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Abstract

End-to-end measurement is a common tool for network pedana diagnosis, primarily because it
can reflect user experience and typically requires minimppsrt from intervening network elements.
However, pinpointing the site of performance degradatiomfend-to-end measurements is a challeng-
ing problem. In this paper we show how end-to-end delay nreasents of multicast traffic can be used
to infer the underlying logical multicast tree and the paakelay variance on each of its links. The
method does not depend on cooperation from interveningarktelements; multicast probing is band-
width efficient. We establish desirable statistical praipsrof the estimator, namely consistency and
asymptotic normality. We evaluate the approach throughiksitions, and analyze its failure modes and
their probabilities.
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1 Introduction

1.1 Background and Motivation

Monitoring the performance of large communications neksand diagnosing the causes of its degrada-
tion is a challenging problem. There are two broad appraatheerformance diagnosis. In theernal
approach, direct measurements are made at or between ketleorents, e.g. of packet loss or delay, in-
volving possibly both active and passive measurements dpiproach has a number of potential limitations:
(i) it may not be available for general users; (ii) coveraggymot span paths of interest; (iii) measurements
may be disabled during period of high load; (iv) there araessof scale gathering and correlating the mea-
surements in large networks; (v) how should per hop measmtnbe composed to form an end-to-end
view?

This motivateexternalapproaches, diagnosing the network through end-to-endumgraents, without
necessarily assuming the cooperation of network elementseopath. There has been much recent exper-
imental work to understand the phenomenology of end-togmrtbrmance (e.g., see [1, 2, 8, 16, 21, 24,
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Figure 1: Logical Multicast Tree (left) and two embedded teceivers trees (center and right).

25, 27]); There are presently several measurement infictate projects (including CAIDA [6], Felix [11],
IPMA [13], NIMI [15], Surveyor [31]) that collect and analgzend-to-end measurements across a mesh
of paths between a number of hosts. Tieng andt r acer out e diagnostic tools are widely used to
determine connectivity, roundtrip loss and delay in IP reks. pat hchar [9] extends the approach of

t racer out e to estimate hop-by-hop link capacities, packet delay asd ftates. These approaches have
several potential drawbacks: (i) delays may not be reptasea of regular traffic, since their generation of
Internet Control Message Protocol (ICMP) packets can haweprriority in routers; (ii) roundtrip report-
ing and possibly asymmetric paths hinder the unambigudtibugion of delays to specific link directions;
(iii) encapsulation may hide the TimeToLive (TTL) field inetHP header from higher layers, and hence
approaches that depend on TTL manipulation—sudtr @ er out e andpat hchar —may only see single
composite hops between tunnel endpoints.

In response to some of these concerns, a multicast-basedaahpto active measurement has been
proposed in [3]. The idea is that correlation in performaseen onintersectingend-to-end paths can be
used to draw inferences about the performance charaitgmgttheir common portion, without cooperation
from the network. Multicast traffic is well suited for thisnse a given packet only occurs once per link in
the multicast tree. End-to-end characteristics seenfatreift endpoints are then highly correlated. In [3] it
was shown how to exploit these correlations in order to detex the per link loss rates in the underlying
logical multicast tree. Another advantage of using mudtida scalability. Suppose packets are exchanged
on a mesh of paths between a collectiomomeasurement hosts stationed in a network. With unicast, the
probe load on the network may grow proportionallyNd in some links of the network. With multicast, the
load grows proportionally only tev.

1.2 Contribution

In this paper we describe a method to infer the variance efmat link delays from measured end-to-end
delays of multicast probe packets. Furthermore, this databe used to determine the logical multicast
topology if it is not supplied in advance. The method restgganeralizations of) the following obser-

vation. We assume first that link delays are independentorandariables, both spatially (i.e. between
different links) and temporally (i.e. between differentkets). Consider the logical multicast topology of
Figure 1(left), in which packets are multicast from the rood receivers at leaf nodes. LEY; be the delay
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experienced by packets on linkand letX; be the cumulative delay experienced along the path from the
root O to node. Focus on the embedded 2 leaf tree formed by the(rdeiaf nodes 1 and 2 and their nearest
common ancestdk; see Figure 1(center). From the independence of link deiefglows that

Var(Xj) = Cov(X1, Xo); 1)

a more formal proof is given later. Similarly, consider theetformed by the rodi, the leaf nodes 1 and
3, and their nearest common ancestpsee Figure 1(right). TheWar(X;) = Cov(X;, X3). Observe that
Xy, = X, + Dy, andX; and Dy, are independent. Therefore,

Var(Dy) = Var(Xy) — Var(X;) = Cov(Xy, X») — Cov(Xy, X3). (2)

This expresses the variance of the packet delay on the aitiénix from node: to nodek, in terms of the
covariances of source-to-leaf delays. We can form an uebdiastimate of the latter directly from end-to-
end measurements, from which we obtain unbiased estimfaio($) and (2). In Section 2 we specify the
delay model, and these basic estimators for a known topolMgyalso give a generalization for estimating
higher order delay moments in certain topologies.

In a general topology there exists a convex family of unliadelay variance estimators based on (1)
and (2). Each is consistent, i.e., it converges almoststioethe true value. Section 3 presents estimators
for cumulative and link delay variance that have the fasieginptotic rate of convergence as the number of
probes increases. Packet loss reduces the number of pagkdtble for delay estimation, hence slowing
convergence rates. We quantify this and describe a vergionroestimators that makes maximal use of
information from surviving packets. The formulation of aminimum variance estimators requires the
inversion of an empirical covariance matrix whose dimemgjoows rapidly with the number of leaf nodes
of the tree. In the case of binary tree we are able to make ube ofatural recursive structure of the tree to
simplify the calculation. We provide an algorithm for this$ection 4.

In Section 5 we extend the approach to infer the logical roasti topology when this is not supplied in
advance. This is based upon the observation that when liigyslare independent, the cumulative delay
variance is increasing along paths from the root. Accordinl), a sibling pair can be identified by the
criterion that their delay covariance is maximal. Repeagulication of this criterion allows any binary tree
to be identified from the measured delay covariances. Thisoaph is inspired by a related method for the
inference of binary trees from end-to-end multicast los2f3. The method here extends to general trees.
We prove the resulting topology estimator is consisterd, @raluate it through model-based simulations in
Section 6. A closer analysis of the modes of failure, and gmymptotic probabilities, is made in Section 7.
We conclude in Section 8. The proofs of the theorems are efeo Section 9. Some of the results from
Section 3 were announced by us previously in [10].

1.3 Implementation Requirements

Since the data for inference comprises one-way packet slelay require source and receiver clocks to be
sufficiently synchronized over a measurement period dwyinigh a given set of probes is dispatched. Since
delay variance calculations are insensitive to absolate 8hifts, it is important to control only the relative
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clock drift. Sufficiently small clock drift may be correctéar; see [18, 26, 28]. We note that several of the
measurement infrastructures mentioned earlier use GRbsitioning System (GPS) for synchronization;
this enables absolute one-way delay measurements actonaithin tens of microseconds or better. The
Network Time Protocol (NTP) [17] is more widely deployedt buovides accuracy in only the order a few
tens of milliseconds.

1.4 Applications and Related Work

Multicast-based network inference tools based on loss meaents have been deployed in NIMI. We
plan to supplement these with delay-based variance inderdPhysical topology is currently laid out using
the mt r ace [19] measurement tool.nt r ace reports the route from a multicast source to a receiver,
along with other information about that path such as perdbsp and rate. Presently it does not support
delay measurements. A potential drawback for larger tapetois thatt r ace does not scale to large
numbers of receivers because it needs to run once for eaelveeto cover the entire multicast tree. In
addition, it relies on multicast routers responding to EXpimeasurement queries; the feature that can be
administratively disabled. As an alternative, we propagmlogy changes could be detected from ongoing
measurements using the methods presented here. Chandpeslagical multicast topology would then
trigger appropriatert r ace measurements to determine changes in the physical topolgywledge of
the multicast topology can be helpful to multicast applarad. Several reliable multicast protocols rely on
logical hierarchies based on the underlying topology ifsiluls; see, e.g., [22]. Other applications attempt
to group receivers that share the same network bottlen2gk, [

The delay variance estimates themselves can be used ta tiekscof higher delay variance. Since
the performance of delay sensitive applications may degraoh traversing such a link, such information
may be used to control routing in order that the traffic passes other links. The variance of the packet
delay (on a link or path) can be used to estimate or bound thienee of the interpacket delay variation.
Let D¢ be the delay encountered by packein a given link. The interpacket delay variation (or jitter)
between packetsandi + 1 on the link isJ? = D! — D?. ObserveVar(J?) = Var(D") + Var(D**1) —
2Cov(D?, D**1). Assuming stationarity and independence, this yistalg.J?) = 2Var(D?). Measurements
of end-to-end delays in the Internet [1] show that end-td-dalays successive packets are only slightly
dependent when the interpacket time is longer than thedygiseueing timescales. Stronger dependence is
found at shorter timescales: successive packets are rkehg 0 queue together. With positive correlation
between successive probe deléys (D!, Di*1) > 0; in this caseVar(J?) is bounded above b§Var(D?),

a quantity that we can estimate.

