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Abstract. User mobility prediction can enable a mobile service prewit opti-
mize the use of its network resources, e.g., through coatelihselection of base
stations and intelligent content prefetching. In this pape study how to per-
form mobility prediction by leveraging the base statioreldecation information
readily available to a service provider. However, identifyreal movements from
handovers between base stations is non-trivial, because they carr edthout
actual user movement (e.g., due to signal fluctuation). Twess this challenge,
we introduce thdeap graph, where an edge (or keap) corresponds to actual
user mobility. We present the properties of leap based fityphihd demonstrate
how it yields a mobility trace more suitable for mobility plietion. We evaluate
mobility prediction on the leap graph using a Markov modeldshapproach. We
show that prediction using model can substantially imprfeeperformance of
content prefetching and base station selection duringdwand

1 Introduction

Mobile network providers have a strong desire to optimizevnek resources due to the
scarcity of radio frequency spectrum and the rapidly insirgabandwidth demands of
mobile users. The ability to predict short-term user mtpdan be useful in optimizing
these resources. For example, at the network layer, aecpradiction can inform the
choice of basestation(s) used to communicate with a mobilecd. At the application
level, different delivery strategies in the network basedegpected movement (e.g.,
prefetching) could improve both the user experience andarétefficiency.

Arecent body of work has examined user mobility predictimmf data collected on
user devices, e.g., by using GPS or Wi-Fi associationsmgadi0,15,16,19]. However,
the spatial information most relevant from a provider'sgperctive would be the cellular
basestations that mobile devices associate with. Thisidatadily and ubiquitously
available to mobile operators without requiring additibinatrumentation of devices,
and does not pose the coverage, energy-consumption, aratyigoncerns of GPS
and Wi-Fi association based techniques. Thus, this pakes tanovel provider-centric
approach: we study how to perform mobility prediction byngsihe base station-level
location information readily available to a cellular seeiprovider. This data reports
the active setof basestations with which a given mobile device is curgeasisociated,
and, in particular, a data record is generated for emdthhandoveevent that changes
a user’s active set.

Despite the advantages of handover traces, there are a nointieallenges that
make it non-trivial to use handover data directly as a mpitilace. First, while it seems
natural to use the active set to define a user’s location, fiaeuarity of the coverage
intersections is unachievable or unreliable due to the alynaature of radio environ-
ment. Using the active set to define location can also sufften fthe state-explosion
problem, since a mobile device may see any combination sfdésectors in densely
covered regions. Secondly, not all handovers happen dusetamobility. Other causes



include radio signal and workload fluctuations. In theseesa# is not obvious how to
distinguish fluctuations from real user mobility.

To address these challenges, we introdutesp graph, where an edge (or l@ap)
between two sectors denotes that moving from one sectoetottier requires actual
user mobility. A leap consists of two or more sector-levahgitions. We use a data
driven approach to identify sectors that overlap, and fiag$an the handover data be-
tween non-overlapping sectors. We then design procedarefdctively leverage the
transitions that are not leaps and fully extract the leaprinftion. The resulting leap
graph differs significantly from the direct handover graphtérms of the number of
state changes and degree. It effectively reduces fluchstigelding a mobility trace
more suitable for mobility prediction. We study mobilitygatiction on the leap graph
using a Markov-based approach. We also show the perfornmarmer mobility pre-
diction in two example applications: prefetching and hamd@ptimization. Using a
month of handover data from a cellular service provider, easthat our approach
can improve content prefetching hit-rate to 84%, comparitl 0% for a popularity-
based approach. We also show that our approach can paterg@dilice the number of
handovers by 38% on average.

The rest of the paper is organized as follows: Section 2 duices background on
cellular handovers and discusses the challenges of usimdpkiar data for mobility pre-
diction in detail; Section 3 describes our approach to ektitze leap based mobility;
in Section 4 we study properties of leap traces and evaleaie based mobility pre-
diction; we study prediction performance in real applicasi in Section 5; we review
related works in Section 6 and conclude in Section 7.

