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Abstract. User mobility prediction can enable a mobile service provider to opti-
mize the use of its network resources, e.g., through coordinated selection of base
stations and intelligent content prefetching. In this paper, we study how to per-
form mobility prediction by leveraging the base station level location information
readily available to a service provider. However, identifying real movements from
handovers between base stations is non-trivial, because they can occur without
actual user movement (e.g., due to signal fluctuation). To address this challenge,
we introduce theleap graph, where an edge (or aleap) corresponds to actual
user mobility. We present the properties of leap based mobility and demonstrate
how it yields a mobility trace more suitable for mobility prediction. We evaluate
mobility prediction on the leap graph using a Markov model based approach. We
show that prediction using model can substantially improvethe performance of
content prefetching and base station selection during handover.

1 Introduction

Mobile network providers have a strong desire to optimize network resources due to the
scarcity of radio frequency spectrum and the rapidly increasing bandwidth demands of
mobile users. The ability to predict short-term user mobility can be useful in optimizing
these resources. For example, at the network layer, accurate prediction can inform the
choice of basestation(s) used to communicate with a mobile device. At the application
level, different delivery strategies in the network based on expected movement (e.g.,
prefetching) could improve both the user experience and network efficiency.

A recent body of work has examined user mobility prediction from data collected on
user devices, e.g., by using GPS or Wi-Fi associations readings [10,15,16,19].However,
the spatial information most relevant from a provider’s perspective would be the cellular
basestations that mobile devices associate with. This datais readily and ubiquitously
available to mobile operators without requiring additional instrumentation of devices,
and does not pose the coverage, energy-consumption, and privacy concerns of GPS
and Wi-Fi association based techniques. Thus, this paper takes a novel provider-centric
approach: we study how to perform mobility prediction by using the base station-level
location information readily available to a cellular service provider. This data reports
theactive setof basestations with which a given mobile device is currently associated,
and, in particular, a data record is generated for eachsoft handoverevent that changes
a user’s active set.

Despite the advantages of handover traces, there are a number of challenges that
make it non-trivial to use handover data directly as a mobility trace. First, while it seems
natural to use the active set to define a user’s location, fine granularity of the coverage
intersections is unachievable or unreliable due to the dynamic nature of radio environ-
ment. Using the active set to define location can also suffer from the state-explosion
problem, since a mobile device may see any combination of tens of sectors in densely
covered regions. Secondly, not all handovers happen due to user mobility. Other causes



include radio signal and workload fluctuations. In these cases, it is not obvious how to
distinguish fluctuations from real user mobility.

To address these challenges, we introduce aleap graph, where an edge (or aleap)
between two sectors denotes that moving from one sector to the other requires actual
user mobility. A leap consists of two or more sector-level transitions. We use a data
driven approach to identify sectors that overlap, and find leaps in the handover data be-
tween non-overlapping sectors. We then design procedures to effectively leverage the
transitions that are not leaps and fully extract the leap information. The resulting leap
graph differs significantly from the direct handover graph in terms of the number of
state changes and degree. It effectively reduces fluctuations, yielding a mobility trace
more suitable for mobility prediction. We study mobility prediction on the leap graph
using a Markov-based approach. We also show the performanceof our mobility pre-
diction in two example applications: prefetching and handover optimization. Using a
month of handover data from a cellular service provider, we show that our approach
can improve content prefetching hit-rate to 84%, compared with 40% for a popularity-
based approach. We also show that our approach can potentially reduce the number of
handovers by 38% on average.

The rest of the paper is organized as follows: Section 2 introduces background on
cellular handovers and discusses the challenges of using handover data for mobility pre-
diction in detail; Section 3 describes our approach to extract the leap based mobility;
in Section 4 we study properties of leap traces and evaluate leap based mobility pre-
diction; we study prediction performance in real applications in Section 5; we review
related works in Section 6 and conclude in Section 7.

