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Abstract 1 Introduction

As the Internet grows in size and diversity, its inter-

We present a novel methodology for identifying in5a| performance becomes ever more difficult to mea-
ternal network performance characteristics based Q}a Any one organization has administrative ac-
end-to-end multicast measurements. The methodglyg 4 only a small fraction of the network’s internal

ogy, solidly grounded on statistical estimation thej,qes whereas commercial factors often prevent or-

ory, can be used to characterize the internal loss aé(?%gwizations from sharing internal performance data.
delay behavior of a network. Measurements on 8¢, t5_end measurements using unicast traffic do

MBone have been used to validate the approachyif rely on administrative access privileges, but it is

the case of losses. Extensive simulation experimeqigicit to infer link-level performance from them

provide further validation of the approach, not On_lé{nd they require large amounts of traffic to cover
for losses, but also for delays. We also descrllP{‘raultiple paths. There is, consequently, a need for
our strategy for deploying the methodology on the, tical and efficient procedures that can take an

Internet. This includes the continued developmepterna| snapshot of a significant portion of the net-
of the National Internet Measurement Infrastructuwork_

(NIMI) to support RTP-based end-to-end multicast h develoed  techni that
measurements and the development of software too(l}Ne ave geveloped a measurement technique tha
: . dresses these problemdMulticast Inference of
for analyzing the traces. Once complete, this cor- o
. . . . Network Characteristics (MINC) uses end-to-end
bined software/hardware infrastructure will provide

a service for understanding and forecasting the pg}ylncast measurements to m_f o Imk—ley el loss rates
and delay statistics by exploiting the inherent cor-
formance of the Internet.

relation in performance observed by multicast re-
ceivers. These measurements do not rely on ad-
ministrative access to internal nodes since they are
*This work was sponsored in part by DARPA and thdone between end hosts. In addition, they scale to

Air Force Research Laboratory under agreement F30602—9&§rge networks because of the bandwidth efficiency
0238, by DARPA award #A0G205, and by the National Scien multicast traffic
Foundation under Cooperative Agreement No. ANI-9720674. '

The Government has certain rights in this material. Focusing on loss for the moment, the intuition be-




source In this paper we describe the MINC methodology
(Section 2) and the results of the network measure-
ments and simulation experiments (Section 3). Fol-
lowing this, we describe our efforts to deploy this
methodology. These include the further development
of the National Internet Measurement Infrastructure
(NIMI) [10] to support the required multicast mea-
surements, the extension of the RTP control protocol,
RTCP, to include detailed loss reports, and the de-
R R velopment of the Multicast Inference Network Tool
1 2 (MINT) to visualize and manipulate the multicast-
based inferred internal network performance.
Figure 1: Atree connecting a sender to two receivers.A survey of related work is found in Section 5, and
Section 6 offers some conclusions.

hind packet loss inference is that the event of the
arrival of a packet to a given internal node in th ..
tree can be inferred from the packet’s arrival at or"rje Statistical Methodology

or more receivers descended from that node. Con- ) ) )

ditioning on this latter event, we can determine tH4/NC works onlogical multicast trees, i.e. those
probability of successful transmission to and beyotf{10S€ nodes are identified as branch points of the
the given node. Consider, for example (Figure 1)pgysmal multicast tree. A single logical link be-

simple multicast tree with a root node (the sourcd)Veen nodes of the logical multicast tree may com-

two leaf nodes (receiver®, andRs), a link from the prise more than one physical link. MINC infers com-