2 Tree and Delay Models and Non-Parametric Estimation

Tree Model. We identify the physical multicast tree as comprising dctdwork elements (the nodes)

and the communication links than join them. The logical makt tree comprises the branch points of the
physical tree, and the logical links between them. A logicdd comprises a chain of one or more physical
links. Thus each node in the logical tree, except the leaésathd possibly the root, have 2 or more children.



Figure 2: LEFT: Two leaf tree. RGHT: m-leaf tree.

We can construct the logical tree from the physical tree bgtihgy all links with one child and adjusting the
links accordingly by directly joining its parent and child.

Let 7 = (V, L) denote a logical multicast tree with nod&sand linksL. We identify one node, the
root 0, with the source of probes, am@dd C V will denote the set of leaf nodes (identified as the set of
receivers). The set of children of nogec V' is denoted byi(j). Each nodek, apart from the root, has a
parentf (k) such that f(k), k) € L; for simplicity we shall refer to this link as link. Define recursively
the compositiong™ = f o f»~! with f! = f. Nodes are said to be siblings if they have the same parent. If
k= f™(4) for somem € N we say thay is descended fat (or equivalently that: is an ancestor of) and
write the corresponding partial order¥as; < k. 1 V 7 will denote the nearest (i.e<-minimal) common
ancestor of andj.

Delay-Variance Tree Model. The delay on linkk is is a random variabl®,, taking values in the extended
positive real lineR = R, U {oo}. By conventionD, = 0. The valueD; = cc indicates the packet is lost
on the link; oy, = P[Dy, < o0o] is the probability of successful transmission across tile WWe assume the
Dy are independent random variables. The delay experienceldeopath from the roob to a nodek is
X = >_;»1 Dy thus the valueX;, = oo indicates that the packet was lost somewhere on the path(from
tok.

Denote the conditional link and cumulative delay varianbgs, = Var(Dg|Dy, < oo) and s, =
Var(X;| X < o0). By the assumption of link delay independengg = thk rj. We writer = (74)kev
and call the paif7,r) adelay-variance tree It is calledcanonicalif v, > 0, Vk € V'\ {0}. This condition
implies thats; > s; wheni < j. Any delay-variance tre€f, ) not in canonical form can be reduced to one
in canonical form by removing zero variance links and idgirtg their endpoints. Henceforth, we assume
that the underlying tree is a canonical delay-variancestree

Cumulative Delay Variance Estimation. Consider first a logical subtree of a logical multicast tfiee
formed by the root), and a non-leaf nodé with two descendent$ and2 that are leaf nodes; see Fig-
ure 2(left). We assume initially that all delays are firitfg);, = oo] = 0. Then:

COV(Xl,XQ) = COV(Xk + (X1 — Xk),Xk + (X2 — Xk))
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= Cov(X; — X, X) + Cov(Xo — Xi, Xi) + Cov(X; — Xi, Xo — Xi) + Var(Xy)
= Var(Xy), ®3)

since by assumption of mutual independence of the link delay, the random variableX, X; — X}
and X, — X, are mutually independent. Hence any unbiased estimatos\wfX;, X2) is also an unbiased
estimator ofVar(Xy). Let Xfi),Xéi), 1 =1,2,...n be measured end-to-end delays between thelraat
leaf nodesl and2 respectively. Abbreviat€ov(X;, X;) by s;, and writes, ass,. We estimates;, by the
unbiased estimator afo, namelys;, where

.1 N ) ) LR r(m) ()
sijnl(zlxi X -~ > x"Mx, (4)

m,m’'=1

Link Delay Variance Estimation. By the independence assumption on the link delgys- sy — s(x).
Thus any family of (unbiased) estimatqis; )<y Of the s;, yields (unbiased) estimators of thg through

Tk = Sk — Sf(k)'

General Delay Moment Estimation. This approach generalizes to nodes with branching ratio- 2;
see Figure 2(right). Denote the joint cumulants of the endrtd delaysX,, ..., X,, by

_ ' o i m
KIdm (X, ooy Xom) = <H %J_z_) log E[exp(z Gin')]
i=1 YYi =1

(5)

0,=0

These have the property thAt(X +Y) = K(X) + K(Y) wheneverX andY are independent vectors
of random variables. Hence

KYl(X, . Xo) = K5 (X, Xp) = K™(X5), (6)

i.e., them!™ cumulant of the delay on the common link equals the joint damiof the end-to-end delays.

3 Delay Variance Estimation on General Trees
3.1 Unbiased Delay Variance Estimators

Inageneral tree leP (k) = {{7,j} C R|iVj =k, } be the set of distinct pairs of leaf-nodes whesteast
common ancestor . Any convex combination _; .+ o #ijSij (i-€. with thep;; > 0 and summing to
1) is also an unbiased estimatorsgf An example theiniform estimator

1
> 5 @)
#Q() {i,}eQ(k)

One potential disadvantage with the uniform estimator @ tigh variance of one of the summands may
lead to high estimator variance overall. This motivatesosig coefficients:;; that are functions of the
end-to-end delays themselves in order to reduce the estivatance. In this section we shall assume that
all delays are finite and have bounded fourth moments. Lateshall relax the finiteness assumption.
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We formalize the notion of (possibly random) convex combiares ofs;; through acovariance aggre-
gator. ForS C R, let F,,(S) denote ther-algebra generated by the end-to-end dela&yg).cs (i.€. the set
of events that can be determined from know{ig; ) . s). A covariance aggregateris sequencéu(n))nen
of random vectorg u;;(n) : {¢,j} € Q(k); k € V' \ R} with 0 < pg5(n) < 1and} g, acou tis(n) =1
for eachk € V'\ R. We assume eagh(n) to beF,,(R)-measurable, i.e., that it is a function of the measured
delays of the first, probes. We will usually suppress the explicit dependencia@mumber of probes.

Lets = {5;;(n) : {i,7} € Q(k); k € V \ R} be a family of estimators, each;(n) being an
Fn({i,7})-measurable unbiased estimatorMai(X}). Given a covariance aggregater we can estimate
Var(Xy) by

Vie(p, 8) = Z i Sij (8)
{i,7}€Q(k)
A covariance aggregator is calldéterministic if it does not depend on th& (Y). We denote the set of such
aggregators with indices i (k) by Dy. An example is theniform aggregator that was used in the uniform

estimator (7). = (#Q(k))

3.2 Minimum Variance Estimation of Cumulative and Link Delays

Define the covariance matrix
Clij),(em) = Cov ( ZiZj , ZeZm ), (9)

whereZ; = X; — E[X;]. We will useC(k) = [C(ij)a(fm]{z’,j},{e,m}eQ(k) to denote the matrix obtained by
letting the indiceqij) and (¢m) in (9) run overQ(k); this is a submatrix of the matrig® (k) obtained by
taking the indices unrestricted over the €8(k) of binary subsets aR (k).

In the next theorem we characterize the asymptotic digtoibuwof thes;; asn — oo, and give a form
for the estimatolVj(u, s) of cumulative variance that has minimum variance.

Theorem1 (i) For eachk € V' \ R, the random variable§y/n (5;; — si) | {3,7} € Q(k)} converge
in distribution asn — oo to a multivariate Gaussian random variable with mean 0 andaciance
matrix C' (k). Hence thes;; are consistent estimators ef, and so isV (y,s). For any deterministic
covariance aggregator € Dy, /n(Vi (1, 5)—sg) converges in distribution as — oo to a Gaussian
random variable of mean zero and varianece C'(k) - p4

(i) The minimal asymptotic variand@f,cp, 1 - C(k) - p is achieved when

g = W (C(R) = (k) 1) ) [1-Clk) -1 (10)
whereC (k) ! denotes the inverse matrix 6f(k) and1,;) = 1, {¢,j} € Q(k). The corresponding

asymptotic variance of the variance estimatofls C(k)~!-1) .