2 Background and Challenges

2.1 Soft Handover and Active set

To maintain a data connectionin a UMTS cellular networkheaobile device connects
to several cell sectors when it is actively sending or rengiA cell sector is defined by
an antenna on the base station and the frequency that iititzrin. There are typically
1-3 sectors pointing in each of three directions on each oeatirbase station. The
set of sectors to which a mobile device is connected is céfledctive set. The size
of active set typically varies from 1 to 4 sectors dependingie quality of the radio
channel and the load on the base stations. In a UMTS netwoykoall of these cell
sectors may transmit to the device at once, depending oratlie technology used.
Most modern devices use HSPA technology and only receiefdan a singleserving
sector in the active set at a time although this serving sector cangé very quickly.

The process of adding or removing sectors from the activéssedlledsoft han-
dover and is controlled by the radio network. A sector is addedsifsignal strength
is greater than a threshold and the sector has not alreadytedithe maximum num-
ber of connections, while a sector is removed if its signargith falls below another
threshold [17]. Hence, the active set typically contairesgctors with the highest sig-
nal strength with respect to the mobile device. Since sigtrahgth falls off with the
square of the distance from the antenna, the active setamlsisually close to the
mobile device in geographic space as well. We leverage #oistd use soft handover
traces to predict a device’s mobility.
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of timestamp and active  pair of adjacent sectors overlap. Fig. 3. 3-hop leap traces for
set for a stationary de- In addition,U3, U4, U5, andU6 Figure 2
vice mutually overlap.

2.2 Challenges

As described in Section 1, modeling user mobility throughdwver traces offers many
advantages. Yet there are several rather unique challevitiethis approach. The first
challenge is on how to define users’ location. Different selttors have overlapping
coverage areas, and a mobile user is located within thesgteof the coverage areas
of all the sectors in the active set. It seems natural to useadhive set to define the
user’s location as it may offer high precision. Howevenitis out that the radio envi-
ronment dynamics and sectors’ workload variability camleasignificant fluctuation
in the active set, making the fine granularity of the covelatgrsects unachievable or
unreliable. In addition, the combinatorial nature of théwacset can potentially create
a state-explosion problem in densely covered regions wieaeof sectors are visible
to a mobile device. Another approach is that we clustetitpartthe geo-space into re-
gions and take the union of sectors in the region to defineatatibn. However, we
lose the precision with this approach. In this work, we cleaosuse the serving cell in
the active set as the representative for location as we fiachieving a good balance
between precision and accuracy.

Another major challenge of examining the handover trace isléntify real user
mobility from handovers due to radio signal fluctuations.uralerstand this aspect,
we performed a controlled experiment where a stationarnetmvned by a cellular
provider is set up to transmit data packets periodically.dMained the handover logs
shown in Figure 1. We observe that handovers occur even wheserais stationary.
We also see a diverse set of sectors in the active sets. Whilgresent more details
later in Section 4.2, it is clear that these handovers areretttly different from the
ones induced by user movement and hence present noise fditynolodeling. Signal
strength triangulation does not help in identifying whicdmdover is due to real user
movements as signal strength at a single location can vanty]a4].

Before describing our solution, we examine the limitatiohtvo heuristics:

Loop detection and elimination: Stationary users are much more likely to alternate
among a small set of sectors than mobile users. Hence, ompdesapproach to elim-
inate non-mobility handovers would be to remove trace segsneetween repeated
occurrences of the same serving sector. However, not ibistay traces manifest a
loop, and thus this approach does not eliminate superfluanddvers. Moreover it is
possible that a users comes back to the same location afkemgrraal movementsin a
short period of time, in which case the real movements willlisearded.



Low-pass filter: Low-pass smoothing is a principled approach to suppressiaeship
fluctuations in the active set among near-by sectors. Fanpba we can pass the the
sectors in each consecutive active set through a queueelftarss already in queue,
we move it to the tail of queue. When the queue is full, we ethetoldest member
and produce a “smoothed” trace using the eviction sequétmsever, the number of
sectors visible to a user varies, making it difficult to detere a single fixed queue
size. When we apply this approach to real traces with a fixedigsize, we find that it
admits superfluous handovers as mobility-induced and siisse user movement.

