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Abstract

We present a novel methodology for identifying in-
ternal network performance characteristics based on
end-to-end multicast measurements. The methodol-
ogy, solidly grounded on statistical estimation the-
ory, can be used to characterize the internal loss and
delay behavior of a network. Measurements on the
MBone have been used to validate the approach in
the case of losses. Extensive simulation experiments
provide further validation of the approach, not only
for losses, but also for delays. We also describe
our strategy for deploying the methodology on the
Internet. This includes the continued development
of the National Internet Measurement Infrastructure
(NIMI) to support RTP-based end-to-end multicast
measurements and the development of software tools
for analyzing the traces. Once complete, this com-
bined software/hardware infrastructure will provide
a service for understanding and forecasting the per-
formance of the Internet.

�This work was sponsored in part by DARPA and the
Air Force Research Laboratory under agreement F30602-98-2-
0238, by DARPA award #AOG205, and by the National Science
Foundation under Cooperative Agreement No. ANI-9720674.
The Government has certain rights in this material.

1 Introduction

As the Internet grows in size and diversity, its inter-
nal performance becomes ever more difficult to mea-
sure. Any one organization has administrative ac-
cess to only a small fraction of the network’s internal
nodes, whereas commercial factors often prevent or-
ganizations from sharing internal performance data.
End-to-end measurements using unicast traffic do
not rely on administrative access privileges, but it is
difficult to infer link-level performance from them
and they require large amounts of traffic to cover
multiple paths. There is, consequently, a need for
practical and efficient procedures that can take an
internal snapshot of a significant portion of the net-
work.

We have developed a measurement technique that
addresses these problems.Multicast Inference of
Network Characteristics (MINC) uses end-to-end
multicast measurements to infer link-level loss rates
and delay statistics by exploiting the inherent cor-
relation in performance observed by multicast re-
ceivers. These measurements do not rely on ad-
ministrative access to internal nodes since they are
done between end hosts. In addition, they scale to
large networks because of the bandwidth efficiency
of multicast traffic.

Focusing on loss for the moment, the intuition be-
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Figure 1: A tree connecting a sender to two receivers.

hind packet loss inference is that the event of the
arrival of a packet to a given internal node in the
tree can be inferred from the packet’s arrival at one
or more receivers descended from that node. Con-
ditioning on this latter event, we can determine the
probability of successful transmission to and beyond
the given node. Consider, for example (Figure 1) a
simple multicast tree with a root node (the source),
two leaf nodes (receiversR

1

andR
2

), a link from the
source to a branch point (the shared link), and a link
from the branch point to each of the receivers (the
left and right links). The source sends a stream of se-
quenced multicast packets through the tree to the two
receivers. If a packet reaches either receiver, we can
infer that the packet reached the branch point. Thus
the ratio of the number of packets that reach both re-
ceivers to the total number that reached only the right
receiver gives an estimate of the probability of suc-
cessful transmission on the left link. The probability
of successful transmission on the other links can be
found by similar reasoning.

This technique extends to general trees (see [1])
and it can be shown that the resulting loss rate esti-
mates converge to the true loss rates as the number
of probes grows indefinitely large. This and related
approaches can be used to estimate path delay dis-
tributions, [7], the path delay variances, [4], and the
logical multicast topology itself [2]. We have val-
idated the accuracy of the loss rate inference tech-
niques against measurements on the MBone. Further
validation of both the loss rate and the delay statistics
inference techniques has been made through simula-
tion experiments.

In this paper we describe the MINC methodology
(Section 2) and the results of the network measure-
ments and simulation experiments (Section 3). Fol-
lowing this, we describe our efforts to deploy this
methodology. These include the further development
of the National Internet Measurement Infrastructure
(NIMI) [10] to support the required multicast mea-
surements, the extension of the RTP control protocol,
RTCP, to include detailed loss reports, and the de-
velopment of the Multicast Inference Network Tool
(MINT) to visualize and manipulate the multicast-
based inferred internal network performance.

A survey of related work is found in Section 5, and
Section 6 offers some conclusions.