Operationally, the coefficients;; of the minimum variance estimath(u*(C(k)) 5 ) of Theorem 1
are to be calculated from a@stimateof the covariance matri€’(k). Let ™ = x(™ — 1y x
Let C(k) denote the empirical covariance matrix with entries

5 (m) 7(m)
Ck)g) gy = n—l (ZZ - ZZ 2" 2y ) (11)

m=1

S



~ ~ ~

C(k) is an unbiased estimator 6f(k). Estimatingu*(C(k)) by p*(C(k)) andsy, by Vi (u*(C),s) poten-
tially introduces bias and increases variance in the eibmaf the s,. However, the following Theorem
shows thap.* (C/(k)) is consistent and has the same asymptotic variangg (@ (C), 3).

Theorem 2 Vj,(u*(C(k)), 3) is a consistent estimator of. v/n(Vy (1*(C(k),3) — sx) converges in distri-
bution to a Gaussian random variable of mean zero and vagdnc C(k) ' -1) .

Given a pairu = (u(k), u(f(k))) € Dy x Dy, of deterministic covariance aggregators with indices
in Q(k) andQ(f(k)) respectively, form a unbiased estimate-pfs

Wi(p,5) := Vie((k), 3) = Vi (0(f (K)), 5) (12)

Let C'(k) denote the#Q (k) + #Q(f(k)) dimensional matrix written in block form as
'y Ck)  C(k f(K))

®=( sy Clim )

whereC (k, f(k)) is the#Q(k) x #Q(f (k)) matrix of covariance#C(ij),(gm)](ij)EQ(k)y(zm)eQ(f(k)). Then

statements analogous to Theorem 1(ii) follow straighttoxly, using parallel arguments. We state without
proof:

(13)

Theorem 3 (i) For each deterministic covariance aggregatpr = (u(k), u(f(k))) € Dr x Dy,
Vn(Wy(i,3) — ri) converges to a Gaussian random variable of mean 0 and vagian©’ (k) .

(if) The minimal asymptotic variance of deterministic aggatorsinf,cp, xp, , 1" C'(k) - is achieved
when

(k) — (oo — )L (O L (c2 +e3)1g
<u(f(k)) ) = (@e2 =) () “”( o1+ e3)Lyp) ) (14)

and takes the ValU@Dl +cCo+ 203)/(0102 — C%) wherec; = 1, O(k)fl -1, c0 = ]-f(k) . O(f(k))fl .
Ly andes = 154 - C(k, f(k))~!-14. Here, the subscripts ohy, 1) distinguish the subspaces
in which these vectors live.

3.3 Example of Minimum Variance Estimator

The difference between uniform and minimum variance desiiyrated is more marked when the link delay
variances are more heterogeneous. We illustrate this i@-thaf binary tree of Figure 3(left). Consider, for
example, the case that the delay variance on links 8 and Iitihes that on all other links, i.e. the delays
are scaled by a factor 10. In the minimum variance estiméterweightingy;; is reduced when or j is
descended through a high delay variance link. In this tapglthis occurs when estimating delays to nodes
1, 2, or 3. As an example we tabulate the weight§C(1)) in the table in Figure 3(right). The weight for
the pair(8, 15) of high variance links i40~* times the highest weight, that for paiy, 14).

We compare the variance of the uniform and minimum variarstenators. From Theorem 1, the
minimum variance of estimated cumulative delay varianceddek is (1 - C(k)~" - 1)_1, while that of
the uniform estimator i§1 - C'(k) - 1) /#Q(k)?. Fork = 1, estimator variance is reduced by a factor of
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low delay variance
*—

high delay variance

Weight;; | Link pairs (s, 7)

0.000018 | (8,15)

0.001213 | (8,12) (8,13) (10,15) (11,15)

0.001811 | (8,14) (9,15)

0.081286 | (10,12) (10,13) (11,12) (11,13)

v 0.121322 | (9,12) (9,13) (10,14) (11,14)
0.181077 | (9,14)

o
L]
L
L
L]
L
L
L]
°

5
8 9 1011121314 1t

Figure 3: MNIMUM VARIANCE ESTIMATION: LEFT:. 8 leaf binary tree; Links 8 and 15 have delay variance
100 times that of others. IRHT: Weights for Minimum Variance Estimator.

approximately8.8; for k = 2, 3 by a factor approximatel§.7. All other nodes: have only two descendants,
one of which may terminate a high variance link; there is ngilfifity to avoid the any high varianc#,
and hence the factor is

3.4 Impact of Loss on Estimator Variance

Although lost packets clearly will not provide delay sanspd receivers descended from a link where loss
occurred, the foregoing still applies to estimation of tkéagt variance based on received packets. For nodes
U C V, definel,,(U) as those packetdl, ... ,n} that reach all nodes i@i'; the number of such packets is
Ny (U) = #I,(U). The probability of a packet reaching all nodedinC V'is B(U) = [[;syjucv} %
whereq; is the probability of successful transmission over linkClearlyn='N,,(U) converges almost
surely toB(U) asn — oo.

Then we can adapt the approach of the foregoing theory byifigram estimatotz;; of the variance of
the cumulative delay of packets reachibganalogously tas;;, by using only those packets i} (R(k)).
In the notation of (4) this amounts to the replacements: N(R(k)) andd_) | — > omet, (R(k))- LIS
straightforward to show that all statements of TheoremsdLZahold under the following replacements:
5 — @, C(k) — C(k)/B(R(k)), and in the definition (11) of(k) replacingn — N,(R(k)) and
Yoy Zmeln(R(k))' Summarizing, when sampling only probes received at alldea@escended from
k, the minimal variance estimator ef; is Vi (u*(C(k)/B(R(k)))), convergence being slowed relative to
the no loss case as convergence rates are multiplied byax fatR(k)) < 1.

A disadvantage of this approach is that is does not scaleagdilhe topology grows. Assuming link
loss rates to be bounded away from zero, the proportion dgtaceaching all receivers in a tree, namely
B(R)/n, decays geometrically fast in the number of links in the.tike alternative that wastes less data,



and hence reduces estimator variance, is to use all padcestived at andj, i.e, in thel, ({i,7}), not just
those inl,,(R(k)). Define

-~ 1 (m) 1 (m) 1 (m) 3 (m)
Uy = ——————— XX - ———— N XX 15
/ Nn({w})l(; S AP R )

where the sums:, m' run overr, ({i, j}). v;; is an unbiased estimate afy. The asymptotic variance of
these estimators follows:

Theorem 4 (i) For eachk € V' \ R the random variableg/n (v;; — si) | {i,j} € Q(k)} converge
in distribution asn — oo to a multivariate Gaussian random variable with mean 0 andatciance
matrix G (k) ij),emy = C(k)ij),(em)B(i,3,¢,m)/(B(i,7)B(¢,m)). Hence thev;; are consistent
estimators ok, and so isV (i, v) for any deterministic covariance aggregater For any determin-
istic covariance aggregato, v/n (Vi (i, v) — sx) converges in distribution as — oo to a Gaussian
random variable of mean zero and varianece G (k) - ;4

(i) The minimal asymptotic variandef,cp, ;-G (k)-p is achieved whep = 1*(G); the corresponding
minimal asymptotic variance il - G(k)~' - 1) .

(iii) Vk(u*(@), v) has the same asymptotic propertiesla$u*(G), v) where the estimated covarianég

is defined by
({@ J,k ﬁ}) G ZZ " N ({i, j, k, €}) mzn; G

(16)
where the sums run oveéy, ({7, j, k, £}).

3.5 Inference Accuracy

Some of the results of this section have been previouslywaroen by us, without proof, in [10]. There, we
also investigated the experimental accuracy of the delegnee estimators. We conducted model simula-
tions using pseudorandom link delays conforming to thepeddence assumptions. The delay variance es-
timators converged to their true values at the rates prdiizy the results of this section. We also conducted
network-level simulations usings [23]. These simulated probe and background traffic at thigidevel,
with packet delay and loss occurring through simulated gunguand buffer overflow. These simulations
test the robustness of the method to violations of the deldgpendence assumption. Delay correlations
were larger when smaller buffers were used. With the minimariance estimator, the estimated and actual
delay variance differed by a median factor of about 1.3 foalsgorrelations, rising to about a factor 2 for
larger correlations. The uniform estimator had noticedlifjrer error factors in the latter case.