3 Mobility and Leaps

Individual changes in the active set do not in themselveg#atd whether a handover
was due to user mobility. Thus in trying to infer mobility frothe handovers, we try
to eliminate handovers involving changes whose interficetas ambiguous, and fo-
cus instead on minimal groups of successive handovers vihgather likely indicate
mobility. The boundaries of these groups will be termeléan and a set of succes-
sive adjacent leaps together constituteap traceThese are constructed in a two step
procedure.

Step One: Identifying Overlapping Sectors

Informally, two sectors overlap if a handover can take plaesveen them. Although
overlap could in principle be inferred from auxiliary sectonfiguration data (such as
sector antenna locations, directions and powers), thiddumela complex task in gen-
eral. Instead we designate two sectersinds; as overlapping (writtes; ~ s;) if at
least one of the following two criteria holds: (i) Configuoatal: s; ands; are based at
the same cell tower; (i) Empirical; ands; appear within an active set reported in the
handover trace during a specified time period (3 weeks in eaiuation). We consid-
ered alternate ways of determining overlap (e.g., consigeerving sector transitions),
and they yielded marginal performance differences andaheisiot discussed further.

Step Two: Creating Leap Traces
We partition the handover trace by user, then further ekttee sequence of serving
sectors reported for each such user. We call each such senaew trace A segment
is a maximal ordered subset of a raw trace in which the timedsen handovers does not
exceed a specified timeout valuelgapis a pairs;s;, i < j of sectors within a segment
suchthask; o s; buts; ~ s Vi < k < j. A leap traceon a segmensy, sz, ..., S, } iS
a maximal set of some numbeof adjacent leaps;(1)s;(2), 5i(2)5i(3)» - - - » Si(£)Si(e+1)-
A first leap trace constructed by finding a leap with initiades;;) = s; and then
using that leap’s final node as the initial node for the neagpJe@nd so on until reaching
the end of raw segment. As manyras— 2 further leap traces may be constructed from
the segment by the same procedure, taking each= 2, ..., m—1, as the initial node
s;(1) Of the initial leap. But in order to avoid double counting eaps, we stipulate that
if a leap trace starts to repeat leap segments alreadyfieert trace from a previous
starting sector, we ignore the remaining trace after inolgidt most some numberof
further leaps. The is determined by the mobility modeling requirement. Fomapgke,
n = 1 for first order Markov model and = 2 for second order Markov model.

To illustrate, we show an example raw trace in Figure 2, whadiradjacent sectors
overlap (e.g.JU0~U1, Ul~U2, etc.). In additionU3, U4, U5, andU6 overlap with
each other. Starting frotd0, we can get Trace 1 in Figure 3. There can be multiple leap



traces from the same raw trace. For example, starting fdbmve can get Trace 2 in
Figure 3. In fact, the number of different leap traces canXmmeentially large to the
length of raw trace. Moreover, leap traces from differeattgig sectors may become
identical after a few leaps since they are derived from tineeseaw trace. In this case
we only keep the useful information and discard the repeaaeiths described above.

The leap trace ignores handovers due to signal fluctuationser movements in
small areas, while focusing on longer trips. This is suffitfer our target applications
because we focus on improving handovers or prefetchingrgetaareas. We study
application specific performance in section 4.