source to a branch point (the shared link), and a liRRSIt€ Properties—such as loss and delay—of the logi-
from the branch point to each of the receivers (ttf&! links. Henceforth when we speak of trees we will
left and right links). The source sends a stream of £ SPeaking of logical multicast trees.
guenced multicast packets through the tree to the two
receivers. If a packet reaches either receiver, we G | oss Inference
infer that the packet reached the branch point. Thus
the ratio of the number of packets that reach both Mfe model packet loss as independent across differ-
ceivers to the total number that reached only the rigint links of the tree, and independent between differ-
receiver gives an estimate of the probability of suent probes. With these assumptions, the loss model
cessful transmission on the left link. The probabilitgssociates with each link in the tree, the proba-
of successful transmission on the other links can biity «;, that a packet reaches the terminating node
found by similar reasoning. of the link, also denoted by, given that it reaches
This technique extends to general trees (see [fije parent node of. The link loss probability is,
and it can be shown that the resulting loss rate estien, (1 — o). When a multicast probe is transmit-
mates converge to the true loss rates as the numieer from the source, we record the outcome as the
of probes grows indefinitely large. This and relateskt of receivers reached by the probe. The loss infer-
approaches can be used to estimate path delay disse algorithm employs a probabilistic analysis that
tributions, [7], the path delay variances, [4], and tlexpresses tha;, directly as a function of the proba-
logical multicast topology itself [2]. We have valbilities of all possible such outcomes. We infer the
idated the accuracy of the loss rate inference tedimk probabilities by the estimator&;, obtained by
niques against measurements on the MBone. Furthsing instead the actual frequencies of the outcomes
validation of both the loss rate and the delay statistiagsing from the dispatch a number of probes. The
inference techniques has been made through simydaper [1] contains a detailed description and analysis
tion experiments. of the inference algorithm.



The estimator&, have several desirable statisticd®2.3 Delay Variance Inference
properties. It was shown in [1] that, is the Maxi-

mum Likelihood Estimator (MLE) ofy, when suffi- A direct method of delay variance estimation has

ciently many probes are used. The MLE is defin%fen proposed in [4]. Consider the binary topology

as the set of link probabilities that maximizes the Flgu:e l'f Letlz(r)] be the pacl:gi dglai/ cin;h?h“nk
probability of obtaining the observed outcome frg;nanating from ine source, aa, o o ©
quencies. The MLE property in turn implies two furglelay on the link terminating at receiverThe end-
ther useful properties fak, namely (i) consistency: it;)-s)r:drgseiﬁs;;m_th%sounl:)el 0 Alesa:](?rctldg:ealcl:ﬁé

ay, converges to the true valug, almost surely as P v — 70 + D .

the number of probes grows to infinity, and (ii _tlon shows that, with the assumption that theare
asymptotic normality: the distribution of the quantitymd?pendenwar(Do) - COV(Xl’).Q)' Thus the
/(@) — ay) converges to a normal distribution as variance of the delay, can be estimated from the
grows to infinity. The latter property implies that th easured end-to-end delays from the source to the

Iy . N .. [eaves. A generalization of this approach can be used
probability of an error ofa given size in estimating &

link probability goes to zero exponentially fast in thgo estimate link delay variances in arbitrary trees.
number of probes.
The computation of they, is performed recur-

sively on the tree; the computational cost is lineg the loss inference methodology described above,
in the number of probes and number of nodes in thes |ogical multicast tree was assumed to be known
tree. in advance. However, extensions of the method en-
able inference of an unknown multicast topology
from end-to-end measurements. We describe briefly
three approaches.

A generalization of the loss inference methodology

allows one to infer per link delay distributions. Mor¢ oss-Based Grouping An approach to topology
precisely, we infer the distribution of the variablénference was suggested in [13], in the context of
portion of the packet delay, what remains once tilyouping multicast receivers that share the same set
link propagation delay and packet transmission tina¢ network bottlenecks from the source. The loss es-
are removed. Packet link delays are modeled tagator of Section 2.1 estimates the shared loss to a
discrete random variables that can take one of agair of receivers, i.e., the composite loss rate on the
nite number of values, independent between diffefemmon portion of the paths from the source, irre-
ent packets and links. The model is specified byspective of the underlying topology. Since this loss
finite set of probabilitiesy(t) that a packet experi-rate is larger the longer the common path in ques-
ences delay while traversing the link terminating attion, the actual shared loss rate is maximized when
nodek, with infinite delay interpreted as loss. the two receivers in question are siblings.