4 Computational Approaches for Large Topologies

Computation of a general estimatorgfor the formVj(u, s) requires computation g¢Q (k) covariances
5;5. Computation of the minimum variance estimaiQs;.*,s) further requires inversion of thgQ(k)-
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dimensional matrixC'. Growth of dimensionality with larger topologies is rapitdamay preclude practical
calculations due to the computational cost. For exampla perfectly balanced tree of depthand branch-

ing ratio r, the number of covariances to be calculated for estimatfaalos;, grows proportionately to
r™ for largem. This motivates the use of estimates for the which although potentially suboptimal in
their variance, are less computationally intensive. We describe a class of estimators that achieve this by
taking advantage of the tree structure.

4.1 Capitalizing on the Tree Structure

Fori < k letd(k,i) = {j € d(k) | i < j}, i.e. the unique chilg of £ that is an ancestor of (or equal td)
A covariance aggregator is callémtal if it has the following form whose significance we explain gho

1 = ba(ivii) divig) (Qidra) - - Yagvia) (@idri) - Pavig)) » (17)
whereg, ¢ are two families of (possibly random) elementg@®fl] with the following properties:
{dij | {i,5} Cd(k); ke V\R} with Y ¢ =1 (18)
{i,g}cd(k)

and¢;; beingF,,(R(¢ V j))-measurable; and

{piljeV} with > ¢;=1VkeV\R (19)
jed(k)
andy; beingF,,(R(f(j)))-measurable.
The significance of this form becomes apparent after we detide averaged delays recursively through

Ye= Y Yjb; with Yy=X;, keR; (20)
jed(k)
eachY; is an average of the end-to-end delays seen at the rece®srerdied fronk. Using theYy, we
associate estimatofs;; of s;; through

~ 1 (m) 3 (m) 1 (m) (m)
By = —| X - )DER LD DI Fl B
N (R(K)) =1 (meln(R(k)) No(B(K)) mel, (R(k)) meln(R(k))
Note than only probes i, (R(k), i.e. those received all nodes inR(k), are used in (21).
If we now use a convex combination of thg; (instead of the;; in (8)), we obtain

Vi (p, w) = Z [hijWij = Z bij Wiy - (22)
{i,7}€Q(k) {ig}cd(k)

Observe the reduced number of covariances to be calculatie iRHS of (22). Using a local covariance
aggregator to combine the;; allows us to take advantage of the inherent recursive streiaif the tree
through (20). For the perfectly balance tree of depthnd branching ratie, the number of covariances to
be calculated to estimate &} grows as-™, compared with-™" is the general case. However, since we use
only packets in/,,(R(k)) to estimates; there is a trade-off between this computational reductiwh the
increase of variance due to the reduced number of packets.
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4.2 Minimal Variance Estimators on Binary Trees

An example of a local aggregator is thaiform local aggregator in which averages uniformly across
siblings withy; = 1/#d(f(¢)) and¢;; = 2/(#d(k)(#d(k) —1)). Butitis natural to optimize the variance
over all local aggregators. Sindé&r(Vy(u,w)) > Var(Vi(u,v)) such an estimator may not be optimal
over the set of all covariance aggregators; put another pfay (10) may not be local. However, we show
now thaty* is local for binary trees. This result appears restrictiverat,fsince not all multicast trees are
binary. However, any tree can be extended to a binary trekéinsertion of links with zero delay variance.
SinceVar(p*, w) is consistent, the estimated delay variance for these Giokserges t@ asn — oo: these
inserted can then be removed at the end of the calculatiasheeth we shall use this approach when we
address topology inference in Section 5.

Let S), denote the# R(k)-dimensional matrix with entries;, ;, andU,, the R(k)-dimensional matrix
with all entries equal. In a binary tree let* be the unique sibling of a nodd€except the root and its unique
descendant).

Theorem 5 p*(C(k)) is local in a binary tree, withp = 1 and
Vi(u*(C(k)), w) has asymptotic variancéet(C')/ > y; 1o minj Wheren; = ,‘{":’01 S(fT(i)*).

5 Topology Inference Through Delay Variance Estimation

In this section we show how the foregoing approach can betedap infer the underlying tre® when it is
not known in advance. The key observation underlying theamt is thak; > s, whenj is a descendent
node ofk. Consider a binary tree. By the assumption of independektielays,s; = 51€+Zk<ijj T > Sk.
Thus the cumulative delay, » is maximized when receivetsand?’ are siblings. If not, then one of the
receivers would have a sibling and the cumulative delay ftbenroot to their ancestor would be greater.
Sincesyypr = sy, the siblings can be identified on the basis of receiver nteasents alone. Substituting
a composite node that represents their parent and iteyahmmuld then reconstruct the binary tree. In
this section we formalize the foregoing approach and shawihoan be extended to reconstruct arbitrary
canonical delay variance trees.

5.1 Deterministic Reconstruction of Delay-Variance Trees

We now show that canonical delay-variance trees with recagtR are in one-one correspondence with the

set of receiver covariances;;); jc z. We do this by formulating an algorithm to reconstruct therfer from

the latter. In the next subsection this algorithm is adapiezktimated the tree from measured covariances.
We start with the special case of binary trees. The DetertiinBinary Delay-Variance Tree®d8DT)

Classification Algorithm is shown in Figure 4; it works asléals. R’ denotes the current set of nodes

from which a pair of siblings will be chosen, initially equ the receiver seR. We first find the pair

12



1. Input The set of receiver® and the delay covariance mattix= (s;x);rcr ;
2. R=RV =R;L'=0;

3. foreachk € R{ sk :=skx;}

4. while |R'| >1do

5. selectU = {u,v} C R’ with maximals,,;

6. V. =V'U{U} R :=(R'\U)U{U};

7. SU = Suw; SUU = Suv »

8. foreach k € R/ do sy := syk; gy := Sk ; €Nddo

9. foreachk e Udo L' = L' U {(U,k)} ; r,, := s, — sy ; enddo
10. enddo

11. if sy > 0do

13. V' :=V'U{0}; L =L U{(0,R)};

14. enddo

15. Output binary delay-variance tregV’, L'),r) ;

Figure 4: Deterministic Binary Delay-Variance Tree Cléisation Algorithm (DBDT).

U = {u,v} that maximizes;,,; U is identified with the pair's parent and replaeesndv in R’ (line 6).
Correspondingly we adjoin a row and column f@rto the matrixs (line 8). Links (U, «) and (U, v) are
added to the tree, and their link variances are calculated @). This process is repeated until all sibling
pairs have been identified (loop at line 4). If the last patémdentified has variance; = 0, then since the
tree is canonical, it is the root. Otherwise, we adjoin th@ rmde and link joining it to its single child (line
13). We remark that the andv row and column of the matrix could be deleted after line 8 since they are
not used after this point.

We say that the algorithm reconstructs the binary delayawag tree((V, L), r) if given R and the
Suy = Tuves U,v € R, it produces((V,L),r) as its output. Clearly this happens if and only if before
each iteration of the while loop 4 in Figure 4/', L") can be decomposed in terms of disjoint subtrees
VI = > er V(k) and L' = >, L(k). These subtrees may just be trivial origgk) = ({k},0)
comprising a root nodk. We note also that these trees cofgli.e. R = Ui R(k). These properties hold
before the first while loop, and hold subsequently since &sghof a successful reconstruction amalgamates
binary subtrees rooted at siblings.

Theorem 6 DBDT reconstructs any binary canonical delay variance tree.

In a general tree, thes,, is the same for any pafru, v} in a sibling set/, and takes the valuey ;).
This suggests an extension@BDT to reconstruct general canonical delay variance treeselyaim line
5 to find instead the maximal subgétC R’ such that for eacl,v € U, sy, = maxpcp sjk. It can be
shown that this does reconstruct in the general case. Howesedopt a slightly different approach that is
better adapted to inferring the tree from measured data.3&/@dwo stage approach. We first appBDT
to an arbitrary tree and observe the effect is to reconssracin-canonical binary tree in which siblings may
be separated by links with zero delay variance. In the sestagk we obtain the underlying general tree by
pruning, i.e., removing the zero delay variance links amuhiiflying their endpoints. For later use we find it
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®- - - o= zero delay links
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Ut g =~
u, u, ug u, u, u, Uusg ... u,

Figure 5: LEFT: General node witn children RGHT: Example of corresponding binary tree with zero
delay links.

useful to specify a generalization of this procedure. Fohea> 0, the Tree Pruning AlgorithnTP(¢) acts
on a delay-variance tree by pruning all links whose delayamae is less than or equal to The pruning
operation described above is the€R(0). We specifyTP in Figure 6.