2 Statistical Methodology

MINC works on logical multicast trees, i.e. those
whose nodes are identified as branch points of the
physical multicast tree. A single logical link be-
tween nodes of the logical multicast tree may com-
prise more than one physical link. MINC infers com-
posite properties–such as loss and delay–of the logi-
cal links. Henceforth when we speak of trees we will
be speaking of logical multicast trees.

2.1 Loss Inference

We model packet loss as independent across differ-
ent links of the tree, and independent between differ-
ent probes. With these assumptions, the loss model
associates with each linkk in the tree, the proba-
bility �

k

that a packet reaches the terminating node
of the link, also denoted byk, given that it reaches
the parent node ofk. The link loss probability is,
then,(1 � �

k

). When a multicast probe is transmit-
ted from the source, we record the outcome as the
set of receivers reached by the probe. The loss infer-
ence algorithm employs a probabilistic analysis that
expresses the�

k

directly as a function of the proba-
bilities of all possible such outcomes. We infer the
link probabilities by the estimatorsb�

k

obtained by
using instead the actual frequencies of the outcomes
arising from the dispatch a number of probes. The
paper [1] contains a detailed description and analysis
of the inference algorithm.
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The estimatorsb�
k

have several desirable statistical
properties. It was shown in [1] thatb�

k

is the Maxi-
mum Likelihood Estimator (MLE) of�

k

when suffi-
ciently many probes are used. The MLE is defined
as the set of link probabilities that maximizes the
probability of obtaining the observed outcome fre-
quencies. The MLE property in turn implies two fur-
ther useful properties forb�, namely (i)consistency:
b

�

k

converges to the true value�
k

almost surely as
the number of probesn grows to infinity, and (ii)
asymptotic normality: the distribution of the quantity
p

n(

b

�

k

��

k

) converges to a normal distribution asn
grows to infinity. The latter property implies that the
probability of an error ofa given size in estimating a
link probability goes to zero exponentially fast in the
number of probes.

The computation of theb�
k

is performed recur-
sively on the tree; the computational cost is linear
in the number of probes and number of nodes in the
tree.

2.2 Delay Distribution Inference

A generalization of the loss inference methodology
allows one to infer per link delay distributions. More
precisely, we infer the distribution of the variable
portion of the packet delay, what remains once the
link propagation delay and packet transmission time
are removed. Packet link delays are modeled as
discrete random variables that can take one of a fi-
nite number of values, independent between differ-
ent packets and links. The model is specified by a
finite set of probabilities�

k

(t) that a packet experi-
ences delayt while traversing the link terminating at
nodek, with infinite delay interpreted as loss.

When a probe is transmitted from the source, we
record the outcome at the each of the receivers that
the probe reached, and the time taken to reach each
receiver. As with the loss inference, a probabilistic
analysis enables us to relate the�

k

(t) to the prob-
abilities of the outcomes at the receivers. We infer
the link delay probabilities by the estimatorsb�

k

(t)

obtained by using instead the actual frequencies of
the outcomes arising from the dispatch a number of
probes. In [7], it was shown that the correspond-
ing estimatorb�(�) of the link delay distributions is
strongly consistent and asymptotically normal.

2.3 Delay Variance Inference

A direct method of delay variance estimation has
been proposed in [4]. Consider the binary topology
of Figure 1. LetD

0

be the packet delay on the link
emanating from the source, andD

i

; i = 1; 2, the
delay on the link terminating at receiveri. The end-
to-end delays from the source to leaf nodei = 1; 2,
is expressed asX

i

= D

0

+ D

i

. A short calcula-
tion shows that, with the assumption that theD

i

are
independent,Var(D

0

) = Cov(X

1

;X

2

). Thus the
variance of the delayD

0

can be estimated from the
measured end-to-end delays from the source to the
leaves. A generalization of this approach can be used
to estimate link delay variances in arbitrary trees.

2.4 Topology Inference

In the loss inference methodology described above,
the logical multicast tree was assumed to be known
in advance. However, extensions of the method en-
able inference of an unknown multicast topology
from end-to-end measurements. We describe briefly
three approaches.