When a probe is transmitted from the source, weA binary tree can be reconstructed iteratively us-
record the outcome at the each of the receivers thag this approach. Starting with the set of receiver
the probe reached, and the time taken to reach eacdesR, select the pair of nodesk in R that maxi-
receiver. As with the loss inference, a probabilistimizes the estimated shared loss, group them together
analysis enables us to relate thg(¢) to the prob- as the composite node, denotgd k, that is iden-
abilities of the outcomes at the receivers. We inféfied as the parent, and construct the set of remain-
the link delay probabilities by the estimata®g (¢) ing nodesR’ = (RU {j V k}) \ {j,k}. Iterate on
obtained by using instead the actual frequencies Bf until all nodes are paired. This algorithm is con-
the outcomes arising from the dispatch a number @36tent: the probability of correct identification con-
probes. In [7], it was shown that the correspongerges tol as the number of probes grows; see [2].
ing estimatora(-) of the link delay distributions is Several adaptations of this approach can be made to
strongly consistent and asymptotically normal.  infer general (i.e. non-binary) trees. The simplest is

2.4 Topology Inference

2.2 Delay Distribution Inference



to use the binary algorithm described above, and theérd Measurement Experiments

to transform the resulting binary tree by pruning, i.e.,

removing and joining the endpoints of each link witfho validate MINC under real network conditions, we
inferred loss rate less than some threshold performed a number of measurement experiments on
the MBone, the multicast-capable subset of the Inter-
net. Across our experiments we varied the multicast

General Grouping Algorithms The above ap- q ; the i tq dthe d ¢
proach can be extended by replacing shared loss wiirces and receivers, the ime ot day, and the day o
e week. We compared inferred loss rates to directly

any function on the nodes that (i) increases on mov- ed o tes for all links in th itin |
ing further from the source; and (ii) whose valugreasur Ss rates for afl inks in the resuiting muk-

at a given node can be consistently estimated fr éh%ast trees. The two sets of quantities agreed closely

measurements at receivers descended from that nédrequghout. _
Since the mean and variance of the cumulative delayPuring each experiment, a source sent a stream of
from the source to a given node have the above prg_quenced packets to a collection of receivers over
erties, multicast end-to-end delay measurements #f course of one hour. [t sent one 40-byte packet
also be used to infer the multicast topology every 100 milliseconds to a specific multicast group.
The resulting traffic stream placed less than 4 Kbps

of load on any one MBone link. At each receiver,
we made two sets of measurements on this traffic
ream using thet r ace(see [8] for a description)
dnbat software tools.

Direct Maximum Likelihood Classification In
the direct MLE approach, for each possible topolo
we calculate the maximal likelihood of the measureg

outcomes as the link probabilitieg, are varied. We Wi . 1o determine the topol fth
then maximize this over all topologies; the maximiz- ¢ usedrt race to determine the topology otthe

ing topology is our estimate. This classifier is cormumcf”‘St treent race trace_s theeverse path from .
sistent [2] a multicast source to a receiver. It runs at the receiver

and issues trace queries that travel hop by hop along
. _ the multicast tree towards the source. Each router
Accuracy and Comparison Experiments show giong the path responds to these queries with its own
similar accuracy for all the approaches describ@s 5qdress. We determined the tree topology by com-
above. However, computational costs differ Wide'léining this path information for all receivers.
If implemented as an exhaustive search through a”\Ne also usedt r ace to measure per-link packet
possible trees, the cost of the direct MLE classifi%

. . : sses. Routers also respond rtbr ace queries
grows rapidly with the number of receivers. GrouR/Y/ith a count of how many packets they have seen

ing methods_, avoid this since each grouping narro(;dﬁ the specified multicast groupnt r ace calcu-
the s_et of viable _topolog|es.. Amongst all metho Stes packet losses on a link by comparing the packet
c_onS|dered, the b'”"?“y grouping methOd has near Wunts returned by the two routers at either end of
timal accuracy and is simplest to implement. the link. We rannt r ace every two minutes to ob-
tain thirty separate loss measurements during each
3 Experimental Results one-hour experiment. We also verified that the topol-
ogy remained constant during our experiments by in-
In this section we briefly describe our efforts to vagpecting the path information we obtained every two
idate the MINC methodology. We first describe, iminutes.
Section 3.1, the results of a measurement study int is important to note thatt r ace does not scale
which we collected end-to-end loss traces from the measurements of large multicast groups if used in
MBone and validated the results from inferences pérallel from all receivers as we describe here. Par-
loss rates collected using the Internet toblr ace. allel nt r ace queries converge as they travel up the
We then describe, in Section 3.2, the results fromee. Enough such queries will overload routers and
more detailed simulation studies of both loss and daks with measurement traffic. We usetir ace in
lay. this way only to validate MINC on relatively small
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Figure 2: Multicast routing tree during our represel
tative MBone experiment.
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multicast groups before we move on to use MINC
alone on larger groups. Figure 3: Inferred vs. actual loss rates on link be-
We used tharbat tool to collect traces of end-tween UKy and GA.
to-end packet lossesrbat runs at a receiver, sub-

