

;X

3

). Observe that

X

k

= X

j

+D

k

, andX
j

andD
k

are independent. Therefore,

Var(D

k

) = Var(X

k

)� Var(X

j

) = Cov(X

1

;X

2

)� Cov(X

1

;X

3

): (2)

This expresses the variance of the packet delay on the internal link from nodei to nodek, in terms of the

covariances of source-to-leaf delays. We can form an unbiased estimate of the latter directly from end-to-

end measurements, from which we obtain unbiased estimatorsfor (1) and (2). In Section 2 we specify the

delay model, and these basic estimators for a known topology. We also give a generalization for estimating

higher order delay moments in certain topologies.

In a general topology there exists a convex family of unbiased delay variance estimators based on (1)

and (2). Each is consistent, i.e., it converges almost surely to the true value. Section 3 presents estimators

for cumulative and link delay variance that have the fastestasymptotic rate of convergence as the number of

probes increases. Packet loss reduces the number of packetsavailable for delay estimation, hence slowing

convergence rates. We quantify this and describe a version of our estimators that makes maximal use of

information from surviving packets. The formulation of ourminimum variance estimators requires the

inversion of an empirical covariance matrix whose dimension grows rapidly with the number of leaf nodes

of the tree. In the case of binary tree we are able to make use ofthe natural recursive structure of the tree to

simplify the calculation. We provide an algorithm for this in Section 4.

In Section 5 we extend the approach to infer the logical multicast topology when this is not supplied in

advance. This is based upon the observation that when link delays are independent, the cumulative delay

variance is increasing along paths from the root. Accordingto (1), a sibling pair can be identified by the

criterion that their delay covariance is maximal. Repeatedapplication of this criterion allows any binary tree

to be identified from the measured delay covariances. This approach is inspired by a related method for the

inference of binary trees from end-to-end multicast loss [5, 29]. The method here extends to general trees.

We prove the resulting topology estimator is consistent, and evaluate it through model-based simulations in

Section 6. A closer analysis of the modes of failure, and their asymptotic probabilities, is made in Section 7.

We conclude in Section 8. The proofs of the theorems are deferred to Section 9. Some of the results from

Section 3 were announced by us previously in [10].

1.3 Implementation Requirements

Since the data for inference comprises one-way packet delays, we require source and receiver clocks to be

sufficiently synchronized over a measurement period duringwhich a given set of probes is dispatched. Since

delay variance calculations are insensitive to absolute time shifts, it is important to control only the relative

3



clock drift. Sufficiently small clock drift may be correctedfor; see [18, 26, 28]. We note that several of the

measurement infrastructures mentioned earlier use GlobalPositioning System (GPS) for synchronization;

this enables absolute one-way delay measurements accurateto within tens of microseconds or better. The

Network Time Protocol (NTP) [17] is more widely deployed, but provides accuracy in only the order a few

tens of milliseconds.

1.4 Applications and Related Work

Multicast-based network inference tools based on loss measurements have been deployed in NIMI. We

plan to supplement these with delay-based variance inference. Physical topology is currently laid out using

the mtrace [19] measurement tool.mtrace reports the route from a multicast source to a receiver,

along with other information about that path such as per-hoploss and rate. Presently it does not support

delay measurements. A potential drawback for larger topologies is thatmtrace does not scale to large

numbers of receivers because it needs to run once for each receiver to cover the entire multicast tree. In

addition, it relies on multicast routers responding to explicit measurement queries; the feature that can be

administratively disabled. As an alternative, we propose topology changes could be detected from ongoing

measurements using the methods presented here. Changes in the logical multicast topology would then

trigger appropriatemtrace measurements to determine changes in the physical topology. Knowledge of

the multicast topology can be helpful to multicast applications. Several reliable multicast protocols rely on

logical hierarchies based on the underlying topology if possible; see, e.g., [22]. Other applications attempt

to group receivers that share the same network bottleneck, [29].

The delay variance estimates themselves can be used to detect links of higher delay variance. Since

the performance of delay sensitive applications may degraded on traversing such a link, such information

may be used to control routing in order that the traffic passesover other links. The variance of the packet

delay (on a link or path) can be used to estimate or bound the variance of the interpacket delay variation.

Let Di be the delay encountered by packeti on a given link. The interpacket delay variation (or jitter)

between packetsi andi + 1 on the link isJ i = D

i+1

�D

i. ObserveVar(J i) = Var(D

i

) + Var(D

i+1

) �

2Cov(D

i

;D

i+1

). Assuming stationarity and independence, this yieldsVar(J

i

) = 2Var(D

i

). Measurements

of end-to-end delays in the Internet [1] show that end-to-end delays successive packets are only slightly

dependent when the interpacket time is longer than the typical queueing timescales. Stronger dependence is

found at shorter timescales: successive packets are more likely to queue together. With positive correlation

between successive probe delaysCov(D

i

;D

i+1

) > 0; in this caseVar(J i) is bounded above by2Var(Di

),

a quantity that we can estimate.

2 Tree and Delay Models and Non-Parametric Estimation

Tree Model. We identify the physical multicast tree as comprising actual network elements (the nodes)

and the communication links than join them. The logical multicast tree comprises the branch points of the

physical tree, and the logical links between them. A logicallink comprises a chain of one or more physical

links. Thus each node in the logical tree, except the leaf nodes and possibly the root, have 2 or more children.
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Figure 2: LEFT: Two leaf tree. RIGHT: m-leaf tree.

We can construct the logical tree from the physical tree by deleting all links with one child and adjusting the

links accordingly by directly joining its parent and child.

Let T = (V;L) denote a logical multicast tree with nodesV and linksL. We identify one node, the

root 0, with the source of probes, andR � V will denote the set of leaf nodes (identified as the set of

receivers). The set of children of nodej 2 V is denoted byd(j). Each node,k, apart from the root, has a

parentf(k) such that(f(k); k) 2 L; for simplicity we shall refer to this link as linkk. Define recursively

the compositionsfn = f � f

n�1 with f1 = f . Nodes are said to be siblings if they have the same parent. If

k = f

m

(j) for somem 2 N we say thatj is descended fork (or equivalently thatk is an ancestor ofj) and

write the corresponding partial order inV asj � k. i _ j will denote the nearest (i.e.�-minimal) common

ancestor ofi andj.

Delay-Variance Tree Model. The delay on linkk is is a random variableD
k

taking values in the extended

positive real lineR = R

+

[ f1g. By conventionD
0

= 0. The valueD
k

= 1 indicates the packet is lost

on the link;�
k

= P[D

k

< 1] is the probability of successful transmission across the link. We assume the

D

k

are independent random variables. The delay experienced onthe path from the root0 to a nodek is

X

k

=

P

j�k

D

j

; thus the valueX
k

= 1 indicates that the packet was lost somewhere on the path from0

to k.

Denote the conditional link and cumulative delay variancesby r
k

= Var(D

k

jD

k

< 1) and s
k

=

Var(X

k

jX

k

< 1). By the assumption of link delay independence,s

k

=

P

j�k

r

j

. We writer = (r

k

)

k2V

and call the pair(T ; r) adelay-variance tree. It is calledcanonicalif r
k

> 0, 8k 2 V nf0g. This condition

implies thats
i

> s

j

wheni � j. Any delay-variance tree(T ; r) not in canonical form can be reduced to one

in canonical form by removing zero variance links and identifying their endpoints. Henceforth, we assume

that the underlying tree is a canonical delay-variance trees.

Cumulative Delay Variance Estimation. Consider first a logical subtree of a logical multicast treeT

formed by the root0, and a non-leaf nodek with two descendents1 and2 that are leaf nodes; see Fig-

ure 2(left). We assume initially that all delays are finiteP[D
k

=1] = 0. Then:

Cov(X

1

; X

2

) = Cov(X

k

+ (X

1

�X

k

);X

k

+ (X

2

�X

k

))
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= Cov(X

1

�X

k

;X

k

) + Cov(X

2

�X

k

;X

k

) + Cov(X

1

�X

k

;X

2

�X

k

) + Var(X

k

)

= Var(X

k

); (3)

since by assumption of mutual independence of the link delays D
k

, the random variablesX
k

;X

1

� X

k

andX
2

�X

k

are mutually independent. Hence any unbiased estimator ofCov(X

1

;X

2

) is also an unbiased

estimator ofVar(X
k

). LetX(i)

1

;X

(i)

2

, i = 1; 2; : : : n be measured end-to-end delays between the root0 and

leaf nodes1 and2 respectively. AbbreviateCov(X
j

;X

k

) by s
jk

and writes
kk

ass
k

. We estimates
k

by the

unbiased estimator ofs
12

, namelybs
12

where

bs

ij

=

1

n� 1

0

@

n

X

m=1

X

(m)

i

X

(m)

j

�

1

n

n

X

m;m

0

=1

X

(m)

i

X

(m

0

)

j

1

A (4)

Link Delay Variance Estimation. By the independence assumption on the link delaysr

k

= s

k

� s

f(k)

.