Loss-Based Grouping An approach to topology
inference was suggested in [13], in the context of
grouping multicast receivers that share the same set
of network bottlenecks from the source. The loss es-
timator of Section 2.1 estimates the shared loss to a
pair of receivers, i.e., the composite loss rate on the
common portion of the paths from the source, irre-
spective of the underlying topology. Since this loss
rate is larger the longer the common path in ques-
tion, the actual shared loss rate is maximized when
the two receivers in question are siblings.

A binary tree can be reconstructed iteratively us-
ing this approach. Starting with the set of receiver
nodesR, select the pair of nodesj; k in R that maxi-
mizes the estimated shared loss, group them together
as the composite node, denotedj _ k, that is iden-
tified as the parent, and construct the set of remain-
ing nodesR0

= (R [ fj _ kg) n fj; kg. Iterate on
R

0 until all nodes are paired. This algorithm is con-
sistent: the probability of correct identification con-
verges to1 as the number of probes grows; see [2].
Several adaptations of this approach can be made to
infer general (i.e. non-binary) trees. The simplest is
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to use the binary algorithm described above, and then
to transform the resulting binary tree by pruning, i.e.,
removing and joining the endpoints of each link with
inferred loss rate less than some threshold".

General Grouping Algorithms The above ap-
proach can be extended by replacing shared loss with
any function on the nodes that (i) increases on mov-
ing further from the source; and (ii) whose value
at a given node can be consistently estimated from
measurements at receivers descended from that node.
Since the mean and variance of the cumulative delay
from the source to a given node have the above prop-
erties, multicast end-to-end delay measurements can
also be used to infer the multicast topology

Direct Maximum Likelihood Classification In
the direct MLE approach, for each possible topology
we calculate the maximal likelihood of the measured
outcomes as the link probabilities�

k

are varied. We
then maximize this over all topologies; the maximiz-
ing topology is our estimate. This classifier is con-
sistent [2].

Accuracy and Comparison Experiments show
similar accuracy for all the approaches described
above. However, computational costs differ widely.
If implemented as an exhaustive search through all
possible trees, the cost of the direct MLE classifier
grows rapidly with the number of receivers. Group-
ing methods avoid this since each grouping narrows
the set of viable topologies. Amongst all methods
considered, the binary grouping method has near op-
timal accuracy and is simplest to implement.

3 Experimental Results

In this section we briefly describe our efforts to val-
idate the MINC methodology. We first describe, in
Section 3.1, the results of a measurement study in
which we collected end-to-end loss traces from the
MBone and validated the results from inferences of
loss rates collected using the Internet toolmtrace.
We then describe, in Section 3.2, the results from
more detailed simulation studies of both loss and de-
lay.

3.1 Measurement Experiments

To validate MINC under real network conditions, we
performed a number of measurement experiments on
the MBone, the multicast-capable subset of the Inter-
net. Across our experiments we varied the multicast
sources and receivers, the time of day, and the day of
the week. We compared inferred loss rates to directly
measured loss rates for all links in the resulting mul-
ticast trees. The two sets of quantities agreed closely
throughout.

During each experiment, a source sent a stream of
sequenced packets to a collection of receivers over
the course of one hour. It sent one 40-byte packet
every 100 milliseconds to a specific multicast group.
The resulting traffic stream placed less than 4 Kbps
of load on any one MBone link. At each receiver,
we made two sets of measurements on this traffic
stream using themtrace(see [8] for a description)
andmbat software tools.

We usedmtrace to determine the topology of the
multicast tree.mtrace traces thereverse path from
a multicast source to a receiver. It runs at the receiver
and issues trace queries that travel hop by hop along
the multicast tree towards the source. Each router
along the path responds to these queries with its own
IP address. We determined the tree topology by com-
bining this path information for all receivers.

We also usedmtrace to measure per-link packet
losses. Routers also respond tomtrace queries
with a count of how many packets they have seen
on the specified multicast group.mtrace calcu-
lates packet losses on a link by comparing the packet
counts returned by the two routers at either end of
the link. We ranmtrace every two minutes to ob-
tain thirty separate loss measurements during each
one-hour experiment. We also verified that the topol-
ogy remained constant during our experiments by in-
specting the path information we obtained every two
minutes.