scribes to a specified multicast group, and records thefn summary, our MBone experiments showed that

sequence number and arrival time of each mcommrﬁerred and directly measured loss rates agreed
packet. We rambat at each receiver for the dura closely under a variety of real network conditions:
tion of each hour-long experiment.

We then segmented thebat traces into two-
minute subtraces corresponding to the two-minute
intervals on which we collectedt r ace measure-
ments. Finally, we ran our loss inference algorithm e Across links with very low £ 1%) and very
on each two-minute interval and compared the in- high (> 30%) loss rates.
ferred loss rates with the directly measured loss rates.

Here we highlight results from a representative ex-* Across all links in a multicast tree regardless of
periment on August 26, 1998. Figure 2 shows the their position in the tree.
multicast routing tree in effect during the experiment.
The source was at the U. of Kentucky and the re-
ceivers were at AT&T Labs, U. of Massachusetts, ¢ Across time of day and day of the week.
Carnegie Mellon U., Georgia Tech, U. of Southern

California, U. of California at Berkeley, and U. of Furthermore, in all cases the inference algorithm

Washington. The four branch routers were in Calionverged to the desired loss rates well within each

fornia, Georgia, Massachusetts, and New Jersey. wwo-minute, 1,200-probe measurement interval.
Figure 3 shows that inferred and directly measured

!oss rat_es agreed closely despite a link experie?)cz Simulation Experiments

ing a wide range of loss rates over the course of a

one-hour experiment. Each short horizontal segméNé have performed more extensive validations of

in the graph represents one two-minute, 1,200-probér inference techniques through simulation in two

measurement interval. As shown, loss rates on ttifferent settings: the simulation of the model with

link between the U. of Kentucky and Georgia vaBernoulli losses and simulations of networks with

ied between 4% and 30%. Nevertheless, differenaeslistic traffic. In the model simulations, probe

between inferred and directly measured loss rateslass and delay obey the independence assumption of

mained below 1.5%. the model. We applied the inference algorithm to

e Across a wide range of loss rates (4%—-30%) on
the same link.

e Across different multicast trees.



after packet loss. We have shown in [1] that small
‘ ‘ ‘ deviations from the spatial independence assumption
estomle lead to only small errors in inference.

We also found that background traffic introduces
temporal dependence in probe behavior, e.g., its
burstiness can cause back-to-back probe losses. We
have shown that while temporal dependence can de-
crease the rate of convergence of the estimators, con-
sistency is unaffected. In the experiments the in-

ferred values converged within 2,000 probes despite
0 5 1‘0 1‘5 2‘0 ‘ 2‘5 3“’0 - 3; 20 the presence of temporal dependence.

Delay (ms) While there is understanding of mechanisms by
which temporal and spatial dependence can occur, as
Figure 4: Inferred and Sample Delay ccdf. for a le#dir as we know there are no experimental results con-
link in the topology of Figure 2. cerning its magnitude. We believe that large or long
lasting dependence is unlikely in the Internet because
of traffic and link diversity. Moreover, we expect loss
the end-to-end measurements and compared thecibrelation to be reduced by the introduction of RED.
ferred and actual model parameters for a large set ofye 4150 compared the inferred probe loss rates