Thus any family of (unbiased) estimators(bs
k

)

k2V

of thes
k

yields (unbiased) estimators of ther
k

through

br

k

= bs

k

� bs

f(k)

.

General Delay Moment Estimation. This approach generalizes to nodes with branching ratiom > 2;

see Figure 2(right). Denote the joint cumulants of the end-to-end delaysX
1

; : : : ;X

m

by

K

j

1

;:::;j

m

(X

1

; : : : ; X

m

) =

 

m

Y

i=1

@

j

i

@�

j

i

i

!

log E[exp(

m

X

i=1

�

i

X

i

)]

�

�

�

�

i

=0

(5)

These have the property thatK(X + Y ) = K(X) +K(Y ) wheneverX andY are independent vectors

of random variables. Hence

K

1;:::;1

(X

1

; : : : ;X

m

) = K

1;:::;1

(X

k

; : : : ;X

k

) = K

m

(X

k

); (6)

i.e., themth cumulant of the delay on the common link equals the joint cumulant of the end-to-end delays.

3 Delay Variance Estimation on General Trees

3.1 Unbiased Delay Variance Estimators

In a general tree letQ(k) = ffi; jg � R j i_j = k; g be the set of distinct pairs of leaf-nodes whose�-least

common ancestor isk. Any convex combination
P

fi;jg2Q(k)

�

ij

bs

ij

(i.e. with the�
ij

� 0 and summing to

1) is also an unbiased estimator ofs
k

. An example theuniform estimator

1

#Q(k)

X

fi;jg2Q(k)

bs

ij

: (7)

One potential disadvantage with the uniform estimator is that high variance of one of the summands may

lead to high estimator variance overall. This motivates choosing coefficients�
ij

that are functions of the

end-to-end delays themselves in order to reduce the estimator variance. In this section we shall assume that

all delays are finite and have bounded fourth moments. Later we shall relax the finiteness assumption.
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We formalize the notion of (possibly random) convex combinations ofbs
ij

through acovariance aggre-

gator. ForS � R, letF
n

(S) denote the�-algebra generated by the end-to-end delays(X

k

)

k2S

(i.e. the set

of events that can be determined from knowing(X

k

)

k2S

). A covariance aggregator� is sequence(�(n))
n2N

of random vectorsf�
ij

(n) : fi; jg 2 Q(k); k 2 V n Rg with 0 � �

ij

(n) � 1 and
P

fi;jg2Q(k)

�

ij

(n) = 1

for eachk 2 V nR. We assume each�(n) to beF
n

(R)-measurable, i.e., that it is a function of the measured

delays of the firstn probes. We will usually suppress the explicit dependence onthe number of probesn.

Let bs = fbs

ij

(n) : fi; jg 2 Q(k); k 2 V n Rg be a family of estimators, eachbs
ij

(n) being an

F

n

(fi; jg)-measurable unbiased estimator ofVar(X

k

). Given a covariance aggregator�, we can estimate

Var(X

k

) by

V

k

(�; bs) =

X

fi;jg2Q(k)

�

ij

bs

ij

(8)

A covariance aggregator is calleddeterministic if it does not depend on theX(i). We denote the set of such

aggregators with indices inQ(k) byD
k

. An example is theuniform aggregator that was used in the uniform

estimator (7):�
ij

= (#Q(k))

�1.

3.2 Minimum Variance Estimation of Cumulative and Link Delays

Define the covariance matrix

C

(ij);(`m)

= Cov ( Z

i

Z

j

; Z

`

Z

m

) ; (9)

whereZ
i

= X

i

� E[X

i

]. We will useC(k) =

�

C

(ij);(`m)

�

fi;jg;f`;mg2Q(k)

to denote the matrix obtained by

letting the indices(ij) and(`m) in (9) run overQ(k); this is a submatrix of the matrixC0

(k) obtained by

taking the indices unrestricted over the setQ

0

(k) of binary subsets ofR(k).

In the next theorem we characterize the asymptotic distribution of thebs
ij

asn ! 1, and give a form

for the estimatorV
k

(�; bs) of cumulative variance that has minimum variance.

Theorem 1 (i) For eachk 2 V n R, the random variablesf
p

n (bs

ij

� s

k

) j fi; jg 2 Q(k)g converge

in distribution asn ! 1 to a multivariate Gaussian random variable with mean 0 and covariance

matrixC(k). Hence thebs
ij

are consistent estimators ofs
k

, and so isV (�; bs). For any deterministic

covariance aggregator� 2 D
k

,
p

n(V

k

(�; bs)�s

k

) converges in distribution asn!1 to a Gaussian

random variable of mean zero and variance� � C(k) � �.

(ii) The minimal asymptotic varianceinf
�2D

k

� � C(k) � � is achieved when

�

ij

= �

�

ij

(C(k)) :=

�

C(k)

�1

� 1

�

(ij)

.

1 � C(k)

�1

� 1 (10)

whereC(k)

�1 denotes the inverse matrix ofC(k) and1
(ij)

= 1, fi; jg 2 Q(k). The corresponding

asymptotic variance of the variance estimator is
�

1 � C(k)

�1

� 1

�

�1

.

Operationally, the coefficients�
ij

of the minimum variance estimatorV
k

(�

�

(C(k)); bs ) of Theorem 1

are to be calculated from anestimateof the covariance matrixC(k). LetZ(m)

i

= X

(m)

i

�

1

n

P

n

m=1

X

(m)

i

.

Let bC(k) denote the empirical covariance matrix with entries

b

C(k)

(ij);(i

0

j

0

)

=

n

2

(n� 1)

3

 

n

X

m=1

Z

(m)

i

Z

(m)

j

Z

(m)

i

0

Z

(m)

j

0

�

1

n

n

X

m=1

Z

(m)

i

Z

(m)

j

n

X

m=1

Z

(m)

i

0

Z

(m)

j

0

!

(11)
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b

C(k) is an unbiased estimator ofC(k). Estimating��(C(k)) by ��( bC(k)) ands
k

by V
k

(�

�

(

b

C); bs) poten-

tially introduces bias and increases variance in the estimation of thes
k

. However, the following Theorem

shows that��( bC(k)) is consistent and has the same asymptotic variance asV

k

(�

�

(C); bs).

Theorem 2 V
k

(�

�

(

b

C(k)); bs) is a consistent estimator ofs
k

.
p

n(V

k

(�

�

(

b

C(k); bs)� s

k

) converges in distri-

bution to a Gaussian random variable of mean zero and variance
�

1 � C(k)

�1

� 1

�

�1

.

Given a pair� = (�(k); �(f(k))) 2 D

k

� D

f(k)

of deterministic covariance aggregators with indices

in Q(k) andQ(f(k)) respectively, form a unbiased estimate ofr

k

as

W

k

(�; bs) := V

k

(�(k); bs)� V

f(k)

(�(f(k)); bs) (12)

LetC 0(k) denote the#Q(k) + #Q(f(k)) dimensional matrix written in block form as

C

0

(k) =

�

C(k) C(k; f(k))

C(k; f(k))

T

C(f(k))

�

; (13)

whereC(k; f(k)) is the#Q(k)�#Q(f(k)) matrix of covariances
�

C

(ij);(`m)

�

(ij)2Q(k);(`m)2Q(f(k))

. Then

statements analogous to Theorem 1(ii) follow straightforwardly, using parallel arguments. We state without

proof:

Theorem 3 (i) For each deterministic covariance aggregator� = (�(k); �(f(k))) 2 D

k

� D

f(k)

,
p

n(W

k

(�; bs)� r

k

) converges to a Gaussian random variable of mean 0 and variance� �C 0(k)�1�.

(ii) The minimal asymptotic variance of deterministic aggregatorsinf
�2D

k

�D

f(k)

� �C

0

(k) �� is achieved

when
�

�(k)

�(f(k))

�

= (c

1

c

2

� c

2

3

)

�1

(C

0

)

�1

(k)

�

(c

2

+ c

3

)1

k

�(c

1

+ c

3

)1

f(k)

)

�

(14)

and takes the value(c
1

+ c

2

+2c

3

)=(c

1

c

2

� c

2

3

) wherec
1

= 1

k

�C(k)

�1

�1

k

, c
2

= 1

f(k)

�C(f(k))

�1

�

1

f(k)

andc
3

= 1

f(k)

� C(k; f(k))

�1

� 1

k

. Here, the subscripts on1
k

;1

f(k)

distinguish the subspaces

in which these vectors live.

3.3 Example of Minimum Variance Estimator

The difference between uniform and minimum variance delay estimated is more marked when the link delay

variances are more heterogeneous. We illustrate this in the8-leaf binary tree of Figure 3(left). Consider, for

example, the case that the delay variance on links 8 and 15 is 100 times that on all other links, i.e. the delays

are scaled by a factor 10. In the minimum variance estimator,the weighting�
ij

is reduced wheni or j is

descended through a high delay variance link. In this topology, this occurs when estimating delays to nodes

1, 2, or 3. As an example we tabulate the weights�

ij

(C(1)) in the table in Figure 3(right). The weight for

the pair(8; 15) of high variance links is10�4 times the highest weight, that for pair(9; 14).