4 Properties of Leap Traces and Leap-based Mobility Predigbn

4.1 Data Set

We use anonymized event logs collected from several RNCdi¢Rsdetwork Con-
trollers) in a major U.S. cellular operator in December 20Iiese RNCs control a
significant fraction of the base stations in a large U.S.. ditye logs record soft han-
dover events, i.e., additions and removals from each devactive set. Each log entry
has a timestamp, and devices are anonymously identified byeaersible hash of the
device’s IMSI, which is unique per SIM card. All device andsariber identifiers are
anonymized to protect privacy without affecting the useésls of our analysis. Fur-
thermore, the data set does not permit reversing the anaagiomn or re-identification
of subscribers. We use the data of the whole month (the first&ke/are considered
known and used for training, the last week is considered awkrfor testing purpose)
and include all users from the trace. The logs recorded 6liomsoft handover events
for 413K users distributed over 5K sectors. The logs are ige¢ee only for active de-
vices transmitting data, but not for idle devices. In ourleation, if two subsequent
soft handover records for a given device is apart by more 38@aminutes, we assume
that the device has been idle, and start a new mobility segusémg the latter record.
Our data set contains proprietary information and cannobaée public.

4.2 Characteristics of Leap Traces

We extract the leap traces from the above data set. In thisestibn, we present a
high-level characterization of the aggregate leap traces.

We first compare the length of raw trace segments and leapesggniigure 4(a)
plots their CDF. We can see that leap segments are much shitateraw segments.
Specifically, over 80% of the raw segments generate no leap, adicating limited
or no user mobility. In contrast, around 20% of raw segmentgan only 1 active
set report. This result illustrates that many soft handeueraw traces either do not
involve serving sector transition or the transition happleetween close-by sectors and
are likely not due to user mobility. This highlights the inmfamce of our approach in
separating the different causes for handovers. In Figuog e compare the inter-leap
time and inter-handover time. We observe that the intgr-teme is much longer than
inter-handover time. Specifically, the median of interpléiane is 636 seconds, while
for inter-handover time the number is 2.8 seconds.

We define thdeap graph as the graph of sectors in which the edges represent the
presence of a leap transition in any of the leap traces. &ilyilwe also consider graphs



CDF

1
09
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1 Raw segments
Leap segments

CDF

0
100

Segment length

1 10

10000

0.8

0.6

04 r

02 r

Inter-handover time -

‘Inter-l‘eap time — —

0
0.001 0.01 01 1

10 100 1000 100000000
Time (s)

(a) Segment length: Raw trace vs. Leap grafi) Inter-leap time vs. Inter-handover time

CDF

Fig. 4. Segment Characteristics

Leap
Transition
o Overlapping
+~2nd-order Overlapping

1 10
Degree

100

1000

Fig. 5. Degree distribution comparison

obtained from serving sector changes, from overlapping setd from second-order
overlapping setfs In Figure 5, we compare their degree distributions. We @ibsterve
that the size of overlapping set can be quite large (e.g.ettan 20 for around 30% of
cases), while the second-order overlapping set is evearld@gmpared to the second-
order overlapping set, the degree of leap graph is signtfickow (e.g., 10 or less for
more than 60% of cases). For many sectors, it is even smiadarthe number of serv-
ing sectors they can transition to (marked as “Transitiowl)ich suggests that people
follow similar patterns (e.g., along a highway) and only mowut of a region with very
limited choices of ways. While fewer choices can make theifitplprediction using
the leap graph easier, we also observe in the tail part ted¢#p degrees may approach
the size of second-order overlapping, indicating thatsavéth dense cellular coverage
tend to have more mesh-like transportation paths (e.g.nthwn areas) — posing a
challenge for mobility prediction. A very small fraction séctors have larger leap de-
gree than the degree of second-order overlapping, thatcsuse a leap may happen
between two sectors more than two hops away, when a user stops using his phone
for a short period of time while he is still moving.

4.3 Mobility Prediction on Leap Graph
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respectively.

In this subsection we study mobility prediction on the leagsdd graph. We adopt
Markov-based approaches for prediction, as it has beerepreffective in the liter-

L w is in the second-order overlapping setsdf s andu are not overlapping, and there exists




ature [12,19]. We consider two variants: second-order lharkodel using one leap as
a state and third-order Markov model using two consecugeps$ as a state. Using a
higher-order model allows us to make predictions based oomy the user’s current
location but also the recent path trajectory. We furthersaer a variant where we as-
sume the knowledge of the destination of a segment, to utashetbiow such additional
information can help with mobility prediction. This is medited by the observation
that many people have highly predictable daily routine dnad the destination may be
projected simply based on the time of day [8, 9]. In the dategty we estimate the prob-
ability of states being the next state aB(s|d, o) whered is the destination (the last
sector in trace segment) ands the current state.