topologies and parameter values. We found that 195 the background loss rates. The experiments
rates, mean delay, and variance estimates convergggyed these to be quite close, although not as close
to close to their actual values with 2,000 probes. Thg jnferred and actual probe loss rates. We attribute
number of probes required to accurately compute s 1o the inherent difference in the statistical prop-
entire delay distributions is higher. In our experisies of probe traffic and background traffic, princi-
ments we found good agreement with 10,000 probgsyy, que to TCP traffic being more bursty than probe
The second type of experiment is based onrtse traffic and to TCP adapting its sending rate when it
simulator. Here delay and loss are determined Hgtects losses.
queueing delay and queue overflow at network nodesryg jllustrate the distribution of delay inference re-
as multicast probes compete with traffic generated §iyits, we simulated the topology of the multicast
TCP/UDP traffic sources. Multicast probe packefgyting tree shown in Figure 2. In order to capture
are generated by the source with fixed mean intergig heterogeneity between edges and core of a net-
rival times; we used CBR or Poisson probes. Wgork, interior links have higher capacity (5Mb/sec)
simulated different topologies with different backgng propagation delay (50ms) than those at the edge
ground traffic mixes comprising infinite FTP sesqMb/sec and 10ms). Background traffic comprises
sions over TCP and exponential or Pareto on-gfffinite FTP sessions and exponential on-off UDP
UDP sources. We considered both Drop Tail arghyrces. Each link is modeled as a FIFO queue with
Random Early Detection (RED) buffer discard methy 4-packet capacity. Real buffers are usually much
ods, [5]. larger; the capacity of four is used to reduce the time
We compared the inferred loss and delay with aequired to simulate the network. The discard pol-
tual probe loss and delay. We found rapid convecy is Drop Tail. In Figure 4, we plot the inferred
gence of the estimates although with small persigersus the sample complementary cumulative distri-
tent differences. We attribute this to the presence lftion function (discretized in one millisecond bins)
spatial dependence, i.e., dependence between prob®ne of the leaf links, using about 18,000 Poisson
losses and delays on different links. This can aripeobes. The estimated distribution closely follows
through correlations in the background traffic due the sample distribution and is quite accurate for tail
correlation arising from TCP dynamics, e.g., symrobabilities greater thah0~2. Note that the esti-
chronization between flows as a result of slow-startated distribution is not always monotonically de-

Estimated vs. sample link delay c.c.d.f
1e+00

le-01 ¢

le-02 ¢

1le-03 ¢

le-04

Complement of the Cum. Distr. Function
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creasing. This is because negative probabilities afenetwork paths. It is not adequate to measure be-
occasionally estimated in the tail due to an insuffiween just a few points, regardless of how carefully
cient number of samples. It is worth pointing oudone.
that, given the irregular shape of the sample distribu-The same problem arises in assessing the accu-
tion, the same level of accuracy would not be possicy of measurement techniques such as MINC. To
ble using a parametric model. We also observeddfdress this concern, we are deploying MINC mea-
these experiments that the inferred distributions as@rement utilities within the National Internet Mea-
less accurate for the higher capacity interior linksurement Infrastructure (NIMI) [10]. NIMI consists
This appears to be caused by the difference in @g-a number of measurement “platforms” deployed at
lay range among different links that negatively afrarious locations around the Internet. Each platform
fects those with relatively smaller delays. Inthe pregs capable of sourcing and sinking active measure-
ence of high spatial correlation (up@ot ~ 0.5) the ment traffic and recording the timing of the traffic
inferred tail distribution can diverge from the actualt both sender and receiver. Measurement “clients”
one. However, the delay mean and variance are ihat wish to use the infrastructure make authenticated
sensitive to this tail behavior. requests to the platforms to schedule future measure-
ment activity.

A key property of such an infrastructure is i’
scaling: if the infrastructure consists if platforms,

We have observed in the previous section that MINGEN ;heB( together can measure network traffic along
is a very promising methodology for providing deQ(NV?) distinct paths through the network. Conse-

tailed internal network performance characteristicd/ently, with a fairly modestv, one can obtain a