We compare the variance of the uniform and minimum variance estimators. From Theorem 1, the

minimum variance of estimated cumulative delay variance tonodek is
�

1 � C(k)

�1

� 1

�

�1

, while that of

the uniform estimator is(1 � C(k) � 1) =#Q(k)

2. For k = 1, estimator variance is reduced by a factor of

8



0

1

2 3

4 5 6 7

8 9 10 11 12 1314 15

low delay variance

high delay variance

Weight�
ij

Link pairs(i; j)
0.000018 (8,15)
0.001213 (8,12) (8,13) (10,15) (11,15)
0.001811 (8,14) (9,15)
0.081286 (10,12) (10,13) (11,12) (11,13)
0.121322 (9,12) (9,13) (10,14) (11,14)
0.181077 (9,14)

Figure 3: MINIMUM VARIANCE ESTIMATION : LEFT: 8 leaf binary tree; Links 8 and 15 have delay variance
100 times that of others. RIGHT: Weights for Minimum Variance Estimator.

approximately8:8; for k = 2; 3 by a factor approximately5:7. All other nodesk have only two descendants,

one of which may terminate a high variance link; there is no flexibility to avoid the any high varianceV
k

,

and hence the factor is1.

3.4 Impact of Loss on Estimator Variance

Although lost packets clearly will not provide delay samples at receivers descended from a link where loss

occurred, the foregoing still applies to estimation of the delay variance based on received packets. For nodes

U � V , defineI
n

(U) as those packetsf1; : : : ; ng that reach all nodes inU ; the number of such packets is

N

n

(U) = #I

n

(U). The probability of a packet reaching all nodes inU � V is B(U) =

Q

fj�uju2Ug

�

j

,

where�
j

is the probability of successful transmission over linkj. Clearlyn�1N
n

(U) converges almost

surely toB(U) asn!1.

Then we can adapt the approach of the foregoing theory by forming an estimatorbu
ij

of the variance of

the cumulative delay of packets reachingk, analogously tobs
ij

, by using only those packets inI
n

(R(k)).

In the notation of (4) this amounts to the replacementsn 7! N(R(k)) and
P

n

m=1

7!

P

m2I

n

(R(k))

. It is

straightforward to show that all statements of Theorems 1 and 2 hold under the following replacements:

bs 7! bu, C(k) 7! C(k)=B(R(k)), and in the definition (11) ofbC(k) replacingn 7! N

n

(R(k)) and
P

n

m=1

7!

P

m2I

n

(R(k))

. Summarizing, when sampling only probes received at all leaves descended from

k, the minimal variance estimator ofs
k

is V
k

(�

�

(C(k)=B(R(k)))), convergence being slowed relative to

the no loss case as convergence rates are multiplied by a factorB(R(k)) < 1.

A disadvantage of this approach is that is does not scale wellas the topology grows. Assuming link

loss rates to be bounded away from zero, the proportion of packets reaching all receivers in a tree, namely

B(R)=n, decays geometrically fast in the number of links in the tree. An alternative that wastes less data,

9



and hence reduces estimator variance, is to use all packets received ati andj, i.e, in theI
n

(fi; jg), not just

those inI
n

(R(k)). Define

bv

ij

=

1

N

n

(fi; jg) � 1

0

@

X

m

X

(m)

i

X

(m)

j

�

1

N

n

(fi; jg)

X

m;m

0

X

(m)

i

X

(m

0

)

j

1

A (15)

where the sumsm;m0 run overI
n

(fi; jg). bv
ij

is an unbiased estimate ons
ij

. The asymptotic variance of

these estimators follows:

Theorem 4 (i) For eachk 2 V n R the random variablesf
p

n (bv

ij

� s

k

) j fi; jg 2 Q(k)g converge

in distribution asn ! 1 to a multivariate Gaussian random variable with mean 0 and covariance

matrix G(k)

(ij);(`m)

= C(k)

(ij);(`m)

B(i; j; `;m)=(B(i; j)B(`;m)). Hence thebv
ij

are consistent

estimators ofs
k

and so isV
k

(�; bv) for any deterministic covariance aggregator�. For any determin-

istic covariance aggregator�,
p

n(V

k

(�; bv)� s

k

) converges in distribution asn!1 to a Gaussian

random variable of mean zero and variance� �G(k) � �.

(ii) The minimal asymptotic varianceinf
�2D

k

��G(k)�� is achieved when� = �

�

(G); the corresponding

minimal asymptotic variance is
�

1 �G(k)

�1

� 1

�

�1.

(iii) V

k

(�

�

(

b

G); bv) has the same asymptotic properties asV

k

(�

�

(G); bv) where the estimated covariancebG

is defined by

N

n

(fi; jg)N

n

(fk; `g)

N

n

(fi; j; k; `g)

b

G

(ij);(k`)

=

X

m

Z

(m)

i

Z

(m)

j

Z

(m)

k

Z

(m)

`

�

1

N

n

(fi; j; k; `g)

X

m;m

0

Z

(m)

i

Z

(m)

j

Z

(m

0

)

k

Z

(m

0

)

`

(16)

where the sums run overI
n

(fi; j; k; `g).

3.5 Inference Accuracy

Some of the results of this section have been previously announced by us, without proof, in [10]. There, we

also investigated the experimental accuracy of the delay variance estimators. We conducted model simula-

tions using pseudorandom link delays conforming to the independence assumptions. The delay variance es-

timators converged to their true values at the rates predicted by the results of this section. We also conducted

network-level simulations usingns [23]. These simulated probe and background traffic at the packet level,

with packet delay and loss occurring through simulated queueing and buffer overflow. These simulations

test the robustness of the method to violations of the delay independence assumption. Delay correlations

were larger when smaller buffers were used. With the minimumvariance estimator, the estimated and actual

delay variance differed by a median factor of about 1.3 for small correlations, rising to about a factor 2 for

larger correlations. The uniform estimator had noticeablyhigher error factors in the latter case.

4 Computational Approaches for Large Topologies

Computation of a general estimator ofs
k

or the formV
k

(�; bs) requires computation of#Q(k) covariances

bs

ij

. Computation of the minimum variance estimatorV

k

(�

�

; bs) further requires inversion of the#Q(k)-

10



dimensional matrixbC. Growth of dimensionality with larger topologies is rapid and may preclude practical

calculations due to the computational cost. For example, ina perfectly balanced tree of depthm and branch-

ing ratio r, the number of covariances to be calculated for estimation of all s
k

grows proportionately to

r

mr for largem. This motivates the use of estimates for thes
k

, which although potentially suboptimal in

their variance, are less computationally intensive. We nowdescribe a class of estimators that achieve this by

taking advantage of the tree structure.

4.1 Capitalizing on the Tree Structure

For i � k let d(k; i) = fj 2 d(k) j i � jg, i.e. the unique childj of k that is an ancestor of (or equal to)i.

A covariance aggregator is calledlocal if it has the following form whose significance we explain shortly:

�

ij

= �

d(i_j;i) d(i_j;j)

�

 

i

 

f(i)

: : :  

d(i_j;i)

� �

 

j

 

f(j)

: : :  

d(i_j;j)

�

; (17)

where�;  are two families of (possibly random) elements of[0; 1] with the following properties:

f�

ij

j fi; jg � d(k); k 2 V n Rg with
X

fi;jg�d(k)

�

ij

= 1 (18)

and�
ij

beingF
n

(R(i _ j))-measurable; and

f 

j

j j 2 V g with
X

j2d(k)

 

j

= 1; 8k 2 V n R (19)

and 
j

beingF
n

(R(f(j)))-measurable.

The significance of this form becomes apparent after we definenode averaged delays recursively through

Y

k

=

X

j2d(k)

Y

j

 

j

with Y

k

= X

k

; k 2 R; (20)

eachY
k

is an average of the end-to-end delays seen at the receivers descended fromk. Using theY
k

, we

associate estimatorsbw
ij

of s
i_j

through

bw

ij

=

1

N

n

(R(k))� 1

0

@

X

m2I

n

(R(k))

Y

(m)

i

Y

(m)

j

�

1

N

n

(R(k))

X

m2I

n

(R(k))

Y

(m)

i

X

m2I

n

(R(k))

Y

(m)

j

1

A

: (21)

Note than only probes inI
m

(R(k), i.e. those received atall nodes inR(k), are used in (21).