It is important to note thatmtrace does not scale
to measurements of large multicast groups if used in
parallel from all receivers as we describe here. Par-
allel mtrace queries converge as they travel up the
tree. Enough such queries will overload routers and
links with measurement traffic. We usedmtrace in
this way only to validate MINC on relatively small
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Figure 2: Multicast routing tree during our represen-
tative MBone experiment.

multicast groups before we move on to use MINC
alone on larger groups.

We used thembat tool to collect traces of end-
to-end packet losses.mbat runs at a receiver, sub-
scribes to a specified multicast group, and records the
sequence number and arrival time of each incoming
packet. We ranmbat at each receiver for the dura-
tion of each hour-long experiment.

We then segmented thembat traces into two-
minute subtraces corresponding to the two-minute
intervals on which we collectedmtrace measure-
ments. Finally, we ran our loss inference algorithm
on each two-minute interval and compared the in-
ferred loss rates with the directly measured loss rates.

Here we highlight results from a representative ex-
periment on August 26, 1998. Figure 2 shows the
multicast routing tree in effect during the experiment.
The source was at the U. of Kentucky and the re-
ceivers were at AT&T Labs, U. of Massachusetts,
Carnegie Mellon U., Georgia Tech, U. of Southern
California, U. of California at Berkeley, and U. of
Washington. The four branch routers were in Cali-
fornia, Georgia, Massachusetts, and New Jersey.

Figure 3 shows that inferred and directly measured
loss rates agreed closely despite a link experienc-
ing a wide range of loss rates over the course of a
one-hour experiment. Each short horizontal segment
in the graph represents one two-minute, 1,200-probe
measurement interval. As shown, loss rates on the
link between the U. of Kentucky and Georgia var-
ied between 4% and 30%. Nevertheless, differences
between inferred and directly measured loss rates re-
mained below 1.5%.
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Figure 3: Inferred vs. actual loss rates on link be-
tween UKy and GA.

In summary, our MBone experiments showed that
inferred and directly measured loss rates agreed
closely under a variety of real network conditions:

� Across a wide range of loss rates (4%–30%) on
the same link.

� Across links with very low (< 1%) and very
high (> 30%) loss rates.

� Across all links in a multicast tree regardless of
their position in the tree.

� Across different multicast trees.

� Across time of day and day of the week.

Furthermore, in all cases the inference algorithm
converged to the desired loss rates well within each
two-minute, 1,200-probe measurement interval.

3.2 Simulation Experiments

We have performed more extensive validations of
our inference techniques through simulation in two
different settings: the simulation of the model with
Bernoulli losses and simulations of networks with
realistic traffic. In the model simulations, probe
loss and delay obey the independence assumption of
the model. We applied the inference algorithm to
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Figure 4: Inferred and Sample Delay ccdf. for a leaf
link in the topology of Figure 2.

the end-to-end measurements and compared the in-
ferred and actual model parameters for a large set of
topologies and parameter values. We found that loss
rates, mean delay, and variance estimates converged
to close to their actual values with 2,000 probes. The
number of probes required to accurately compute the
entire delay distributions is higher. In our experi-
ments we found good agreement with 10,000 probes.

The second type of experiment is based on thens
simulator. Here delay and loss are determined by
queueing delay and queue overflow at network nodes
as multicast probes compete with traffic generated by
TCP/UDP traffic sources. Multicast probe packets
are generated by the source with fixed mean interar-
rival times; we used CBR or Poisson probes. We
simulated different topologies with different back-
ground traffic mixes comprising infinite FTP ses-
sions over TCP and exponential or Pareto on-off
UDP sources. We considered both Drop Tail and
Random Early Detection (RED) buffer discard meth-
ods, [5].