In this section we describe our efforts in deployinjyide cross-section of the network’s diverse behav-
(The NIMI infrastructure currently consists of

this methodology and making it available on the 119"
ternet. Our efforts are threefold. First, we are contif+ Sit€S, €xpected to grow to 50 by summer 2000).
uing the development of NIMI to support multicast- Using NIMI for MINC measurements required
based measurement experiments. This is descri§¥eral extensions to NIMI. The first was modifying
in Section 4.1. Second, we have identified the re#fle standard NIMI packet generatang, to send and
time transport protocol, RTP, and its associated cdgceive multicast traffic, and the corresponding anal-
trol protocol, RTCP, as promising mechanisms fdis programpatalie, to incorporate the notion that
generating and collecting end-to-end multicast mea-Single packet might arrive at several places (and
surement traces. Our efforts in developing an RTfal to arrive at others). MINC has also required the
based tool are described in Section 4.2. Last, Sect@ieralization of NIMI control mechanisms, in or-
4.3 contains a description of an analysis and visger to allow for a single measurement run spanning

alization tool, MINT (Multicast Inference Networkmultiple senders and receivers. A possible further
Tool), that is currently under development. step would be to use multicast itself for both schedul-

ing measurements and disseminating the results. But
this change to NIMI remains for future work, as it
raises the thorny problem of devising a scalable-yet-
A major difficulty with characterizing Internet dy-reliable multicast transport protocol.

namics comes from the network’s immense hetero-Our experiences with using NIMI to date have
geneity [12]. Load patterns, congestion levels, linkeen quite frustrating, not due to the infrastruc-
bandwidths, loss rates, protocol mixes, the patterose itself, but because of the poor quality of mul-
of use of particular protocols—all of these exhibticast connectivity between the different platforms.
great variation both at different points in the netdntil recently, at best only 1/3 of the NIMI plat-
work, and over time as the network evolves. Accorfbrms had multicast connectivity between them. We
ingly, to soundly characterize some aspects of Intgather anecdotally that problems with poor interdo-
net behavior, requires measuring a diverse collectiorain multicast connectivity have been endemic to

4 Deployment Efforts

4.1 Deployment on NIMI

7



ngen

the Internet. Recently, connectivity has begun to im-
prove, and it appears likely that over the next sev-
eral years it will continue to do so, as agreement is
reached on the proper set of intradomain and inter-
domain routing protocols and the interoperation b?n‘_l ect  nflect
tween them. We are also attempting to address this mer ge
problem in two ways: (1) to grow the NIMI infras-

tructure by adding sites with high-quality multicast
connectivity; and (2) to investigate theoretical workigure 5: An RTCP-based tool deployment example,

on inferring network characteristics using correlatesh the same topology as shown in Figure 2, with in-
unicast traffic, where, instead of exploiting the perference being performed at UMass.

fect correlations inherent in multicast packet recep-
tion, we send back-to-back unicast packets and at-

tempt to exploit the considerably weaker correlatioﬁgapt'vely to information on the topology of its data

in their loss and delay patterns. d'St”bUt_'on tree.
Ongoing research related to these tools concerns

the scalability of trace sharing. For example, a raw
4.2 Integration with RTCP bit vector loss trace for 3,000 packets would con-

) ) ~sume 375 octets, far more than the four octets al-
We are developing tools to apply MINC in real-timggated for summary loss information in a standard

so that MINC could be used by applications 10 rezrcp packet. To limit the traces to an acceptable in-
spond to changing network conditions in new and;mnediate size we are investigating the use of com-
more sophisticated ways. For example, a manageassion techniques such as run length encoding, as
ment program might adaptively adjust its probes (9o a5 gistributed methods by which all copies of
home in on a problem router. nf | ect in a single session can agree on which por-

Our tools transmit network  information usinGjons of the trace to share in place of the whole trace.
RTCP, the control protocol for multicast transport

protocol RTP [14]. By sharing their traces usin . .
RTCP, they benefit from RTCP’s built-in scalingg'3 MINT. Multicast
mechanisms.

The approach is based on three toolsgen, MINT is intended to facilitate multicast-based infer-
nf | ect, andnmer ge (Figure 5).nmgen generates ence. It takes as inputs all of the traces collected
a stream of data (and may be replaced by any otl&m the end-hosts. These traces may or may not in-
application that multicasts data over RTP). A comludent r ace outputs. Currently, MINT comprises
of nf | ect at each receiver maintains loss traces fthree components: a graphical user interface (GUI),
the packets it does and does not receive frayen. a topology discovery algorithm, and an inference en-
It periodically multicasts these (in a sense reflectingne. Users interact with the GUI to manipulate the
the data stream: hence “mflect’ymer ge collects inference such as choosing number of samples, visu-
the traces sent byf | ect , collating those from the alizing the multicast tree with losses or showing the
different data receivers and making them available gerformance evolution over specific links. Depend-
a tool, such as MINT, for inference. ing on the availability of mtrace output, MINT dis-