If we now use a convex combination of thebw
ij

(instead of thebv
ij

in (8)), we obtain

V

k

(�; bw) =

X

fi;jg2Q(k)

�

ij

bw

ij

=

X

fi;jg�d(k)

�

ij

bw

ij

: (22)

Observe the reduced number of covariances to be calculated in the RHS of (22). Using a local covariance

aggregator to combine thebw
ij

allows us to take advantage of the inherent recursive structure of the tree

through (20). For the perfectly balance tree of depthm and branching ratior, the number of covariances to

be calculated to estimate alls
k

grows asrm, compared withrmr is the general case. However, since we use

only packets inI
n

(R(k)) to estimates
k

there is a trade-off between this computational reduction and the

increase of variance due to the reduced number of packets.

11



4.2 Minimal Variance Estimators on Binary Trees

An example of a local aggregator is theuniform local aggregator in which averages uniformly across

siblings with 
i

= 1=#d(f(i)) and�
ij

= 2=(#d(k)(#d(k)�1)). But it is natural to optimize the variance

over all local aggregators. SinceVar(V
k

(�; bw)) � Var(V

k

(�; bv)) such an estimator may not be optimal

over the set of all covariance aggregators; put another way,�

� in (10) may not be local. However, we show

now that�� is local for binary trees. This result appears restrictive at first, since not all multicast trees are

binary. However, any tree can be extended to a binary tree by the insertion of links with zero delay variance.

SinceVar(��; bw) is consistent, the estimated delay variance for these linksconverges to0 asn!1: these

inserted can then be removed at the end of the calculation. Indeed, we shall use this approach when we

address topology inference in Section 5.

Let S
k

denote the#R(k)-dimensional matrix with entriess
i_j

, andU
k

theR(k)-dimensional matrix

with all entries equal1. In a binary tree leti� be the unique sibling of a nodei (except the root and its unique

descendant).

Theorem 5 ��(C(k)) is local in a binary tree, with� = 1 and

 

i

=

�(i

�

)

�(i) + �(i

�

)

where �(i) = det

�

S

i

� s

f(i)

U

i

�

: (23)

V

k

(�

�

(C(k)); bw) has asymptotic variancedet(C)=

P

fi;jg2Q(k)

�

i

�

j

where�
i

=

Q

q

i

�1

r=0

�(f

r

(i)

�

).

5 Topology Inference Through Delay Variance Estimation

In this section we show how the foregoing approach can be adapted to infer the underlying treeT when it is

not known in advance. The key observation underlying the approach is thats
j

> s

k

whenj is a descendent

node ofk. Consider a binary tree. By the assumption of independent link delays,s
j

= s

k

+

P

k�i�j

r

i

> s

k

.

Thus the cumulative delays
`_`

0 is maximized when receivers̀and`0 are siblings. If not, then one of the

receivers would have a sibling and the cumulative delay fromthe root to their ancestor would be greater.

Sinces
`_`

0

= s

``

0 , the siblings can be identified on the basis of receiver measurements alone. Substituting

a composite node that represents their parent and iterating, should then reconstruct the binary tree. In

this section we formalize the foregoing approach and show how it can be extended to reconstruct arbitrary

canonical delay variance trees.

5.1 Deterministic Reconstruction of Delay-Variance Trees

We now show that canonical delay-variance trees with receiver setR are in one-one correspondence with the

set of receiver covariances(s
ij

)

i;j2R

. We do this by formulating an algorithm to reconstruct the former from

the latter. In the next subsection this algorithm is adaptedto estimated the tree from measured covariances.

We start with the special case of binary trees. The Deterministic Binary Delay-Variance Tree (DBDT)

Classification Algorithm is shown in Figure 4; it works as follows. R0 denotes the current set of nodes

from which a pair of siblings will be chosen, initially equalto the receiver setR. We first find the pair

12



1. Input: The set of receiversR and the delay covariance matrixs = (s

jk

)

j;k2R

;
2. R

0

:= R; V 0

:= R

0; L0 = ; ;
3. foreach k 2 R f s

k

:= s

kk

; g
4. while jR0j > 1 do
5. selectU = fu; vg � R

0 with maximals
uv

;
6. V

0

:= V

0

[ fUg; R0 := (R

0

n U) [ fUg;
7. s

U

:= s

uv

; s

UU

:= s

uv

;
8. foreach k 2 R0 do s

Uk

:= s

uk

; s

kU

:= s

ku

; enddo
9. foreach k 2 U doL0 = L

0

[ f(U; k)g ; r
k

:= s

k

� s

U

; enddo
10. enddo
11. if s

U

> 0 do
13. V

0

:= V

0

[ f0g ; L0 = L

0

[ f(0; R

0

)g ;
14. enddo
15. Output: binary delay-variance tree((V 0

; L

0

); r) ;

Figure 4: Deterministic Binary Delay-Variance Tree Classification Algorithm (DBDT).

U = fu; vg that maximizess
uv

; U is identified with the pair’s parent and replacesu andv in R0 (line 6).

Correspondingly we adjoin a row and column forU to the matrixs (line 8). Links (U; u) and(U; v) are

added to the tree, and their link variances are calculated (line 9). This process is repeated until all sibling

pairs have been identified (loop at line 4). If the last parentU identified has variances
U

= 0, then since the

tree is canonical, it is the root. Otherwise, we adjoin the root node and link joining it to its single child (line

13). We remark that theu andv row and column of the matrixs could be deleted after line 8 since they are

not used after this point.

We say that the algorithm reconstructs the binary delay variance tree((V;L); r) if given R and the

s

uv

= r

u_v

, u; v 2 R, it produces((V;L); r) as its output. Clearly this happens if and only if before

each iteration of the while loop 4 in Figure 4,(V 0; L0) can be decomposed in terms of disjoint subtrees

V

0

=

P

k2R

0

V (k) andL0 =

P

k2R

0

L(k). These subtrees may just be trivial onesT (k) = (fkg; ;)

comprising a root nodek. We note also that these trees coverR, i.e.R = [

k2R

0

R(k). These properties hold

before the first while loop, and hold subsequently since eachloop of a successful reconstruction amalgamates

binary subtrees rooted at siblings.

Theorem 6 DBDT reconstructs any binary canonical delay variance tree.

In a general tree, thens
uv

is the same for any pairfu; vg in a sibling setU , and takes the values
f(U)

.

This suggests an extension toDBDT to reconstruct general canonical delay variance trees, namely in line

5 to find instead the maximal subsetU � R

0 such that for eachu; v 2 U , s
uv

= max

jk2R

0

s

jk

. It can be

shown that this does reconstruct in the general case. However, we adopt a slightly different approach that is

better adapted to inferring the tree from measured data. We use a two stage approach. We first applyDBDT

to an arbitrary tree and observe the effect is to reconstructa non-canonical binary tree in which siblings may

be separated by links with zero delay variance. In the secondstage we obtain the underlying general tree by

pruning, i.e., removing the zero delay variance links and identifying their endpoints. For later use we find it
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 u1      u 2      u 3         ….           u n

                  =  zero delay links

 U(1)

 U(2)

 U(n-1)

 k

 u1          u 2             u 3     ….           u n

Figure 5: LEFT: General node withn children RIGHT: Example of corresponding binary tree with zero
delay links.

useful to specify a generalization of this procedure. For each " > 0, the Tree Pruning AlgorithmTP(") acts

on a delay-variance tree by pruning all links whose delay variance is less than or equal to". The pruning

operation described above is thenTP(0). We specifyTP in Figure 6.

The algorithm reconstructs the tree if for each nodek 2 V havingn children, there is a run ofn�1 while

loops inDBDT that identify binary nodesU (1)

; U

(2)

; : : : U

(n�1) that include all the children. We call this

run of binary groupings anouter loop. U (1) is a binary subset ofR(1)

= d(k), while form = 2; : : : n� 1,

eachU (m) is a binary subset ofR(m)

= (R

(m�1)

n U

(m�1)

) [ U

(m�1). We assume that a tie-breaking rule

is specified for line 4 of Figure 4 when there is more than one maximizer. One example is to select the

maximizing pairfu; vg for whichu most recently included inV 0 andv the next most recently included, and

using an arbitrary initial order forR. In this cased(k) can be written asfu
1

; : : : ; u

n

g with U (1)

= fu

1

; u

2

g

andU (m)

= fU

(m�1)

; u

m+1

g for m = 2; : : : n� 1. The outer loop produces the subtree shown in Figure 5.

Theorem 7 TheDeterministic Delay-Variance TreealgorithmDDT = TP(0) � DBDT reconstructs any

canonical delay-variance tree((V;L); r).