2 Background and Challenges

2.1 Soft Handover and Active set

To maintain a data connection in a UMTS cellular network, each mobile device connects
to several cell sectors when it is actively sending or receiving. A cell sector is defined by
an antenna on the base station and the frequency that it transmits in. There are typically
1–3 sectors pointing in each of three directions on each macrocell base station. The
set of sectors to which a mobile device is connected is calledthe active set. The size
of active set typically varies from 1 to 4 sectors depending on the quality of the radio
channel and the load on the base stations. In a UMTS network, any or all of these cell
sectors may transmit to the device at once, depending on the radio technology used.
Most modern devices use HSPA technology and only receive data from a singleserving
sector in the active set at a time although this serving sector can change very quickly.

The process of adding or removing sectors from the active setis calledsoft han-
dover and is controlled by the radio network. A sector is added if its signal strength
is greater than a threshold and the sector has not already admitted the maximum num-
ber of connections, while a sector is removed if its signal strength falls below another
threshold [17]. Hence, the active set typically contains the sectors with the highest sig-
nal strength with respect to the mobile device. Since signalstrength falls off with the
square of the distance from the antenna, the active set cellsare usually close to the
mobile device in geographic space as well. We leverage this fact to use soft handover
traces to predict a device’s mobility.



17:46:59.296 S1 S2
17:46:59.976 S2
17:47:00.936 S1 S2
17:59:41.395 S3 S2
17:59:43.195 S2
17:59:43.875 S3 S2
17:59:46.995 S2
17:59:48.355 S3 S2
18:00:35.194 S4 S5
18:04:09.481 S6

Fig. 1. Example records
of timestamp and active
set for a stationary de-
vice

13:22:32.012 U0
13:22:47.795 U1
13:22:56.088 U2
13:23:57.005 U1
13:24:56.118 U3
13:24:59.625 U4
13:25:38.340 U5
13:25:38.775 U6
13:25:40.593 U3
13:36:38.473 U7

Fig. 2.Example raw trace. Each
pair of adjacent sectors overlap.
In addition,U3, U4, U5, andU6
mutually overlap.

Trace 1 13:22:32.012 U0
13:22:56.088 U2
13:24:56.118 U3

Trace 2 13:22:47.795 U1
13:24:59.625 U4
13:36:38.473 U7

Trace 3 13:23:57.005 U1
13:24:59.625 U4
13:36:38.473 U7

Fig. 3. 3-hop leap traces for
Figure 2

2.2 Challenges

As described in Section 1, modeling user mobility through handover traces offers many
advantages. Yet there are several rather unique challengeswith this approach. The first
challenge is on how to define users’ location. Different cellsectors have overlapping
coverage areas, and a mobile user is located within the intersect of the coverage areas
of all the sectors in the active set. It seems natural to use the active set to define the
user’s location as it may offer high precision. However, it turns out that the radio envi-
ronment dynamics and sectors’ workload variability can lead to significant fluctuation
in the active set, making the fine granularity of the coverageintersects unachievable or
unreliable. In addition, the combinatorial nature of the active set can potentially create
a state-explosion problem in densely covered regions wheretens of sectors are visible
to a mobile device. Another approach is that we cluster/partition the geo-space into re-
gions and take the union of sectors in the region to define the location. However, we
lose the precision with this approach. In this work, we choose to use the serving cell in
the active set as the representative for location as we find itachieving a good balance
between precision and accuracy.

Another major challenge of examining the handover trace is to identify real user
mobility from handovers due to radio signal fluctuations. Tounderstand this aspect,
we performed a controlled experiment where a stationary phone owned by a cellular
provider is set up to transmit data packets periodically. Weobtained the handover logs
shown in Figure 1. We observe that handovers occur even when auser is stationary.
We also see a diverse set of sectors in the active sets. While we present more details
later in Section 4.2, it is clear that these handovers are inherently different from the
ones induced by user movement and hence present noise for mobility modeling. Signal
strength triangulation does not help in identifying which handover is due to real user
movements as signal strength at a single location can vary a lot [14].

Before describing our solution, we examine the limitationsof two heuristics:
Loop detection and elimination: Stationary users are much more likely to alternate
among a small set of sectors than mobile users. Hence, one simple approach to elim-
inate non-mobility handovers would be to remove trace segments between repeated
occurrences of the same serving sector. However, not all stationary traces manifest a
loop, and thus this approach does not eliminate superfluous handovers. Moreover it is
possible that a users comes back to the same location after making real movements in a
short period of time, in which case the real movements will bediscarded.