We train our prediction models with the first 3 weeks’ data emaluate them with
the leap segments extracted from the last week’s data. Givecurrent state, we
predictm next sectors using the: highest-probability leaps, while we vary from
1 to 3. We evaluate how often we can correctly predict the fesqt. We adopt two
accuracy measures: (1) the predicted sector exactly nmttieeactual sector in the
testing data, and (2) the predicted sector is in the oveilgpget of the actual sector.
We also count how often we cannot make a prediction and réjpentesult. To form
a base for comparison, we also employ a naive scheme (delmpt&bpular”), where
among all possible next leaps, we pieckleaps with the most transitions.

In Figure 6, we compare the prediction accuracy of the pojiulaased approach,
second- and third-order Markov models (with and withoutidesion information). We
selectm=2 and report both accuracy measures. In the figure, the ancof predict-
ing any one among the overlapping set is significantly highan predicting the exact
match, which is well expected. We make three observatioinst, Ehe Markov mod-
els significantly outperform the simple popularity-baspegraach. Specifically, when
using the overlapping set of the actual sector, the accuwhitye popularity-based ap-
proach is 68%, while the accuracy of Markov models is 80% ghéi. Second, the
knowledge of destination information can further improkie prediction accuracy of
the exact sector (e.g., from 33% to 46% in second-order Mamkadel) but helps little
when we use the overlapping set of the predicted sector tsuneaccuracy. Finally
we observe that the accuracy gain from using longer histotkié third-order Markov
models is marginal. On the other hand, the probability ohgeible to predict a sector
is lowest with the third-order Markov model with destinatimformation (62%). This
is because training data is often unavailable for consetlgap transitions with a par-
ticular destination. In contrast, the popularity basedrapph, due to its simplicity, can
make a prediction for 99.5% of the cases, and the second-lai&ov model without
destination information can make a prediction for 98.4%hef tases. In practice, we
can start with as much information as possible and fall bad&ss demanding settings
if needed [16].

5 Applications

There are many potential applications of future sector iptieah. In this section we
focus on two example applications, namely prefetching amtlbver optimization, and
quantify the application specific performance of our prédicschemes.



5.1 Prefetching

In this application scenario, we prefetch user requestedecd to a predicted future
cell tower, such that the user can retrieve the content uptariag the range of the cell
tower. The content a user is going to request is often pralief5, 18]. Users can also
request for prefetching since it saves time for them.

Once a prefetching request is made, a prediction is made loasthe user’s current
mobility history. One complication here is that at a giventeein a raw trace, there
could be multiple different leap traces leading to it as veslimultiple different leap
traces “leaping over” it, e.g., depending on which sectostagt with in the raw trace.
We lose information by considering only leap trace and igrgpthe rest. In this paper
we combine the predictions made with these different leapets using the following
simple heuristic (assuming second order Markov model).

We extract all possible leap traces and from them we get ffereint ending leaps.
LetL;; = (s, s;) be one of the ending leaps, wheteands; are sectors. LeP(S|L;;)
be the probability vector predicted usitig;, whereS is a vector of potential future
sectors. The final prediction is then computedds) =<< P(S|L;j) >i>; (<>;
means taking average over gll

For prefetching, the criteria for a good prediction is tteg tell tower of the pre-
dicted sector become within reach later. In our evaluatiencensider a prediction
correct if the sectors on the predicted cell tower appeattsaractive set in the future.