nfl ect andnmmrer ge are designed so that theyovers the topology by either parsing mtrace inputs
may be incorporated directly into existing and fusr inferring the multicast tree from the loss traces.
ture multicast applications. Their joint functionalThe inference engine takes topology information and
ity is available as an extension to the RTP corfess traces to infer the network internal loss and then
mon code library from University College Londonprovides this to the GUI. The user can then view the
called RTPXR, (“eXtended Reporting”). An applicaresults in one of several ways. One way is to lay
tion using RTPXR would be in a position to respondut the logical multicast tree and display the links in

nflect nflect nflect

nflect nflect

Inference Network
Tool
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Key — loss rate < 5%

sueoesrame 10 0QY discovery {(racer [6]) and visualizing loss
0% clossrate on the multicast distribution tree of an application

e e Lmass.ady (MHealth [8]). Howevernt r ace suffers from per-
I formance and applicability problems in the context
3.56% .

of large-scale Internet measurements. First,ace
bOIAr-fL3ME-D-0.g. Umass.acu needs to run once for each receiver in order to cover a
5.eo% Io.zm\szzs% complete multicast tree, which does not scale well to
e large numbers of receivers. In contrast, MINC covers

gac-mcpap-lbl.es.net  tahoscsucsbedu  nimicernch K K
the complete tree in a single pass. Secarid,ace
H2l% el . . ..

/ \ relies on multicast routers to respond to explicit mea-
nimi stac. stanford.edu  bip.ee.lblgov surement queries. Although current routers support

these queries, providers may choose to disable this
Figure 6: MINT view of the logical multicast treefeatyre since it gives anyone access to detailed de-
with losses. lay and loss information about paths inside their net-
works. In contrast, MINC does not rely on coopera-
different colors to distinguish different average log®n from any internal network elements.
rates (e.g., Figure 6). The user can also focus on a
single link and observe how the loss rate evolves over )
time for that link. 6 Conclusions

Our future plans for MINT are to include support

for delay inference, to test it thoroughly by feeding i€ have described a new approach to identifying
with daily traces collected from NIMI, and to makénternal network characteristics based on the use of

its output available to the community on the wori§nd-to-end multicast measurements. This methodol-
Wide Web. ogy is rigorously based in estimation theory. A pre-
liminary evaluation for identifying loss rates based
on measurements made over the MBone indicates
5 Related Work that it is accurate and readily able to track dynamic
fluctuations that occur over time. More detailed in-
A growing number of measurement infrastructuigsstigations based on simulation further corroborate
projects (e.g., AMP, Felix, IPMA, NIMI, Surveyor,ihis conclusion, not only for the case of losses, but
and Test Traffic [3]) aim to collect and analyze endfejays as well. Finally, we described our current ef-
to-end performance data for a mesh of unicast patfs to deploy this methodology on the Internet and
between a set of participating hosts. We belieygake it available to the community at large.
our multicast-based inference techniques would beye pelieve that MINC is an important new
a valuable addition to these measurement platformgathodology for network measurement, particularly
We are continuing to work on incorporating MINGpternet measurement. It does not rely on network
capabilities into NIMI. cooperation and it should scale to very large net-
Recent experimental work has sought to undgfirks. MINC is firmly grounded in statistical anal-
stand internal network behavior from endpoint P&Jisis backed up by packet-level simulations and now
formance measurements (e.g., TReno [9]). In pkperiments under real network conditions. We are

ticular, pat hchar [11] is under evaluation as & t00kgntinuing to extend MINC along both analytical and
for inferring link-level statistics from end-to-end UNigxnerimental fronts.

cast measurements. Much work remains to be done
in this area; MINC contributes a novel multicast-
based methodology. Acknowledgements
Regarding multicast-based measurements, we
have already described thtr ace tool. This forms Mark Handley suggested using RTCP receiver re-
the basis for several tools for performing topoports to carry MINC loss traces.
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