We compared the inferred loss and delay with ac-
tual probe loss and delay. We found rapid conver-
gence of the estimates although with small persis-
tent differences. We attribute this to the presence of
spatial dependence, i.e., dependence between probe
losses and delays on different links. This can arise
through correlations in the background traffic due to
correlation arising from TCP dynamics, e.g., syn-
chronization between flows as a result of slow-start

after packet loss. We have shown in [1] that small
deviations from the spatial independence assumption
lead to only small errors in inference.

We also found that background traffic introduces
temporal dependence in probe behavior, e.g., its
burstiness can cause back-to-back probe losses. We
have shown that while temporal dependence can de-
crease the rate of convergence of the estimators, con-
sistency is unaffected. In the experiments the in-
ferred values converged within 2,000 probes despite
the presence of temporal dependence.

While there is understanding of mechanisms by
which temporal and spatial dependence can occur, as
far as we know there are no experimental results con-
cerning its magnitude. We believe that large or long
lasting dependence is unlikely in the Internet because
of traffic and link diversity. Moreover, we expect loss
correlation to be reduced by the introduction of RED.

We also compared the inferred probe loss rates
with the background loss rates. The experiments
showed these to be quite close, although not as close
as inferred and actual probe loss rates. We attribute
this to the inherent difference in the statistical prop-
erties of probe traffic and background traffic, princi-
pally due to TCP traffic being more bursty than probe
traffic and to TCP adapting its sending rate when it
detects losses.

To illustrate the distribution of delay inference re-
sults, we simulated the topology of the multicast
routing tree shown in Figure 2. In order to capture
the heterogeneity between edges and core of a net-
work, interior links have higher capacity (5Mb/sec)
and propagation delay (50ms) than those at the edge
(1Mb/sec and 10ms). Background traffic comprises
infinite FTP sessions and exponential on-off UDP
sources. Each link is modeled as a FIFO queue with
a 4-packet capacity. Real buffers are usually much
larger; the capacity of four is used to reduce the time
required to simulate the network. The discard pol-
icy is Drop Tail. In Figure 4, we plot the inferred
versus the sample complementary cumulative distri-
bution function (discretized in one millisecond bins)
for one of the leaf links, using about 18,000 Poisson
probes. The estimated distribution closely follows
the sample distribution and is quite accurate for tail
probabilities greater than10�2. Note that the esti-
mated distribution is not always monotonically de-
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creasing. This is because negative probabilities are
occasionally estimated in the tail due to an insuffi-
cient number of samples. It is worth pointing out
that, given the irregular shape of the sample distribu-
tion, the same level of accuracy would not be possi-
ble using a parametric model. We also observed in
these experiments that the inferred distributions are
less accurate for the higher capacity interior links.
This appears to be caused by the difference in de-
lay range among different links that negatively af-
fects those with relatively smaller delays. In the pres-
ence of high spatial correlation (up to0:4 � 0:5) the
inferred tail distribution can diverge from the actual
one. However, the delay mean and variance are in-
sensitive to this tail behavior.

4 Deployment Efforts

We have observed in the previous section that MINC
is a very promising methodology for providing de-
tailed internal network performance characteristics.
In this section we describe our efforts in deploying
this methodology and making it available on the In-
ternet. Our efforts are threefold. First, we are contin-
uing the development of NIMI to support multicast-
based measurement experiments. This is described
in Section 4.1. Second, we have identified the real-
time transport protocol, RTP, and its associated con-
trol protocol, RTCP, as promising mechanisms for
generating and collecting end-to-end multicast mea-
surement traces. Our efforts in developing an RTP-
based tool are described in Section 4.2. Last, Section
4.3 contains a description of an analysis and visu-
alization tool, MINT (Multicast Inference Network
Tool), that is currently under development.

4.1 Deployment on NIMI

A major difficulty with characterizing Internet dy-
namics comes from the network’s immense hetero-
geneity [12]. Load patterns, congestion levels, link
bandwidths, loss rates, protocol mixes, the patterns
of use of particular protocols—all of these exhibit
great variation both at different points in the net-
work, and over time as the network evolves. Accord-
ingly, to soundly characterize some aspects of Inter-
net behavior, requires measuring a diverse collection

of network paths. It is not adequate to measure be-
tween just a few points, regardless of how carefully
done.