5.2 Inference of Loss Tree from Measured Leaf Delay Covariances

We now present stochastic versions of the above algorithms that estimate topology based onestimateddelay

covariances. We adapt the minimum variance approach of Section 3 as follows. Given a pair of nodesfk; `g

we can estimateCov(X
k

;X

`

) by

V

k;`

(�; bs) =

X

fi;jg2R(k)�R(`)

�

ij

bs

ij

(24)

wherebs = fbs

ij

g

i;j2R

and� is a covariance aggregator. This estimator obeys analogousproperties to

established in Section 3 directly follows. In particular
p

n(V

k;`

(�; bs)�s

k`

) converges to a Gaussian random

variable of mean zero and variance��C(k; `)��, whereC(k; `) = [C

(ij)(i

0

j

0

)

]

fi;jg;fi

0

j

0

g2R(k)�R(`)

; moreover,

the minimum variance estimator is achieved when� = �

�

(C(k; `)) =

�

C(k; `)

�1

� 1

�

=1 � C(k; `)

�1

� 1.
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1. Input: a delay-variance tree(T ; r);
2. Parameter: a threshold" � 0;
3. V

0

:= f0g [ d

T

(0); L0 := f(0; k) : k 2 d

T

(0)g;
4. U := d

T

(0);
5. while U 6= ; do
6. selectj 2 U ;
7. U := U n fjg [ d

T

(j);
8. if (r

k

� ") _ (j 6= R) then
9. L

0

:= (L

0

[ f(f

T

0

(j); k) : k 2 d

T

(j)g) n f(f

T

0

(j); j)g;
10. V

0

:= V

0

=fjg [ d

T

(j);
11. else
12. L

0

:= L

0

[ f(j; k) : k 2 d

T

(j)g;
13. V

0

:= V

0

[ d

T

(j);
14. endif;
15. enddo
16. Output: (T 0; r0)

Figure 6: Tree Pruning AlgorithmTP(")
.

Denote bybC(k; `) the empirical version ofC(k; `), i.e., the covariance matrix with entries given by (11).

Similar to Theorem 2 we have:

Theorem 8 V
k;`

(�

�

(

b

C(k; `)); bs) is a consistent estimator ofs
kl

.
p

n(V

k;`

(�

�

(

b

C(k; `)); bs)� s

kl

) converges

in distribution to a Gaussian random variable of mean 0 and variance(1 � C(k; `)

�1

� 1)

�1.

Inference of Binary Trees from Measurements. Inference of binary trees from measured receiver delays

is performed by the Binary Delay-Variance Tree Classification Algorithm (BDT); see Figure 7. This com-

binesDBDT with the minimum variance estimator from (24), taking advantage of the tree structure and the

optimality of the local aggregator for binary trees. Note that, in distinction withDBDT, we exclude the test

to see if the lastU identified is the root, since the events
U

= 0 happens with probability zero for continuous

delay distributions.

In the following, we will use the notation(bT ; br) to denote an inferred delay-variance tree; sometimes we

will use bT
X

to distinguish the topology inferred by a particular algorithm X. P f

X

will denote the probability

of false identification of topologyT of the delay-variance tree(T ; r) i.e. P f

X

= P

T ;r

[

b

T

X

6= T ].

Theorem 9 Let (T ; r) be a binary canonical delay variance tree.lim

n!1

P

f

BDT

= 0.

Inference of General Trees from Measurements. The adaptation ofDDT to the classification of general

loss trees is more complicated than the binary case. InDDT, s
jk

takes the same value for any two nodes

fj; kg in a sibling set, giving rise to zero loss links between the nodes grouped in an outer loop, which are

then pruned byTP(0). But using measured delay the corresponding estimates will not be equal for finitely

many probes. In order to group nodes appropriately, we applya threshold" > 0 while pruning, so that links
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1. Input: The set of receiversR, number of probesn, receiver traces(X(i)

k

)

i=1;2;:::n

k2R

;
2. R

0

:= R, V 0 := R; L

0

= ; ;
3. foreach k 2 R do
4. s

k

:= w(k; k);

5. foreach i = f1; : : : ; ng do Y (i)

k

= X

(i)

k

; enddo
6. enddo
7. while jR0j > 1 do
8. selectfu; vg � R

0 that maximizess
fu;vg

:= w(u; v);
9. V

0

:= V

0

[ ffu; vgg; R0 := (R

0

n fu; vg) [ ffu; vgg;
10. foreach (k 2 fu; vg) do
11. r

k

:= s

fu;vg

� s

k

; L0 := L

0

[ f(fu; vg; k)g ;
12. foreach (`; `0 2 R(k)) do S

k;``

0

:= s

`_`

0 ; enddo
13. �(k) := det(S

k

� bs

fu;vg

U

k

) ;
14. enddo

15. foreach (m 2 f1; : : : ng) do Y (m)

fu;vg

:=

�

�(u)Y

(m)

u

+ �(v)Y

(m)

m

�.

(�(u) + �(v)) ; enddo

16. enddo
17. Output: delay-variance tree((f0g [ V 0; f(0; R0)g [ L0); f0g [ r)

18. procedurew(i; j) freturn (n� 1)

�1

(

P

n

m=1

Y

(m)

i

Y

(m)

j

� n

�1

P

n

m=1

Y

(m)

i

P

n

m=1

Y

(m)

j

) g;

Figure 7: BINARY DELAY-VARIANCE TREE CLASSIFICATION ALGORITHM (BDT). The functions_ and
R(�) return ancestors and leaf nodes respectively from the current (V 0

; L

0

). U
k

is the#R(k)-dimensional
matrix with all unit entries.

are pruned if the estimated link delay variance does not exceed". For each" > 0 theDelay-Variance Tree

Classification Algorithm is DT(") = TP(") � BDT. Since link delay variance estimates become accurate

as the number of probes grows to infinity, all links with delayvariance greater that" should be correctly

classified. The proof of the following is similar to that of Theorem 9:

Theorem 10 Let (T ; r) be a canonical delay-variance tree in which all link variances r
k

> "

0 for some

"

0

> 0. For each" 2 (0; "

0

), lim
n!1

P

f

DT(")

= 0.

6 Simulation Evaluation of Topology Inference

We evaluated the accuracy of the classification algorithms in a number of model-based simulations in which

the link delays are independent exponentially distributedrandom variable. Unless otherwise stated, we

assume no packet loss.

Dependence of Accuracy on Threshold". We conducted 1000 simulations over randomly generated

trees of 15 nodes and maximum branching ratio 3. Link variance was randomly chosen in the interval[1; 10].

Convergence of the estimated topology to the true topology is assured by choosing" < 1. In Figure 8(a)

we plot the fraction of correctly classified trees for the different general tree classification algorithms and

" = 0:25; 0:5; 0:75; 0:9. Except with small numbers of probes, accuracy is best for" = 0:75. Smaller
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Figure 8: DEPENDENCE OF THEACCURACY ON THE THRESHOLD". Fraction of trees correctly classified
by DT(") in 1000 simulations over randomly generated 15 nodes tree for " = 0:25; 0:5; 0:75; 0:9. Link
variance is uniformly distributed in the interval [1,10] (a) [1,100] (b).

values of" result in stricter grouping criteria and so statistical fluctuations of the estimates lead to erroneous

exclusion of nodes from groups. Increasing" initially decreases the probability of such events, but as

" approaches the smallest link delay variancer

min

, the probability of falsely including nodes in a group

increases. When" increases beyondr
min

, this link is effectively ignored and so the probability of correct

classification would rapidly drop to zero.

Dependence of Accuracy on Variance Spread and Topology.Accuracy decreases noticeably when the

range of possible variance is expanded to[1; 100]; with 1000 probes and" = 0:75 only about35% of the

trees were correctly classified, see Figure 8(b). The corresponding proportion was100% for variances in

[1; 10]. This occurs because large delay variance lead to larger estimator variances, and hence mistaken

pairing of non-sibling nodes, or erroneous inclusion or exclusion of nodes in a group, is more likely to

occur. In this example, the algorithm performs poorly because the largest delay variance possible100, is

much larger than the smallest,1, and so any threshold" < 1 represents a grouping criterion that is difficult

to attain with accuracy. Indeed, we verified that misclassification was caused mostly by false exclusion from

groups of nodes that terminated smaller variance links.

Algorithm accuracy decreases for larger branching ratio; see Figure 9(a), which compares accuracy for

maximum branching ratios 3 and 4, and" = 0:5; 0:75, and delay variances in[1; 10]. Larger branching ratios

require more pruning operations, thus affording more opportunities for misclassification. The difference is

evident for smaller value of" because of the higher probability of falsely excluding a node from a group.

Dependence on Loss. As described in Section 3.4 packet loss increases estimatorvariance, and hence

decreases inference accuracy. This is evident in Figure 9(b) which displays fraction of correctly classified

trees decreases for various ranges of randomly selected loss rates. Link variance is randomly chosen in the

interval [1; 10] and" = 0:75.
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Figure 9: DEPENDENCE OF THEACCURACY ON TOPOLOGY AND LOSS. Fraction of trees correctly
classified byDT(") in 1000 simulations over randomly generated 15 nodes: maximum fanout 3 and 4 (a);
different loss rate intervals (b).

7 Topology Misclassification

We analyze the modes of failure ofDT, and estimate the convergence rates for the probability of successful

classification as the number of probes grows. We analyze topology misclassification by focusing on how

sets of receivers can be misgrouped in the estimated topology bT . We formalize the notion of correct receiver

grouping as follows. LetR
T

denote the set of receivers in the logical multicast topology T .