The algorithm reconstructs the tree if for each nbde V' havingn children, there is a run of— 1 while
loops inDBDT that identify binary node&()), U2 ... U(»=1) that include all the children. We call this
run of binary groupings aauter loop. U(!) is a binary subset akR(!) = d(k), while form =2,...n — 1,
eachU(™) is a binary subset k(™ = (R(m~1) \ y(m-1) yylm-1), We assume that a tie-breaking rule
is specified for line 4 of Figure 4 when there is more than ongimizer. One example is to select the
maximizing pair{u, v} for whichu most recently included if¥’ andv the next most recently included, and
using an arbitrary initial order faR. In this casel(k) can be written a$u, ..., u, } with U = {u;, uy}
andU (™ = {U(m-1) .} form =2,...n — 1. The outer loop produces the subtree shown in Figure 5.

Theorem 7 TheDeterministic Delay-Variance Treealgorithm DDT = TP(0) o DBDT reconstructs any
canonical delay-variance tregV, L), r).

5.2 Inference of Loss Tree from Measured Leaf Delay Covariaces

We now present stochastic versions of the above algorithatsestimate topology based estimatedielay
covariances. We adapt the minimum variance approach oidBe®ts follows. Given a pair of nodgs, ¢}
we can estimat€ov (X, X,) by

Viee(p,5) = Yo s (24)
{i,j}eR(k)x R(£)

wheres = {5;;}; jer andpu is a covariance aggregator. This estimator obeys analogmyserties to
established in Section 3 directly follows. In particulgn(V}, ¢(x, s) — ske) converges to a Gaussian random
variable of mean zero and varianee (k, £)- 1, whereC'(k, e) [O( (' )]{m} {Z] YeR(k)x R(¢); MOreover,
the minimum variance estimator is achieved whee: % ( = (C( 1) /1-C(k,0)~ ! - 1.
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1. Input a delay-variance tre€f, r);

2. Parameter a threshold: > 0;

3. V':={0}udsr(0); L' :={(0,k) : k € d7(0)};
4. U :=dy(0);

5. while U # 0 do

6. selectj € U;

7. U=U\{j} Udr(j);

8. if (rp <e)V(j#R)then

9. L' = (L' U{(fr (), k) - k € dr(DD \ LU (). 9) b
10. Vii=VIH{i} Udr();

11. else

12. L' =L U{(jk):kedr(j)};

13. Vi=V'udr(j);

14. endif;

15. enddo

16. Output: (77, r")

Figure 6: Tree Pruning AlgorithrP(¢)

Denote by@(k,é) the empirical version of’(k, ¢), i.e., the covariance matrix with entries given by (11).
Similar to Theorem 2 we have:

)) S) — sg;) converges

Theorem 8 Vj, o(p *(@(k ¢)),s) is a consistent estimator of;. /n(Vy¢(u (5(
C(k,0)~t-1)7t

in distribution to a Gaussian random variable of mean 0 andarace (1 - C(

Inference of Binary Trees from Measurements. Inference of binary trees from measured receiver delays
is performed by the Binary Delay-Variance Tree Classifarathlgorithm BDT); see Figure 7. This com-
binesDBDT with the minimum variance estimator from (24), taking adege of the tree structure and the
optimality of the local aggregator for binary trees. Notatftin distinction withDBDT, we exclude the test
to see if the last identified is the root, since the event = 0 happens with probability zero for continuous
delay distributions.

In the following, we will use the notatio(17', 7) to denote an inferred delay-variance tree; sometimes we
will use 7A3( to distinguish the topology inferred by a particular al¢fom X. P){ will denote the probability
of false identification of topology™ of the delay-variance tre@, r) i.e. P){ =Pr, [7A§< #T].

Theorem 9 Let (7, 7) be a binary canonical delay variance tréém,, ,, PJpr = 0.

Inference of General Trees from Measurements. The adaptation dDDT to the classification of general
loss trees is more complicated than the binary caséDif, s;; takes the same value for any two nodes
{4, k} in a sibling set, giving rise to zero loss links between thdesogrouped in an outer loop, which are
then pruned byfP(0). But using measured delay the corresponding estimatesotbe equal for finitely
many probes. In order to group nodes appropriately, we appiyeshold: > 0 while pruning, so that links
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i=1,2,..n

1. Input The set of receiver®, number of probes, receiver tracesX,EZ))keR e
2. RR:=R,V':=R; L'=0;

3. foreachk € Rdo

4, sk = w(k, k);

5. foreachi = {1,...,n} do¥{" = X\ ; enddo

6. enddo

7. while |R'| > 1do

8. select{u,v} C R that maximizes, ,\ := w(u,v);
9. Vii=V'U{{u,v}}; R := (R'\ {u,v}) U{{u,v}};
10. foreach (k € {u,v}) do

11. Tk = S{uwy — sk L' = L' U{({u, v}, k) }

12. foreach (4,4 € R(k)) do Sy ¢ := seye ; €nddo
13. d(k) := det(Sy — g{u,v}Uk) ;

14. enddo

15.  foreach(m € {1,...n}) do ¥} == (5(u)yu(m’ + 5(U)Y7§{”>) / (6(u) + 6(v)) ; enddo
16. enddo

17. Output delay-variance treg{0} U V', {(0,R")} U L"), {0} Ur)

18. procedure w(i, j) {return (n —1)=1(>>0 _, Yi(m)Yj(m) —nty Yi(m) Yom—1 Yj(m)) I3

Figure 7: BNARY DELAY-VARIANCE TREE CLASSIFICATION ALGORITHM (BDT). The functionsv and
R(-) return ancestors and leaf nodes respectively from thermiuf¥€, L'). Uy is the# R(k)-dimensional
matrix with all unit entries.

are pruned if the estimated link delay variance does notezkceFor eacle > 0 the Delay-Variance Tree
Classification Algorithm is DT (e) = TP(¢) o BDT. Since link delay variance estimates become accurate
as the number of probes grows to infinity, all links with delayiance greater that should be correctly
classified. The proof of the following is similar to that of &drem 9:

Theorem 10 Let (7, r) be a canonical delay-variance tree in which all link variasa;, > ¢’ for some
g’ > 0. For eache € (0,¢'), lim, 00 pgT(g) = 0.

6 Simulation Evaluation of Topology Inference

We evaluated the accuracy of the classification algorithmasriumber of model-based simulations in which
the link delays are independent exponentially distributaadom variable. Unless otherwise stated, we
assume no packet loss.

Dependence of Accuracy on Threshold. We conducted 1000 simulations over randomly generated
trees of 15 nodes and maximum branching ratio 3. Link vagavas randomly chosen in the interyal10].
Convergence of the estimated topology to the true topole@ssured by choosing< 1. In Figure 8(a)
we plot the fraction of correctly classified trees for thefatifént general tree classification algorithms and
e = 0.25,0.5,0.75,0.9. Except with small numbers of probes, accuracy is bestfer 0.75. Smaller
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Figure 8: DEPENDENCE OF THEACCURACY ON THE THRESHOLDe. Fraction of trees correctly classified
by DT(e) in 1000 simulations over randomly generated 15 nodes tree fo 0.25,0.5,0.75,0.9. Link
variance is uniformly distributed in the interval [1,10) (&,100] (b).

values ofe result in stricter grouping criteria and so statistical fliations of the estimates lead to erroneous
exclusion of nodes from groups. Increasingnitially decreases the probability of such events, but as
¢ approaches the smallest link delay variamgg,, the probability of falsely including nodes in a group
increases. Whea increases beyond,,;,,, this link is effectively ignored and so the probability afroect
classification would rapidly drop to zero.

Dependence of Accuracy on Variance Spread and Topology.Accuracy decreases noticeably when the
range of possible variance is expanded1td 00]; with 1000 probes and = 0.75 only about35% of the
trees were correctly classified, see Figure 8(b). The qooreting proportion wa$00% for variances in
[1,10]. This occurs because large delay variance lead to largenaet variances, and hence mistaken
pairing of non-sibling nodes, or erroneous inclusion orlgsion of nodes in a group, is more likely to
occur. In this example, the algorithm performs poorly baseathe largest delay variance possibl®, is
much larger than the smalledt,and so any threshold < 1 represents a grouping criterion that is difficult
to attain with accuracy. Indeed, we verified that misclassiibn was caused mostly by false exclusion from
groups of nodes that terminated smaller variance links.