Low-pass filter: Low-pass smoothing is a principled approach to suppress membership
fluctuations in the active set among near-by sectors. For example, we can pass the the
sectors in each consecutive active set through a queue. If a sector is already in queue,
we move it to the tail of queue. When the queue is full, we evictthe oldest member
and produce a “smoothed” trace using the eviction sequence.However, the number of
sectors visible to a user varies, making it difficult to determine a single fixed queue
size. When we apply this approach to real traces with a fixed queue size, we find that it
admits superfluous handovers as mobility-induced and misses true user movement.

3 Mobility and Leaps

Individual changes in the active set do not in themselves indicate whether a handover
was due to user mobility. Thus in trying to infer mobility from the handovers, we try
to eliminate handovers involving changes whose interpretation is ambiguous, and fo-
cus instead on minimal groups of successive handovers whichtogether likely indicate
mobility. The boundaries of these groups will be termed aleap, and a set of succes-
sive adjacent leaps together constitute aleap trace. These are constructed in a two step
procedure.

Step One: Identifying Overlapping Sectors
Informally, two sectors overlap if a handover can take placebetween them. Although
overlap could in principle be inferred from auxiliary sector configuration data (such as
sector antenna locations, directions and powers), this would be a complex task in gen-
eral. Instead we designate two sectorssi andsj as overlapping (writtensi ∼ sj) if at
least one of the following two criteria holds: (i) Configurational:si andsj are based at
the same cell tower; (ii) Empirical:si andsj appear within an active set reported in the
handover trace during a specified time period (3 weeks in our evaluation). We consid-
ered alternate ways of determining overlap (e.g., considering serving sector transitions),
and they yielded marginal performance differences and thusare not discussed further.

Step Two: Creating Leap Traces
We partition the handover trace by user, then further extract the sequence of serving
sectors reported for each such user. We call each such sequence araw trace. A segment
is a maximal ordered subset of a raw trace in which the time between handovers does not
exceed a specified timeout value. Aleapis a pairsisj , i < j of sectors within a segment
such thatsi 6∼ sj butsi ∼ sk ∀i < k < j. A leap traceon a segment{s1, s2, . . . , sm} is
a maximal set of some numberℓ of adjacent leapssi(1)si(2), si(2)si(3), . . . ,si(ℓ)si(ℓ+1).
A first leap trace constructed by finding a leap with initial node si(1) = s1 and then
using that leap’s final node as the initial node for the next leap, and so on until reaching
the end of raw segment. As many asm− 2 further leap traces may be constructed from
the segment by the same procedure, taking eachsk, k = 2, . . . , m−1, as the initial node
si(1) of the initial leap. But in order to avoid double counting of leaps, we stipulate that
if a leap trace starts to repeat leap segments already identified in trace from a previous
starting sector, we ignore the remaining trace after including at most some numbern of
further leaps. Then is determined by the mobility modeling requirement. For example,
n = 1 for first order Markov model andn = 2 for second order Markov model.

To illustrate, we show an example raw trace in Figure 2, whereall adjacent sectors
overlap (e.g.,U0∼U1, U1∼U2, etc.). In addition,U3, U4, U5, andU6 overlap with
each other. Starting fromU0, we can get Trace 1 in Figure 3. There can be multiple leap



traces from the same raw trace. For example, starting fromU1, we can get Trace 2 in
Figure 3. In fact, the number of different leap traces can be exponentially large to the
length of raw trace. Moreover, leap traces from different starting sectors may become
identical after a few leaps since they are derived from the same raw trace. In this case
we only keep the useful information and discard the repeatedpart as described above.

The leap trace ignores handovers due to signal fluctuations or user movements in
small areas, while focusing on longer trips. This is sufficient for our target applications
because we focus on improving handovers or prefetching in larger areas. We study
application specific performance in section 4.