Definition 1 Let (T = (V;L); r) be a delay-variance tree and denote(bT = (

b

V ;

b

L); br) an inferred delay-

variance tree. The receiversR
T

(k) descended from a nodek 2 V n R

T

are said to becorrectly grouped

in bT if there exists a nodebk 2 bV such thatR
T

(k) = R

b

T

(

b

k). In this case we shall say also that nodek is

correctly classified inbT .

The notion of correct grouping allows the trees rooted atk andbk to be different; it only requires the sets

of receivers descended fromk andbk be equal. Correct receiver grouping and correct topology classification

are related. In the case of binary trees, the topology is correctly classified if and only if so is every interior

node. This property allows us to study topology misclassification by looking at receiver misgrouping. To this

end, we need to consider more general convex combinations ofthe delay covariances than those expressed

by (24) to take into account groups of nodes which may result from nodes misgrouping. Given two disjoint

subsets ofR, S
1

andS
2

, S
1

; S

2

6= ;, we denote

V

S

1

;S

2

(�; bs) :=

X

fi;jg2S

1

�S

2

�

ij

bs

ij

(25)

where� is any suitable covariance aggregator. Properties similarto those established in Section 5.2 hold

for these convex combinations. In particular,
p

n(V

S

1

;S

2

(�

�

(

b

C(S

1

�S

2

)); bs)�V

S

1

;S

2

(�

�

(C(S

1

�S

2

)); s),

converge to a Gaussian random variable of mean zero and variance(1 �C(S

1

�S

2

)

�1

�1)

�1, whereC(S

1

�

S

2

) = [C

(ij)(`m)

]

fi;jg;f`;mg2S

1

�S

2

.
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Figure 10: THE THREE-RECEIVER BINARY TREE.

7.1 Misgrouping and Misclassification of Binary Trees

We start by studying misgrouping inBDT. Denote byG
k

the event thatBDT correctly groups nodes in

R(k). This happens if

b

D

k

(S

1

; S

2

; S

3

) := V

S

1

;S

2

(�

�

; bs)� V

S

1

;S

3

(�

�

; bs) > 0 (26)

for all (S
1

; S

2

; S

3

) 2 S(k) whereS(k) = fS

1

; S

2

� R(k); S

3

� R n R(k); S

k

6= ;, S
1

\ S

2

= ;g. (26)

ensures that for all possible ways to reconstruct the tree, proper subsets ofR
T

(k) are never grouped with

receivers not inR
T

(k), which in turn guarantees that receivers inR
T

(k) are first all grouped together. By

construction, this ensures that inbT there is a nodebk such thatR
T

(k) = R

b

T

(k). LetQ
k

(S

1

; S

2

; S

3

) denote

the event that (26) holds; then,G
k

� \

(S

1

;S

2

;S

3

)2S(k)

Q

k

(S

1

; S

2

; S

3

). This provides the following upper

bound for the misgrouping probability, denoted byP f

k

, as

P

f

k

:= P[G

c

k

] �

X

(S

1

;S

2

;S

3

)2S(k)

P[Q

c

k

(S

1

; S

2

; S

3

)] (27)

Normal Approximations. We now consider the asymptotic behavior ofP

f

k

for large numbers of probes.

Theorem 11 Let (T ; r) a canonical delay-variance tree. For eachk 2 V n R,
p

n(

b

D

k

(S

1

; S

2

; S

3

) �

D

k

(S

1

; S

2

; S

3

)), (S
1

; S

2

; S

3

) 2 S(k), converges in distribution, as the number of probesn ! 1, to a

Gaussian random variable with mean 0 and variance

�

2

D

k

(S

1

; S

2

; S

3

) =

X

fi;jg;f`;mg2S

1

�S

2

[S

1

�S

3

@D

k

(S

1

; S

2

; S

3

)

@s

ij

C

(ij);(`m)

@D

k

(S

1

; S

2

; S

3

)

@s

`m

; (28)

whereD
k

(S

1

; S

2

; S

3

) = V

S

1

;S

2

(�

�

; s)� V

S

1

;S

3

(�

�

; s). Moreover,inf
(S

1

;S

2

;S

3

)2S(k)

D

k

(S

1

; S

2

; S

3

) = r

k

.

Theorem 11 suggests that we can approximateP[Q

c

k

(S

1

; S

2

; S

3

)] = P[

b

D

k

(S

1

; S

2

; S

3

) < 0] by	(�

p

n�

D

k

(S

1

; S

2

; S

3

)=�

D

k

(S

1

; S

2

; S

3

)), where	 is the cdf of a standard normal distribution. For largen, we can

approximate to leading exponential order as

P[Q

c

k

(S

1

; S

2

; S

3

)] � e

�(n=2)

D

k

(S

1

;S

2

;S

3

)

2

�

2

D

k

(S

1

;S

2

;S

3

)

: (29)

19



1e-03

1e-02

1e-01

1e+00

0 500 1000 1500 2000

F
ra

ct
io

n 
of

 m
is

cl
as

si
fie

d 
lin

ks

no. of probes

Fraction of misclassified trees
variance ≥    0
variance ≥ 2.5
variance ≥    5
variance ≥ 7.5

(a) Variance in[1; 10]

1e-03

1e-02

1e-01

1e+00

0 1000 2000 3000 4000 5000 6000 7000 8000

F
ra

ct
io

n 
of

 m
is

cl
as

si
fie

d 
tr

ee
s

no. of probes

Fraction of misclassified trees
variance ≥    0
variance ≥ 2.5
variance ≥    5
variance ≥ 7.5

(b) Variance in[1; 100]

Figure 11: MISCLASSIFICATION AND M ISGROUPING INBDT. Fraction of links misclassified with variance
� �, for � = 0; 2:5; 5; 7:5%. Link variance is uniform in[1; 10] (a) and in[1; 100] (b).

Since the largest term overS(i) should dominate all others for largen, we have

P

f

k

� e

�(n=2) inf

(S

1

;S

2

;S

3

)2S(k)

D

k

(S

1

;S

2

;S

3

)

2

�

2

D

k

(S

1

;S

2

;S

3

)

: (30)

In the case of binary trees, when all groups are correctly formed so is the topology; therefore, we have that

P

f

BDT

�

P

k2V nR

P

f

k

� max

k2V nR

P

f

k

which suggest thatlogPf
BDT

vs. n is asymptotically linear with

slope
1

2

inf

k2V nR

inf

(S

1

;S

2

;S

3

)2S(k)

D

k

(S

1

; S

2

; S

3

)

2

�

2

D

k

(S

1

; S

2

; S

3

)

(31)

Example: The Three-Receiver Binary Tree. To illustrate the results, we consider the simplest case

of a binary with three receivers in Figure 10. The topology iscorrectly inferred byBDT when nodes 4

and 5 are grouped which happens when bothbs
45

> bs

43

and bs
54

> bs

53

. Misclassification requires ei-

ther inequality to be false. Consider the first; we have thatP[bs

45

� bs

43

] � e

�(1=2)

(s

45

�s

43

)

2

Var[bs

45

�bs

43

] , where

Var[bs

45

� bs

43

] = Var[bs

45

] +Var[bs

43

]� 2 Cov[bs

45

; bs

43

] = (C

(45);(45)

+C

(43);(43)

� 2C

(42);(43)

)=n. Then by

expanding the termsC
(ij);(`m)

= K

4

(X

i_j_`_m

)+ s

i_m

s

j_`

+ s

i_`

s

j_m

, we readily obtainP[bs
45

� bs

43

] �

e

�(n=2)

r

2

2

K

4

(D

1

)+r

2

2

+(r

1

+r

2

+r

4

)(r

2

+r

3

+r

5

) Similarly,P[bs
54

� bs

53

] � e

�(n=2)

r

2

2

K

4

(D

1

)+r

2

2

+(r

1

+r

2

+r

5

)(r

2

+r

3

+r

4

) , which

yields

P

f

BDT

� e

�(n=2)

r

2

2

K

4

(D

1

)+r

2

2

+maxf(r

1

+r

2

+r
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)(r

2
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3
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);(r

1

+r

2

+r

5

)(r

2

+r

3

+r

4

)g

:

To verify the accuracy of this approximation, we conducted 10000 experiments with all link delays expo-

nentially distributed: link variance was 10 for all links but link 2 the variance of which was 1. We obtained

an approximate slope of4:84 � 10

�4 in good agreement with the experimental value of4:96 � 10

�4.

Modes of Misclassification byBDT in Experiments. Calculation of the infimum in (31) is in general

quite difficult since�2
D

k

(S

1

; S

2

; S

3

) is a complex function of both the topology and the links variances. Here
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we use experience from experiments to identify the dominantmodes of misclassification and misgrouping.