Algorithm accuracy decreases for larger branching ratie;Eigure 9(a), which compares accuracy for
maximum branching ratios 3 and 4, ane- 0.5, 0.75, and delay variances ith, 10]. Larger branching ratios
require more pruning operations, thus affording more ofpmities for misclassification. The difference is
evident for smaller value af because of the higher probability of falsely excluding aenédm a group.

Dependence on Loss. As described in Section 3.4 packet loss increases estimat@nce, and hence
decreases inference accuracy. This is evident in Figurev@tiich displays fraction of correctly classified
trees decreases for various ranges of randomly selecteddtes. Link variance is randomly chosen in the
interval[1,10] ande = 0.75.
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Figure 9: DEPENDENCE OF THEACCURACY ON TOPOLOGY AND Loss Fraction of trees correctly
classified byDT () in 1000 simulations over randomly generated 15 nodes: maxifianout 3 and 4 (a);
different loss rate intervals (b).

7 Topology Misclassification

We analyze the modes of failure DfT, and estimate the convergence rates for the probabilityafessful
classification as the number of probes grows. We analyzddgpanisclassification by focusing on how
sets of receivers can be misgrouped in the estimated topﬁTogVe formalize the notion of correct receiver
grouping as follows. LeR; denote the set of receivers in the logical multicast toppldg

Definition 1 Let (7 = (V, L), r) be a delay-variance tree and dendt® = (V, L), 7) an inferred delay-
variance tree. The receive® (k) descended from a nodec V \ Ry are said to becorrectly grouped

in 7 if there exists a nodé € V such thatR(k) = R,f(E). In this case we shall say also that noklés
correctly classified i

The notion of correct grouping allows the trees rooted and’ to be different; it only requires the sets
of receivers descended frolrand’ be equal. Correct receiver grouping and correct topologgsification
are related. In the case of binary trees, the topology iectyr classified if and only if so is every interior
node. This property allows us to study topology misclassifdn by looking at receiver misgrouping. To this
end, we need to consider more general convex combinatiotine afelay covariances than those expressed
by (24) to take into account groups of nodes which may resofh fnodes misgrouping. Given two disjoint
subsets of?, S| andSs, S1, Ss # (), we denote

Vsiso(1:8) i= > pigSiy (25)
{i,j}ESl X So

wherey is any suitable covariance aggregator. Properties sindl#nose established in Section 5.2 hold

for these convex combinations. In particulgf (Vs, s, (1" (C(S1 x S2)),8) — Vs, s, (1" (C(S1 % S2)), s),
converge to a Gaussian random variable of mean zero anawafib- C(S; x S;)~!-1)~1, whereC(S; x

S2) = [Clijy(em)){i i}, {t,m} €Sy x So -
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4 5

Figure 10: THE THREE-RECEIVER BINARY TREE.

7.1 Misgrouping and Misclassification of Binary Trees

We start by studying misgrouping BBDT. Denote byG, the event thaBDT correctly groups nodes in
R(k). This happens if

ﬁk(slv‘g?vs?)) = V51,52 (u*vg) - VSl,Sa(U*vg\) >0 (26)

for all (S1,52,S53) € S(k) whereS(k) = {S1,S2 C R(k),Ss C R\ R(k), Sk # 0, S1 NSy = 0}. (26)
ensures that for all possible ways to reconstruct the tnemep subsets o (k) are never grouped with
receivers not iRy (k), which in turn guarantees that receiversiif (k) are first all grouped together. By
construction, this ensures thatTnthere is a nodé such thatiRr (k) = R(k). LetQx (51, Sz, S3) denote
the event that (26) holds; theGi, 2 N(s, 5, 55)es(k) @k (S1, S2,53). This provides the following upper
bound for the misgrouping probability, denotedB,§, as

Pl :=P[Gg) < > PlQ% (51,52, S3)] @7
(S1,S2,S3)ES(1€)

Normal Approximations. We now consider the asymptotic behaviorR%ff for large numbers of probes.

Theorem 11 Let (7,r) a canonical delay-variance tree. For eaéhe V \ R, \/ﬁ(ﬁk(sl, Sy, 83) —
Dy(51,S2,83)), (S1,592,53) € S(k), converges in distribution, as the number of probes+ oo, to a
Gaussian random variable with mean 0 and variance

Z 0Dy (S1, S2,53) 0Dy (S1, S2,53)

D5y Clag),(em) Dser ,  (28)

2
UDk (Sla 527 S3) =
{z’,j},{é,m}esl X S2US1 X S3

WhereDk(Sl, Sg, 53) = VSl,Sz (u*, 8) — V51,53 (u*, S). Moreover,inf(sl,52753)65(,6) Dk(Sl, Sg, Sg) =Tk.
Theorem 11 suggests that we can approxirRa€g, (S, Sz, S3)] = P[Dk(S1, 52, 55) < 0] by W(—/n-

Dy(S1,S2,83)/0p, (S1,S52,53)), whereV is the cdf of a standard normal distribution. For largeve can
approximate to leading exponential order as

7(n/2)D2k(51’752’53>2
P[QS(S1, S, S3)] e TDk1F2sy) 09
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Figure 11: MSCLASSIFICATION AND MISGROUPING INBDT. Fraction of links misclassified with variance
> ¢, for ¢ = 0,2.5,5,7.5%. Link variance is uniform irj1, 10] (a) and in[1, 100] (b).

Since the largest term ovéi(:) should dominate all others for large we have

Dy (51,52,83)*

—(n/2) inf . Spettert Sl
(n/2)inf(s; s,,55)€5(k) o, (51:52:55)

P/ ~e (30)

In the case of binary trees, when all groups are correctipnéar so is the topology; therefore, we have that
PgDT < Dkev\r P,f A MaXpey\R P,f which suggest thabg PéDT vs. n is asymptotically linear with
slope
D 2
nf k(S1, 52, 53)

1
= i 31
2 keV\R (51,52}?3)@(@ o, (51,52, 53) 3D

Example: The Three-Receiver Binary Tree. To illustrate the results, we consider the simplest case
of a binary with three receivers in Figure 10. The topologygasrectly inferred byBDT when nodes 4

and 5 are grouped which happens when both > 533 andss, > 553. Misclassification requires ei-

_ (s45—543)2
ther inequality to be false. Consider the first; we have #al; < 5y3] =~ ¢ (1/2) Varlsas - 5431 . where

Var[§45 — :‘9\43] = Var[§45] + Var[§43] -2 COV[§45, :‘9\43] = (C(45),(45) + 0(43)7(43) — 26’(42),(43))/%. Then by
expanding the term§;;y () = K4(Xivjvg\,m) + SivmSjve + Sivesjvm, We readily obtairP [sy5 < 543] ~
2

/2 ~(n/2) 2

2
KA(Dy)+r3+(ri+ra+r4)(ra+73+75) S|m||ar|y, P[§54 < :9\53] ~ e K4(D1)+r3+(ri+ra+rs)(ra+ra+rg) , which

yields
§+max{(rl +ratrg)(ratratrs),(ritrot+rs)(ratra+ry)}t

Pl v ¢ "0

To verify the accuracy of this approximation, we conduct@@d0 experiments with all link delays expo-
nentially distributed: link variance was 10 for all linkstBink 2 the variance of which was 1. We obtained
an approximate slope @84 x 10~ in good agreement with the experimental valug .66 x 10~4.

Modes of Misclassification byBDT in Experiments. Calculation of the infimum in (31) is in general
quite difficult sinceg%)k (51,52, .53) is a complex function of both the topology and the links vacks. Here
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we use experience from experiments to identify the dominamdes of misclassification and misgrouping.
For the binary trees used in Section 6, we plot in Figure 11pttoportion of links that had variances
greater than or equal to a given threshgldnd were still misclassified bBDT, along with proportion of
experiments in whiclBBDT incorrectly identifies the topology.