The same problem arises in assessing the accu-
racy of measurement techniques such as MINC. To
address this concern, we are deploying MINC mea-
surement utilities within the National Internet Mea-
surement Infrastructure (NIMI) [10]. NIMI consists
of a number of measurement “platforms” deployed at
various locations around the Internet. Each platform
is capable of sourcing and sinking active measure-
ment traffic and recording the timing of the traffic
at both sender and receiver. Measurement “clients”
that wish to use the infrastructure make authenticated
requests to the platforms to schedule future measure-
ment activity.

A key property of such an infrastructure is itsN2

scaling: if the infrastructure consists ofN platforms,
then they together can measure network traffic along
O(N

2

) distinct paths through the network. Conse-
quently, with a fairly modestN , one can obtain a
wide cross-section of the network’s diverse behav-
ior. (The NIMI infrastructure currently consists of
31 sites, expected to grow to 50 by summer 2000).

Using NIMI for MINC measurements required
several extensions to NIMI. The first was modifying
the standard NIMI packet generator,zing, to send and
receive multicast traffic, and the corresponding anal-
ysis program,natalie, to incorporate the notion that
a single packet might arrive at several places (and
fail to arrive at others). MINC has also required the
generalization of NIMI control mechanisms, in or-
der to allow for a single measurement run spanning
multiple senders and receivers. A possible further
step would be to use multicast itself for both schedul-
ing measurements and disseminating the results. But
this change to NIMI remains for future work, as it
raises the thorny problem of devising a scalable-yet-
reliable multicast transport protocol.

Our experiences with using NIMI to date have
been quite frustrating, not due to the infrastruc-
ture itself, but because of the poor quality of mul-
ticast connectivity between the different platforms.
Until recently, at best only 1/3 of the NIMI plat-
forms had multicast connectivity between them. We
gather anecdotally that problems with poor interdo-
main multicast connectivity have been endemic to
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the Internet. Recently, connectivity has begun to im-
prove, and it appears likely that over the next sev-
eral years it will continue to do so, as agreement is
reached on the proper set of intradomain and inter-
domain routing protocols and the interoperation be-
tween them. We are also attempting to address this
problem in two ways: (1) to grow the NIMI infras-
tructure by adding sites with high-quality multicast
connectivity; and (2) to investigate theoretical work
on inferring network characteristics using correlated
unicast traffic, where, instead of exploiting the per-
fect correlations inherent in multicast packet recep-
tion, we send back-to-back unicast packets and at-
tempt to exploit the considerably weaker correlations
in their loss and delay patterns.

4.2 Integration with RTCP

We are developing tools to apply MINC in real-time,
so that MINC could be used by applications to re-
spond to changing network conditions in new and
more sophisticated ways. For example, a manage-
ment program might adaptively adjust its probes to
home in on a problem router.

Our tools transmit network information using
RTCP, the control protocol for multicast transport
protocol RTP [14]. By sharing their traces using
RTCP, they benefit from RTCP’s built-in scaling
mechanisms.

The approach is based on three tools:mgen,
mflect, andmmerge (Figure 5).mgen generates
a stream of data (and may be replaced by any other
application that multicasts data over RTP). A copy
of mflect at each receiver maintains loss traces for
the packets it does and does not receive frommgen.
It periodically multicasts these (in a sense reflecting
the data stream: hence “mflect”).mmerge collects
the traces sent bymflect, collating those from the
different data receivers and making them available to
a tool, such as MINT, for inference.
mflect andmmerge are designed so that they

may be incorporated directly into existing and fu-
ture multicast applications. Their joint functional-
ity is available as an extension to the RTP com-
mon code library from University College London,
called RTPXR, (“eXtended Reporting”). An applica-
tion using RTPXR would be in a position to respond

mflect

mflect mflect

mgen

mflect

mflect
mmerge

mflectmflect

Figure 5: An RTCP-based tool deployment example,
on the same topology as shown in Figure 2, with in-
ference being performed at UMass.

adaptively to information on the topology of its data
distribution tree.