For the binary trees used in Section 6, we plot in Figure 11 theproportion of links that had variances

greater than or equal to a given threshold� and were still misclassified byBDT, along with proportion of

experiments in whichBDT incorrectly identifies the topology.

Observe that errors are dominated by misclassification of low variance links. This suggests that for large

n, Pf
BDT

� P

f

j

, wherej = argmin
k2V nR

r

k

, i.e., the most likely way to misclassify a tree is by not correctly

grouping receivers that share the link with smallest variance. Moreover, we found out in our experiments

that as the number of probes increases, the most likely way tomisgroup such link occurs by mistakenly

pairing one of its child nodes with its sibling, i.e., whenS
1

= R(h(j)), S
2

= R(h

�

(j)) andS
3

= R(j

�

).

This suggests that we can use the following approximation

P

f

BDT

� P

f

j

� e

�(n=2)

r

2

j

�

2

D

k

(R(h(j));R(h

�

(j));R(j

�

))

: (32)

7.2 Misgrouping and Misclassification byDT(")

We now turn our attention to the errors in classifying general trees byDT("). In the following, we let(bT 0; br0)

denote the tree produced byBDT, the final estimatebT is obtained frombT 0 by pruning links whose inferred

delay variance is smaller than", i.e.,(bT ; r) = TP(")(

b

T

0

; br

0

). In distinction with the binary case, incorrect

grouping byBDT is sufficient but not necessary for the misclassification. ForDT("), incorrect classification

occurs in any of the following holds:

(i) at least one node inT is misclassified inbT 0; or

(ii) TP(") prunes links frombT 0 that are present inT ; or

(iii) TP(") fails to prune links frombT 0 that are not present inT .

We now analyze misclassification inDT("). LetG denote the event that the topology is correctly clas-

sified. We have thatG � \

k2V nR

(G

k

\H

k

(")\K

k

(")), whereH
k

(") = \
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andK
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2K(k)

H

c

k

(S

1

; S

2

; S

3

; ") whereK(k) = fS

1

; S

2

; S

3

� R(k) : S

i

6= ;;S

i

\ S

j

=

;; l _ m = k; l 2 S

i

;m 2 S
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; i 6= jg. WhenG
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holds,H
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(") ensures that for all possible ways to
reconstruct the tree, the inferred loss rate on linkbk is larger than"; \

k2V nR

K

k

(") ensures that all the links
in T 0 which are not present inT have inferred link variance smaller than". Thus, we obtain the following
upper bound on the misclassification probability
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Figure 12: MISGROUPING ANDM ISCLASSIFICATION INDT("). Link variance distributed in[1; 10]. Frac-
tion of misclassified links (a) and trees (b).

Normal Approximations. We now consider the asymptotic behavior ofP

f

DT(")

. The proof of the follow-

ing result is similar to that of Theorem 11; it is omitted.

Theorem 12 Let(T ; r) be a canonical delay-variance tree. For eachk 2 V nR, and(S
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Theorem 12 suggests that for largen, we can use the following approximations
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Since the largest term should dominate for largen, we expect the curve oflogP
DT(")

vs. n be asymp-
totically linear with negative slope
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(36)

The three possible dominating exponents in (36) correspondto the three possible modes of misclassification

(i), (ii) and (iii) respectively, as listed above near the start of Section 7.2.

Modes of Misclassification byDT in Experiments. For the examples of Section 6 with link variances

random in[1; 10], Figure 12(a) displays the fraction of links that were misclassified byDT(0) and had

link variance larger than a given value�; Figure 12(b) displays the fraction of trees misclassified for " =

0:25; 0:5; 0:75; 0:9. The difference in slopes between the two set of curves showsthat for large numbers

of probes, receivers become correctly grouped, leaving errors in tree misclassification to be dominated by
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pruning errors. Eq. (36) then indicates that the most likelyway to misclassify underDT(") is for smaller

" by not completely grouping a set of sibling and, for larger", by pruning link with small link variances.

Accuracy is best for intermediate value when both types of error have the same probability.

For larger delay variances in[1; 100], misclassification is always dominated by node exclusion. In this

case, from (36) we expect that for largen, logP
DT(")

� �(n=2) inf

k2V nR

inf

(S

1

;S

2

;S

3

)2K(k)

"

2

�

2

E

k

(S

1

;S

2

;S

3

)

and hence that the ratiologP
DT("

0

)

=logP

DT(")

� "

02

="

2. To test this, we compared the experimental and

theoretical ratios. For the pairs("; "0) = (0:5; 0:75) and(0:75; 0:9), and obtained the values of0:4712 and

0:7144 in good agreement with the theoretical values which are0:444 and0:6944.

8 Conclusions

In this paper we have analyzed a novel technique for the inference from end-to-end measurements of the

variance of the delay encountered by multicast packets on aninternal link. We constructed a convex family

of variance estimators and found the estimator of minimal asymptotic variance. Furthermore, the underlying

multicast topology can be estimated if it is not known in advance.

We investigated the modes of topology misclassification. Wefound that misgrouping (i.e. incorrect

identification of ancestors) is far less frequent that misclassification for other reasons (false inclusion or

exclusion of a link). Errors of the latter type typically apply predominantly to links with small delay vari-

ances. The consequences of such errors are expected to be small in measurement infrastructure application

in which it is desired to located the worst link, i.e., that with highest delay variance. Likewise, the algo-

rithms are very accurate at inferring the descendency structure of the tree. This is a useful property if the

information obtainable by these methods is to be used, e.g.,for grouping receivers for flow control. Errors

of inclusion and exclusion apply to links of smallest delay variance.

The model assumes that link delays are independent for different packets and links. Concerning the

former, we observe that temporal correlations of a sufficiently short range will not impair the consistency

of the estimator, although they will slow down its convergence. Concerning the latter, Random Early De-

tection (RED) [12] policies in Internet routers may help reduce dependence; evidence for this comes from

related work on internal link loss inference [4]. The introduction of RED was found to increase accuracy of

inference relative to networks with a Drop from Tail packet discard mechanism.
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9 Proofs of Theorems

Proof of Theorem 1: (i) The proof follows from standard results in multivariateanalysis; convergence to

the stated Gaussian random variable follows by Corollary 1.2.18 in [20]

(ii) Since the�
ij

sum to1, the proof follows by considering the constrained minimization of��C(k)���

2k� � 1 with Lagrange multiplierk. As a covariance matrix,C(k) is positive definite and hence invertible;
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minimization of the convex function of� takes place at the the stationary point� = kC(k)

�1

� 1. This

yields��(C(k)) upon normalization. The corresponding minimal asymptoticvariance is��(C(k)) �C(k) �

�

�

(C(k)) =

�

1 � C(k)

�1

� 1

�

�1

.

Proof of Theorem 2: Comparing with (9), then clearlybC(k) converges almost surely toC(k) asn ! 1.

Since matrix inversion is continuous on the set of strictly positive definite matrices,��( bC(k)) converges

almost surely (to��(C(k))); since eachbs
ij

converges tos
ij

= s

k

, V
k

(�

�

(

b

C(k)); bs) is consistent.

By the�-method (see e.g. [30]),
p

n (V (�

�

(

b

C(k)); bs) � s

k

) converges to a Gaussian random variable

with mean0 and variance� � C0

(k) � �, where for(`;m) 2 Q

0

(k) (recalling the definitions ofC0 andQ0

from below (9)),

�

`m

=

@

@s

`m

X

fi;jg2Q(k)

�

�

ij

(C(k))s

ij

: (37)

Differentiating,

�

`m

= �

�

`m

(C(k))�

Q(k)

(f`;mg) +

X

fi;jg2Q(k)

s

ij

@

@s

`m

�

�

ij

(C(k)); (38)

where�
Q(k)

denotes the indicator function of the setQ(k). But s
ij

= s

i_j

= s

k

for fi; jg in Q(k)

and so is constant in the sum. Since the��
ij

sum to 1, the sum in (38) is zero. Hence� � C0

(k) � � =

�

�

(C(k)) � C(k) � �

�

(C(k)).

Proof of Theorem 4: Convergence to some random Gaussian random variable in (i) is immediate from

Corollary 1.2.18 in [20]. It remains only to calculate the covariance matrix. Sincebv
ij

is invariant with

respect to shifts in the mean ofX
i

or X
j

, we can without loss of generality takeE[X
i

] = 0. We analyze

Cov(bv

ij

; bv

`m

) by expanding
P

m2I

n

(fi;jg)

in (15) as
P

m2I

n

(fi;j;k;`g)

+

P

m2I

n

(fi;jg)nI

n

(f`;mg)

and similarly

with I
n

(fk; `g). Picking out the dominant terms one finds that conditioned onN

n

(fi; jg); N

n

(f`;mg) and

I

n

(fi; j; `;mg) all being greater than 1,

Cov(bv

ij

; bv

`m

) =

1

N

n

(fi; jg)N

n

(f`;mg)

(N

n

(fi; j; `;mg)Cov(X

i

X

j

;X

`

X

m

) +O(1)) : (39)

Sincen�1N
n

(fi

1

; : : : ; i

p

g) converges asn ! 1 to B(i

1

; : : : i

p

), the distribution of
p

n bv

ij

has the stated

property. The proofs of (ii) and (iii) are analogous to thoseof Theorems 1 and 2.