Observe that errors are dominated by misclassificatiorvot/lriance links. This suggests that for large
n, P{;DT ~ Pf, wherej = argmirkeV\Rrk, i.e., the most likely way to misclassify a tree is by not eotly
grouping receivers that share the link with smallest vaxganMoreover, we found out in our experiments
that as the number of probes increases, the most likely wayiggroup such link occurs by mistakenly
pairing one of its child nodes with its sibling, i.e., wh8p = R(h(j)), S2 = R(h*(5)) andSs = R(j5*).
This suggests that we can use the following approximation

r2
—(TL/2) 2 - J * (5 -
UDk(R(h(J)),R(h (1)), R )). (32)

f ~ pf ~
PBDTNPjNe

7.2 Misgrouping and Misclassification byDT (e)

We now turn our attention to the errors in classifying gehieezs byDT(¢). In the following, we Ie1(7A", )
denote the tree produced BPT, the final estimatd is obtained fronf”’ by pruning links whose inferred
delay variance is smaller thani.e.,(7,r) = TP(¢)(7",7). In distinction with the binary case, incorrect
grouping byBDT is sufficient but not necessary for the misclassificatior.0Fb(¢), incorrect classification
occurs in any of the following holds:

(i) atleast one node iff” is misclassified ir7; or
(i) TP(e) prunes links fronf7’ that are present ifi’; or
(iii)y TP(e) fails to prune links fronf7’ that are not present iff.

We now analyze misclassification BiT (¢). Let G denote the event that the topology is correctly clas-
sified. We have thatr O ﬂkeV\R(Gk NHy(e) N K (e)), whereHy () = ﬂ(51752,53)65(k)H(517 S, S, ¢€),
and for(Sy, Sa, S3) € S(k), H(S1,S2, Ss3,¢) is the event that

E\k(slv 52783) = V51,52 (u*vg) - V51U52,53(N*7§) > €, (33)

and K (e) = Ng, s, s5eic(k) Hf(S1, 82, S3,¢) whereC(k) = {S1,82,83 C R(k) : S; # 0;8;NS; =
0,lvm =kl € S;,m € Sj,i # j}. WhenG,, holds, Hy(e) ensures that for all possible ways to
reconstruct the tree, the inferred loss rate on krik larger thare; Nycy\ p Kk (¢) ensures that all the links

in 77 which are not present ifir have inferred link variance smaller thanThus, we obtain the following
upper bound on the misclassification probability

Pl < Z( > PlQS(S1, 5, 85)] + PH (51,5, 83,8+ > P[Hf(Sl,Sg,Sg,s)]> (34)

ieV\R \(S1,52,53)€S(i) (S1,S2,53)€K(4)
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Figure 12: MSGROUPING ANDMISCLASSIFICATION INDT(e). Link variance distributed ifi, 10]. Frac-
tion of misclassified links (a) and trees (b).

Normal Approximations. We now consider the asymptotic behaviomﬁT(E). The proof of the follow-
ing result is similar to that of Theorem 11; it is omitted.

Theorem 12 Let (7, r) be a canonical delay-variance tree. For edete V' \ R, and(S1, S2, S3) € S(k)U
K(k), /i (Eg(S1, Sa, S3) — E(S1, S2, S3)), converges in distribution, as the number of probes; oo,
to a Gaussian random variable with mean 0 and variangge (S1, S2, S3). Moreoverinf(s, g, s,)es(k)
Ek(Sl, So, 53) =Tk, andEk(Sl, S9, 53) =0 for (Sl, So, Sg) S K(k')
Theorem 12 suggests that for langewe can use the following approximations

(E‘k2(51,52=53)—6)2

oEk(51a52,53) (SI, SQ, S3) E S(k) (35)

2
—(n/2) 7=
(Sl, Sz, Sg) S /C(k)

—(n/2)
P[ng(513527s376)] ~ e

Gf;k (51,52,53)

P[HE(517527S37€)] ~ e

Since the largest term should dominate for largeve expect the curve dég Ppr(.) Vs. n be asymp-
totically linear with negative slope

I . Dy (81,52, Ss)? (Er(S1,S2,53) —¢)? . e?
= inf inf oo o ir 5 , inf oo o~
2 keVAR | (51,5,55)€S(k) 0, (S1,52,53) " (51,82,55)€8(k) 0F;, (S1,52,53) 7 (51,8,85)ek(k) 0, (S1,S2,53)
(36)
The three possible dominating exponents in (36) corresgmtitk three possible modes of misclassification
(1), (i) and (iii) respectively, as listed above near tharsof Section 7.2.

Modes of Misclassification byDT in Experiments. For the examples of Section 6 with link variances
random in[1, 10], Figure 12(a) displays the fraction of links that were nassified byDT(0) and had
link variance larger than a given valge Figure 12(b) displays the fraction of trees misclassifigd:sf =
0.25,0.5,0.75,0.9. The difference in slopes between the two set of curves shiostsfor large numbers
of probes, receivers become correctly grouped, leavingr®in tree misclassification to be dominated by
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pruning errors. Eg. (36) then indicates that the most likedy to misclassify undeD T (¢) is for smaller
¢ by not completely grouping a set of sibling and, for largeby pruning link with small link variances.
Accuracy is best for intermediate value when both types mirdrave the same probability.

For larger delay variances [, 100], misclassification is always dominated by node exclusiorthis
case, from (36) we expect that for largelog Ppr(.) ~ —(n/2) infycy\ g inf(s, 5, 55)ex (k) m
and hence that the ratiog Ppr(.1)/log Ppr(.) = /<%, To test this, we compared the experimental and
theoretical ratios. For the paifs,<’) = (0.5,0.75) and(0.75,0.9), and obtained the values 0712 and

0.7144 in good agreement with the theoretical values whichla4¢¢4 and0.6944.

8 Conclusions

In this paper we have analyzed a novel technique for theanfer from end-to-end measurements of the
variance of the delay encountered by multicast packets amt@mal link. We constructed a convex family
of variance estimators and found the estimator of minimggeotic variance. Furthermore, the underlying
multicast topology can be estimated if it is not known in athea

We investigated the modes of topology misclassification. féved that misgrouping (i.e. incorrect
identification of ancestors) is far less frequent that raissification for other reasons (false inclusion or
exclusion of a link). Errors of the latter type typically dppredominantly to links with small delay vari-
ances. The consequences of such errors are expected to Ibensmeasurement infrastructure application
in which it is desired to located the worst link, i.e., thatiwhighest delay variance. Likewise, the algo-
rithms are very accurate at inferring the descendencytsteiof the tree. This is a useful property if the
information obtainable by these methods is to be used,ferggrouping receivers for flow control. Errors
of inclusion and exclusion apply to links of smallest delayiance.

The model assumes that link delays are independent forreliffgpackets and links. Concerning the
former, we observe that temporal correlations of a sufftjeshort range will not impair the consistency
of the estimator, although they will slow down its convergenConcerning the latter, Random Early De-
tection (RED) [12] policies in Internet routers may helpuee dependence; evidence for this comes from
related work on internal link loss inference [4]. The intnotlon of RED was found to increase accuracy of
inference relative to networks with a Drop from Tail packistcdrd mechanism.
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9 Proofs of Theorems

Proof of Theorem 1: (i) The proof follows from standard results in multivariatealysis; convergence to
the stated Gaussian random variable follows by Corolla2yl8.in [20]

(ii) Since they;; sum tol, the proof follows by considering the constrained minirtia@aof /.- C (k) -y —
2kp - 1 with Lagrange multiplierk. As a covariance matrix;) (k) is positive definite and hence invertible;
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minimization of the convex function qf takes place at the the stationary point= £C(k)~! - 1. This
yields u*(C(k)) upon normalization. The corresponding minimal asymptegigance isu*(C(k)) - C(k) -
p(Ck) = (1-Ck)L-1) ' g
Proof of Theorem 2: Comparing with (9), then cIearI@(l-c) converges almost surely ©(k) asn — oo.
Since matrix inversion is continuous on the set of stricthgifive definite matricesu*(é’\(k)) converges
almost surely (tq.*(C(k))); since eacly;; converges ta;; = sy, Vk(u*(ﬁ(k)),g) is consistent.