Due to space limit, we only present herein the result usitgrse order Markov
model without assuming destination knowledge. We make digtfen in the middle of
the segment, and we choose the segments that have more teps3after the predic-
tion is made to ensure that the user remains active afterrediqgtion point. Then we
prefetch the content to the cell tower of the teppredicted sectors. We vary from 1
to 3. We run 10k tests and record how many times the prefetobretgnt become avail-
able to the user after the prediction. We find that we can makediction for 99.6%
of the times, which is slightly higher than the leap-baseskq@8.4%) because we ef-
fectively combine the predictions of different ending IsaPut of the predictions we
make, the accuracy is 84.7% when= 1, suggesting 84.7% of the times the prefetched
content becomes available to the user. Increasirig two and three increase the num-
ber to 91.3% and 94.4%, respectively. We also find that 97%efime the content
becomes available within an hour. In comparison, prefatghd the cell tower at the
most popular leap achieves lower than 40% accuracy.

5.2 Handover optimization

Next we use future sector prediction to optimize handoveng. idea is based on the
predicted leap, we can suggest which sector to hand oveutb, that we reduce the
total number of handovers. Detailed simulation of handeignot trivial, as it requires
a detailed modeling of signal strength variations, traffied, load changes, etc. In this
paper we only consider an idealized scenario to demonstrateotential gain we can
achieve. Specifically, after each leap we make a predictidheonext leap. Based on
the prediction we first rank the sectors in the active set bingipreference to sectors
that overlap with the predicted sector. Then we break tiggyyshysical distance to the
predicted sector (the closer the better). We use the highielsed sector as the suggested
handover target. To evaluate how many handovers we cantjagisave, we count



how many consecutive future handovers in the real trace theveuggested sector in
the active set before the next leap actually happens, as Ha®lovers can potentially
be replaced by one handover to the suggested sector. In@auagon we only consider
the traces that have at least 2 leaps. We predict the secapdé&sed on the first one
using second-order Markov model without assuming destinanformation. We run
the test for 10k times and we find that less than 0.1% of thegtithe suggested sector
does not appear in future handovers, which means the pigdistwrong and may
cause extra handovers; 59% of the times we can save at leastamlover by using
the suggested sector, and 32% of the times we can save thme@er On average, our
handover optimization reduces the handover count by 38%.

6 Related Work

Despite the plethora of work in mobility modeling, we bebehat this is the first work
to address the unique challenges of mobility predictiongisiellular handover traces
and to present an approach that works well on real data. Wearkey selection of
prior work here.

An important body of work focused on predicting locationslaéned by Wi-Fi as-
sociations [10, 15, 16, 19]. Much of this work focused on eatihg the effectiveness of
well known location predictors such as Markov-models [X@mpression-based pre-
dictors [16], and CDF predictors [15]. Others have focusedamn modeling [10]. In
contrast to cellular handover traces, which include mamdbaers that occur when a
user is stationary, changes in Wi-Fi associations reptesahmovement in most cases.
Thus, our work is unique in addressing the inherent chalexfgambiguity in predict-
ing future cell sectors in cellular traces. Nonethelesshwitel upon the same principled
predictors, such as Markov-models.

There have been previous proposals on location predictioaliular networks [1, 3,
4,11,13]. However, they either make unrealistic assumptie.g., that basestations are
mobile [13] or a prefect sector structure [4]), require imfi@tion that is not typically
available to a cellular operator (e.g., reports of devication and velocity [1, 11]), or
are designed for different purposes (e.qg., to limit cellated [3] and paging [6]). As a
result, all of these approaches have only been evaluateghtimetic data. Our approach
is the first to be evaluated on real cellular handover traces.

Finally, there have been studies on the predictability obleiss attributes, such as
cellular connectivity [7], Wi-Fi connectivity [12], and aamute routes [2]. The predic-
tors for them use similar data to our work, but are orthogamékesign and purpose.