The proof of Theorem 5 uses the following supplementary result.

Lemma 1 Let M be anm � m matrix, andM(t) the matrix with elementsM
ij

(t) = M

ij

+ t. Let

T = ft 2 R j detM(t) 6= 0g. Then for each1 � i � m, det(M(t))

P

j

(M

�1

(t))

ij

is independent

of t 2 T .

Proof of Lemma 1: With no loss of generality, take the casei = 1. det(M(t))

P

j

(M

�1

(t))

1j

is equal to

the determinant of the matrix

M

0

=

0

B

B

B

@

1 1 � � � 1

M

21

+ t M

22

+ t � � � M

2m

+ t

...
...

. . .
...

M

m1

+ t M

m2

+ t � � � M

mm

+ t

1

C

C

C

A

: (40)
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The matrixM 00 formed by subtractingt times the first row ofM 0 from all other rows has the same determi-

nant asM 0. ButM 00 does not depend ont, so neither doesdetM 0

= detM

00.

Proof of Theorem 5: Forfi; jg andf`;mg in Q(k), (9) can be written as in terms of cumulants as

C

(ij);(`m)

= K

(1;1;1;1)

(X

i

;X

j

;X

`

;X

m

)+K

(1;1)

(X

i

;X

m

)K

(1;1)

(X

j

;X

`

)+K

(1;1)

(X

i

;X

`

)K

(1;1)

(X

j

;X

m

):

(41)

Letfh; h�g denote the setd(k) of children ofk, and without loss of generality assumei; ` 2 R(h) andj;m 2

R(h

�

). SettingA
i`

= X

i_`

�X

k

andA0
i`

= X

i

�X

i_`

, the first term of (41) isK(1;1;1;1)

(X

i

;X

j

;X

`

;X

m

) =

K

(1;1;1;1)

(X

k

+ A

i`

+ A

0

i`

;X

k

+ A

jm

+ A

0

jm

;X

k

+ A

i`

+ A

0

`i

;X

k

+ A

jm

+ A

0

mj

). By the assumption

of independence of per links delays, distinctX;A andA0 are mutually independent, and hence this re-

duces toK(1;1;1;1)

(X

k

+ A

i`

;X

k

+ A

jm

;X

k

+ A

i`

;X

k

+ A

jm

) = K

(2;2)

(X

k

+ A

i`

;X

k

+ A

jm

) =

K

4

(X

k

). The second and third terms of (9) are together equal tos

i_m

s

j_`

+ s

i_`

s

j_m

and since

s

i_m

= s

j_`

= s

k

the first two terms of (41) depend only onk = i _ j _ ` _m. We can rewrite (41) as

C = (K

4

(X

k

)+s

2

k

)U

h


U

h

�

+S

h


S

h

� , where the first component of the tensor product carries the indices

i; `, the secondj;m. By Lemma 1,
P

`m

C

�1

(ij);(`m)

is equal to adet(C�(K

4

(X

k

)+s

2

k

)U
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U

h

�

))=det(C)

times
X

`2R(h);m2R(h
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)
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 S
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(ij);(`m)
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(S
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(S
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�1

jm

(42)

Note for anyk 2 V with offspringfh; h�g that(S
k

)

ij

= s

k

if i 2 R(h) (resp.R(h�)) andj 2 R(h�) (resp.

R(h)). Thus(S
k

� s

k

U

k

) has a block diagonal structure

(S

k

� s

k

U

k

) = (S

h

� s

k

U

h

)� (S

h

�

� s

k

U

h

�

) (43)

and hence, wheni 2 R(h),

X

`2R(k)

(S

k

� s

k

U

k

)

�1

i`

=

X

`2R(h)

(S

h

� s

k

U

h

)

�1
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; (44)

because(S
k

� s

k

U

k

)

i`

= 0 wheni 2 R(h) and` 2 R(h�). Whenq
i

is such thatf qi+1

(i) = k, and writing

j

r

= f

r

(j), then repeated use of Lemma 1 gives

X

`2R(h)

(S

h

)

�1

i`

=

1

det(S

h

)

q

Y

r=1

det(S

j

r

� s

j

r

U

j
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)

det(S

j

r�1

� s
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U
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1

det(S
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)
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Y
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�(f

r

(i)
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): (45)

Here we used the factoring propertydet(S
k

� s

k

U

k

) = det(S

h

� s

k

U

h

) det(S

h

�

� s

k

U

h

�

) that follows

from the form (43). The locality on� and form of then follows from the fact that the RHS of (45) is a

product over the nodesi; f(i); f2(i); : : : ; f q�1(i); f q(i) = h.

Proof of Theorem 6: Suppose the algorithm does not reconstruct the tree. Then there must be an iteration

of the while loop for whichu andv are not siblings. ConsiderR0; V 0 at the start of the first loop that this

occurs. Letw be the sibling ofu. w =2 R

0 sinceu _ w � u _ v implies s
uw

> s

uv

, contradicting the

maximality of s
uv

. Since the subtrees comprising(V 0

; L

0

) are disjoint, no ancestor ofu (or hence ofw)

can lie inR0. Since the tree is binary,w must have at least two descendentst

1

; t

2

in R

0 since otherwise
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[

k2R

0

R(k) would not coverR. Sincet
1

_ t

2

� w, thens
t

1

t

2

> s

w

> s

u_v

= s

uv

, contradicting the

maximality ofs
uv

.

Proof of Theorem 7: If the algorithm does not reconstruct, consider the first node k for which the outer

loop fails to execute as described above. ConsiderR

0

; V

0 at the start of this loop, and assume thats

k

is

unique. Failure can happen for the following reasons:

1. If the first pair grouped byDBDT in the outer loop are not siblings. This is excluded by Theorem 6.

2. If d(k) 6� R

0. Supposed(k) 3 v =2 R

0. Similarly to (i), sincev has siblings inR0, it can have no

ancestors inR0 and hence has at least two descendants inR

0, contradicting the maximality ofs
u

1

u

2

.

3. If not all members ared(k) are included inV 0 during the execution of the outer loop.From line 8 of

Figure 4 we haves
U

(m�1)

u

m+1

= s

U

(m�2)

u

m+1

= : : : = s

U

(1)

u

m+1

= s

k

. Hence eachu
m

enters into

V

0 during execution of the outer loop. This also show thatr

U

(m)

= 0 for m = 1; : : : n� 2 and hence

that all links(U (m+1)

; U

(m)

), m = 1; : : : ; n� 2 are pruned byTP(0).

4. If a non-child node ofk entersV 0 during the outer loop. Since the tree is canonical,s
j`

< s

k

for

j =2 V (k). Hence such a node cannot enter intoV

0 before the children ofk.

Finally, if s
k

1

= : : : = s

k

m

for k
1

; : : : ; k

m

2 R

0, then by the tie breaking rules, the outer loops for eachk

i

are performed separately, with thek
i

going first for whichd(k
i

) contains member of[
i

d(k

i

) most recently

added toV 0, etc.

Proof of Theorem 9: ConsiderDBDT applied to the same canonical delay variance tree. Denote by

U = fk; `g the generic binary subset ofS that maximizess
k`

in line 50 of DBDT. Assume initially that

the maximizingU is unique. Since the delay variance tree is canonical,s

k`

> s

k

0

`

0 for any other candidate

binary setU 0 = fk

0

; `

0

g. by the convergence property of Theorem 8,P[V

k;`

(�; bs) > V

k

0

;`

0

(�

0

; bs)] ! 1 as

n!1, and hencelim
n!1

P

f

BDT

= 0.

If the minimizingU is not unique, then there is a setU of pairsU
(j)

= fk

(j)

; `

(j)

g, j = 1; : : : m (some

m > 1), each with maximal covariance. Since the tree is canonical, then after eachU
j

2 S has been grouped

in DBDT the remaining pairs are still maximizers amongst all pairs of the reduced set(S n U
j

) [ fU

j

g in

line 10 of Figure 7. Hence the minimizing pairs inU are grouped successively. InBDT, the strict equality

of the covariances no longer holds for finitely many probesn. But by Theorem 8, the probability that pairs

in U will yield the smallerm values– and so will be grouped successively–converges to 1 asn!1. Hence

lim

n!1

P

f

BDT

= 0.

Proof of Theorem 11: Convergence to a Gaussian random variable follows from the asymptotic normality

of each term. The expression for the variance then follows from a direct application of the�-method. For the

second statement, observe that for(S

1

; S

2

; S

3

) 2 S(i), since for anyfi; jg 2 S
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� S
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� s
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. ThereforeD
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andV
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