By the §-method (see e.g. [30])/n (V (1*(C(k)),3) — s5) converges to a Gaussian random variable
with mean0 and variancey - C°(k) - , where for(¢,m) € Q°(k) (recalling the definitions of* and Q"

from below (9)),
0

m = 5 Y ui(CK)sis. (37)
{i.5}eQ(k)
Differentiating,
0
m = P (C(R)) X ({4,m}) + Z Sij?lﬁj(c(k))a (38)
{ijyeQ) "

where x(x) denotes the indicator function of the s@tk). Buts;; = s;; = s for {i,5} in Q(k)
and so is constant in the sum. Since ffe sum to 1, the sum in (38) is zero. Henaee Cok) - a =
pr(C(k)) - Ck) - p*(C(k))-m

Proof of Theorem 4: Convergence to some random Gaussian random variable s i)mediate from
Corollary 1.2.18 in [20]. It remains only to calculate thevapnance matrix. Since;; is invariant with
respect to shifts in the mean 4f; or X;, we can without loss of generality takgX;] = 0. We analyze
Cov(vij, vem) by expandind S, c; ;1) IN(A5) @SY_ e r (qiikey) T 2omern ({6, )\ I ({6,m}) @N Similarly
with I,,({k, £}). Picking out the dominant terms one finds that conditionedvp{i, j }), N, ({¢,m}) and
I,({i,7,¢,m}) all being greater than 1,

1
Vij, Upm) = Np({t,7 X X5, Xe X 1)). 39
COV(UZ]avﬁm) Nn({z,j})Nn({E,m})( n({l,],g,m})COV( gy Y m)+0( )) ( )
Sincen™'N, ({i1,...,iy}) converges as — oo to B(iy,...1,), the distribution of,/n ¥;; has the stated

property. The proofs of (ii) and (iii) are analogous to tho$&@heorems 1 and 3
The proof of Theorem 5 uses the following supplementaryltesu

Lemmal Let M be anm x m matrix, and M (t) the matrix with elementd/;;(t) = M;; + t. Let
T ={t € R| det M(t) # 0}. Then for eachl. < i < m, det(M(t))Zj(M—l(t))ij is independent
ofteT.

Proof of Lemma 1: With no loss of generality, take the case- 1. det(M(t)) >
the determinant of the matrix

J(M~H(t))y; is equal to

Moy +t Mo+t -+ My, +1
M' = _ : _ " (40)
Mml"‘t Mm2+t Mmm"'t
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The matrixM"” formed by subtracting times the first row of\/’ from all other rows has the same determi-
nant asM’. But M" does not depend an so neither doedet M’ = det M". g

Proof of Theorem 5: For {7, 7} and{¢, m} in Q(k), (9) can be written as in terms of cumulants as

Cligyomy = KB (X5, X5, X, X))+ KUY (X5, X ) KD (X5, Xo)+ KD (X5, X)) K5Y (X5, X o).
(41)

Let{h, h*} denote the set(k) of children ofk, and without loss of generality assumé € R(h) andj, m €
R(h*). SettingA;y = X;vr — Xy, andAl, = X;— Xy, the first term of (41) ig< (LU0 (X5, X, Xy, X)) =
KOLLD (X + Ay + ALy, X + Aj + Al Xk + A + Al Xi + Ajim + A7), By the assumption
of independence of per links delays, distint A and A’ are mutually independent, and hence this re-
duces tOK(l’l’l’l)(Xk + Ay, X + Ajm7Xk + Ay, Xp + Ajm) = K(2’2>(Xk + Ay, Xi + A]m) =
K*(X}). The second and third terms of (9) are together equal;jg, sjve + sive sjvm and since
sivm = sjve = sy the first two terms of (41) depend only én= ¢ Vv j vV £V m. We can rewrite (41) as
C = (K4(Xk)+sz)Uh®Uh* +S5,L® S, Where the first component of the tensor product carriegiitiees
i,¢, the second, m. By Lemma 1Z€m (Zm> is equal to alet(C'— (K*(Xg) +s2) U, @Up+)) / det(C)
times

Z (Sh ® Sh*)&;)y(gm) = Z (Sh)i_él Z (She )]_nlz (42)

¢eR(h),meR(h*) LeR(h) meR(h*)

Note for anyk € V with offspring {h, h*} that(S}):; = s, if i € R(h) (resp.R(h*)) andj € R(h*) (resp.
R(h)). Thus(Sy, — siUy) has a block diagonal structure

(Sk — skUk) = (Sp — skUn) ® (S — 5xUp+) (43)
and hence, whene R(h),
Z (Sk — skUs)yp = Z (Sh — skUn)3;" (44)
e R(k) (ER(R)

becausé Sy, — s,Ux)i = 0 wheni € R(h) and¢ € R(h*). Wheng; is such thatf%+1(i) = k, and writing
= f"(j), then repeated use of Lemma 1 gives

_ 1 L det(S;, —s;.U;)
(Sh)y' = S 6(f" (%) (45)
ZE%(:h) it det(S}) e det(SjT_l — S, Ujr—l) det H
Here we used the factoring properyt(Sy — spUx) = det(Sy — sxUy) det(Sp« — sxUp+) that follows
from the form (43). The locality om and form ofy then follows from the fact that the RHS of (45) is a
product over the nodes f (i), f2(4),..., f171(i), f1(i) = h. g

Proof of Theorem 6: Suppose the algorithm does not reconstruct the tree. Tleea thust be an iteration
of the while loop for whichu andv are not siblings. ConsidgR’, V' at the start of the first loop that this
occurs. Letw be the sibling ofu. w ¢ R’ sinceu V w < u V vimplies sy, > s4v, contradicting the
maximality of s,,. Since the subtrees comprisify’, L') are disjoint, no ancestor af (or hence ofw)
can lie inR'. Since the tree is binaryy must have at least two descendehtsts in R’ since otherwise
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Uker' R(k) would not coverR. Sincet; V to < w, thens; ;, > sy, > Syve = Sy, COntradicting the
maximality ofs,,. B

Proof of Theorem 7: If the algorithm does not reconstruct, consider the firsteodor which the outer
loop fails to execute as described above. Consiglel/’ at the start of this loop, and assume thatis
unique. Failure can happen for the following reasons:

1. If the first pair grouped bYpBDT in the outer loop are not siblingsThis is excluded by Theorem 6.

2. If d(k) € R'. Supposei(k) > v ¢ R'. Similarly to (i), sincev has siblings inR’, it can have no
ancestors iR’ and hence has at least two descendanf® jrcontradicting the maximality of,,,,,, .

3. If not all members aré(k) are included inV’ during the execution of the outer looprom line 8 of
Figure 4 we havesU(r,H)umJrl = Sym-2y,, = = SUWg,, = Sk Hence each,, enters into
V' during execution of the outer loop. This also show that.) = 0 for m = 1,...n — 2 and hence
that all links (U (™+1) (™)), m = 1,...,n — 2 are pruned byTP(0).

4. If a non-child node of: entersV’ during the outer loop Since the tree is canonical;, < s, for
j ¢ V (k). Hence such a node cannot enter ihtobefore the children of.

Finally, if s, = ... = sg,, forki,...,kn € R/, then by the tie breaking rules, the outer loops for egch
are performed separately, with thegoing first for whichd(k;) contains member af;d(k;) most recently
added to/’, etc.m

Proof of Theorem 9: ConsiderDBDT applied to the same canonical delay variance tree. Denote by
U = {k, ¢} the generic binary subset 6f that maximizessy, in line 5 of DBDT. Assume initially that
the maximizingU is unique. Since the delay variance tree is canonigal> s, for any other candidate
binary setU’ = {k’,¢'}. by the convergence property of TheorenP8V, ,(11,5) > Vi o (1',5)] — 1 as
n — 0o, and hencéim,, PécDT = 0.

If the minimizing U is not unique, then there is a $¢tof pairsUy;) = {k(;),£;)}, 7 = 1,...m (some
m > 1), each with maximal covariance. Since the tree is canartivah after eact/; € S has been grouped
in DBDT the remaining pairs are still maximizers amongst all pairthe reduced setS \ U;) U {U;} in
line 10 of Figure 7. Hence the minimizing pairstihare grouped successively. BDT, the strict equality
of the covariances no longer holds for finitely many probe8ut by Theorem 8, the probability that pairs
in U will yield the smallerm values— and so will be grouped successively—convergessa -aoco. Hence

limy, 00 Ppt = 0. 5

Proof of Theorem 11: Convergence to a Gaussian random variable follows fromgiptotic normality
of each term. The expression for the variance then folloas fa direct application of themethod. For the
second statement, observe that(8r, Sz, S3) € S(¢), since for any{i, j} € S1 x Sz s;vj > sy it follows
thatVs, s,(u*, s) > si. Similarly, since for any(i, j} € S1 x S3 siv; < s4(x) we have thals, s, (1", s) <
Si(k)- ThereforeDy (S, S2,S4) > ri. The equality is attained fof, C R(h(k)), S2 € R(h*(k)) and
S3 C R(k*) for which, for anyu, Vs, s,(i1, ) = s andVis, s, (1, 5) = sfk)- |
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