7 Conclusion

In this paper we introduced a novel leap based approachtacexiser mobilities from
soft handover data, which is readily available but also @mstsignificant fluctuations
even for a stationary device due to signal strength chantmadrbalancing. Our study
showed that our approach can effectively reduce fluctugtiohe raw handover data
while maintaining real user mobility pattern. In our expeents, we demonstrated sig-
nificant gain in prediction accuracy using our leap basedagmh, and performance
improvement in two example applications that we considevédile our approach is
provider-centric, a service provider can potentially mhdeation prediction for a user



available to selected applications on the user’s devicthathe applications can pro-
vide a better service to the user. In the future, we plan tdyapypr approach to real

world location based services to find further applicatioacjic optimizations and see
its benefit in real systems.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

I. F. Akyildiz and W. Wang. The predictive user mobilityofite framework for wireless

multimedia networks|EEE/ACM Trans. Netw., 12(6):1021-1035, Dec. 2004.

R. A. Becker, R. Caceres, K. Hanson, J. M. Loh, S. Urbanekafshavsky, and C. \olinsky.

Route classification using cellular handoff patterns. Wi '11, pages 123-132, New
York, NY, USA, 2011. ACM.

. A. Bhattacharya and S. K. Das. Lezi-update: an informatieeoretic approach to track

mobile users in pcs networks. MobiCom '99, pages 1-12, Nevk,YNY, USA, 1999.
ACM.

. R. Chellappa, A. Jennings, and N. Shenoy. The sectorizdaility prediction algorithm for

wireless networks. Iim Proc. ICT, 2003.

. X.Chen and X. Zhang. A popularity-based prediction mdalelveb prefetchingComputer,

36(3):63 — 70, mar 2003.

. S.Das,, S. K. Das, and S. K. Sen. Adaptive location priedicttrategies based on a hierar-

chical network model in cellular mobile environmefthe Computer Journal, 42:473-486,
1996.

. P. Deshpande, A. Kashyap, C. Sung, and S. R. Das. Predintthods for improved vehic-

ular wifi access. MobiSys '09, pages 263—-276, New York, NYAUZ009. ACM.

. M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi. Undamsling individual human mo-

bility patterns.Nature, 453(7196):779-782, June 2008.

. S. Isaacman, R. A. Becker, R. Cceres, S. G. Kobourov, Jldoywand A. Varshavsky. A

tale of two cities. IHOTMOBILE' 10, pages 19-24, 2010.

M. Kim and D. Kotz. Extracting a mobility model from reader traces. Ihn Proceedings
of IEEE INFOCOM, 2006.

B. Liang and Z. J. Haas. Predictive distance-based iohbianagement for multidimen-
sional pcs networks EEE/ACM Trans. Netw., 11(5):718-732, Oct. 2003.

A. J. Nicholson and B. D. Noble. Breadcrumbs: forecagstitobile connectivity. MobiCom
‘08, pages 46-57, New York, NY, USA, 2008. ACM.

P. N. Pathirana, A. V. Savkin, and S. Jha. Mobility mddgliand trajectory prediction for
cellular networks with mobile base stations. MobiHoc '08gps 213-221, New York, NY,
USA, 2003. ACM.

A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpa@d&runewald, K. Jain, and
V. N. Padmanabhan. Bartendr: a practical approach to ereergye cellular data scheduling.
MobiCom '10, pages 85-96, New York, NY, USA, 2010. ACM.

L. Song, U. Deshpande, U. C. Kozat, D. Kotz, and R. Jaiedietability of wlan mobility
and its effects on bandwidth provisioning. IKFOCOM. IEEE, 2006.

L. Song, D. Kotz, R. Jain, and X. He. Evaluating locatiosadictors with extensive wi-fi
mobility data. Inin Proceedings of INFOCOM, pages 1414-1424, 2004.

S.-F. SuThe UMTSAir-Interface in RF Engineering. McGraw Hill, 2007.

Z.Su, Q. Yang, and H.-J. Zhang. A prediction system fdtimedia pre-fetching in internet.
MULTIMEDIA '00, pages 3-11, New York, NY, USA, 2000. ACM.

J. Yoon, B. D. Noble, and M. Liu. Building realistic mabjl models from coarse-grained
traces. Inn Proc. MobiSys, pages 936-5983. ACM Press, 2006.