Ongoing research related to these tools concerns
the scalability of trace sharing. For example, a raw
bit vector loss trace for 3,000 packets would con-
sume 375 octets, far more than the four octets al-
located for summary loss information in a standard
RTCP packet. To limit the traces to an acceptable in-
termediate size we are investigating the use of com-
pression techniques such as run length encoding, as
well as distributed methods by which all copies of
mflect in a single session can agree on which por-
tions of the trace to share in place of the whole trace.

4.3 MINT: Multicast Inference Network
Tool

MINT is intended to facilitate multicast-based infer-
ence. It takes as inputs all of the traces collected
from the end-hosts. These traces may or may not in-
cludemtrace outputs. Currently, MINT comprises
three components: a graphical user interface (GUI),
a topology discovery algorithm, and an inference en-
gine. Users interact with the GUI to manipulate the
inference such as choosing number of samples, visu-
alizing the multicast tree with losses or showing the
performance evolution over specific links. Depend-
ing on the availability of mtrace output, MINT dis-
covers the topology by either parsing mtrace inputs
or inferring the multicast tree from the loss traces.
The inference engine takes topology information and
loss traces to infer the network internal loss and then
provides this to the GUI. The user can then view the
results in one of several ways. One way is to lay
out the logical multicast tree and display the links in
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Figure 6: MINT view of the logical multicast tree
with losses.

different colors to distinguish different average loss
rates (e.g., Figure 6). The user can also focus on a
single link and observe how the loss rate evolves over
time for that link.

Our future plans for MINT are to include support
for delay inference, to test it thoroughly by feeding it
with daily traces collected from NIMI, and to make
its output available to the community on the WOrld
WIde Web.

5 Related Work

A growing number of measurement infrastructure
projects (e.g., AMP, Felix, IPMA, NIMI, Surveyor,
and Test Traffic [3]) aim to collect and analyze end-
to-end performance data for a mesh of unicast paths
between a set of participating hosts. We believe
our multicast-based inference techniques would be
a valuable addition to these measurement platforms.
We are continuing to work on incorporating MINC
capabilities into NIMI.

Recent experimental work has sought to under-
stand internal network behavior from endpoint per-
formance measurements (e.g., TReno [9]). In par-
ticular,pathchar [11] is under evaluation as a tool
for inferring link-level statistics from end-to-end uni-
cast measurements. Much work remains to be done
in this area; MINC contributes a novel multicast-
based methodology.

Regarding multicast-based measurements, we
have already described themtrace tool. This forms
the basis for several tools for performing topol-

ogy discovery (tracer [6]) and visualizing loss
on the multicast distribution tree of an application
(MHealth [8]). However,mtrace suffers from per-
formance and applicability problems in the context
of large-scale Internet measurements. First,mtrace
needs to run once for each receiver in order to cover a
complete multicast tree, which does not scale well to
large numbers of receivers. In contrast, MINC covers
the complete tree in a single pass. Second,mtrace
relies on multicast routers to respond to explicit mea-
surement queries. Although current routers support
these queries, providers may choose to disable this
feature since it gives anyone access to detailed de-
lay and loss information about paths inside their net-
works. In contrast, MINC does not rely on coopera-
tion from any internal network elements.

6 Conclusions

We have described a new approach to identifying
internal network characteristics based on the use of
end-to-end multicast measurements. This methodol-
ogy is rigorously based in estimation theory. A pre-
liminary evaluation for identifying loss rates based
on measurements made over the MBone indicates
that it is accurate and readily able to track dynamic
fluctuations that occur over time. More detailed in-
vestigations based on simulation further corroborate
this conclusion, not only for the case of losses, but
delays as well. Finally, we described our current ef-
forts to deploy this methodology on the Internet and
make it available to the community at large.

We believe that MINC is an important new
methodology for network measurement, particularly
Internet measurement. It does not rely on network
cooperation and it should scale to very large net-
works. MINC is firmly grounded in statistical anal-
ysis backed up by packet-level simulations and now
experiments under real network conditions. We are
continuing to extend MINC along both analytical and
experimental fronts.
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