4 Properties of Leap Traces and Leap-based Mobility Prediction

4.1 Data Set

We use anonymized event logs collected from several RNCs (Radio Network Con-
trollers) in a major U.S. cellular operator in December 2011. These RNCs control a
significant fraction of the base stations in a large U.S. city. The logs record soft han-
dover events, i.e., additions and removals from each device’s active set. Each log entry
has a timestamp, and devices are anonymously identified by anirreversible hash of the
device’s IMSI, which is unique per SIM card. All device and subscriber identifiers are
anonymized to protect privacy without affecting the usefulness of our analysis. Fur-
thermore, the data set does not permit reversing the anonymization or re-identification
of subscribers. We use the data of the whole month (the first 3 weeks are considered
known and used for training, the last week is considered unknown for testing purpose)
and include all users from the trace. The logs recorded 67 million soft handover events
for 413K users distributed over 5K sectors. The logs are generated only for active de-
vices transmitting data, but not for idle devices. In our evaluation, if two subsequent
soft handover records for a given device is apart by more than30 minutes, we assume
that the device has been idle, and start a new mobility segment using the latter record.
Our data set contains proprietary information and cannot bemade public.

4.2 Characteristics of Leap Traces

We extract the leap traces from the above data set. In this subsection, we present a
high-level characterization of the aggregate leap traces.

We first compare the length of raw trace segments and leap segments. Figure 4(a)
plots their CDF. We can see that leap segments are much shorter than raw segments.
Specifically, over 80% of the raw segments generate no leap atall, indicating limited
or no user mobility. In contrast, around 20% of raw segments contain only 1 active
set report. This result illustrates that many soft handovers in raw traces either do not
involve serving sector transition or the transition happens between close-by sectors and
are likely not due to user mobility. This highlights the importance of our approach in
separating the different causes for handovers. In Figure 4(b), we compare the inter-leap
time and inter-handover time. We observe that the inter-leap time is much longer than
inter-handover time. Specifically, the median of inter-leap time is 636 seconds, while
for inter-handover time the number is 2.8 seconds.

We define theleap graph as the graph of sectors in which the edges represent the
presence of a leap transition in any of the leap traces. Similarly, we also consider graphs
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obtained from serving sector changes, from overlapping sets, and from second-order
overlapping sets1. In Figure 5, we compare their degree distributions. We firstobserve
that the size of overlapping set can be quite large (e.g., more than 20 for around 30% of
cases), while the second-order overlapping set is even larger. Compared to the second-
order overlapping set, the degree of leap graph is significantly low (e.g., 10 or less for
more than 60% of cases). For many sectors, it is even smaller than the number of serv-
ing sectors they can transition to (marked as “Transition”), which suggests that people
follow similar patterns (e.g., along a highway) and only move out of a region with very
limited choices of ways. While fewer choices can make the mobility prediction using
the leap graph easier, we also observe in the tail part that the leap degrees may approach
the size of second-order overlapping, indicating that areas with dense cellular coverage
tend to have more mesh-like transportation paths (e.g., downtown areas) – posing a
challenge for mobility prediction. A very small fraction ofsectors have larger leap de-
gree than the degree of second-order overlapping, that is because a leap may happen
between two sectors more than two hops away,e.g., when a user stops using his phone
for a short period of time while he is still moving.

4.3 Mobility Prediction on Leap Graph

In this subsection we study mobility prediction on the leap based graph. We adopt
Markov-based approaches for prediction, as it has been proven effective in the liter-

1
u is in the second-order overlapping set ofs if s andu are not overlapping, and there existst

that overlaps withs andu.



ature [12,19]. We consider two variants: second-order Markov model using one leap as
a state and third-order Markov model using two consecutive leaps as a state. Using a
higher-order model allows us to make predictions based on not only the user’s current
location but also the recent path trajectory. We further consider a variant where we as-
sume the knowledge of the destination of a segment, to understand how such additional
information can help with mobility prediction. This is motivated by the observation
that many people have highly predictable daily routine and that the destination may be
projected simply based on the time of day [8,9]. In the data trace, we estimate the prob-
ability of states being the next state asP (s|d, o) whered is the destination (the last
sector in trace segment) ando is the current state.

We train our prediction models with the first 3 weeks’ data andevaluate them with
the leap segments extracted from the last week’s data. Giventhe current stateo, we
predictm next sectors using them highest-probability leaps, while we varym from
1 to 3. We evaluate how often we can correctly predict the nextleap. We adopt two
accuracy measures: (1) the predicted sector exactly matches the actual sector in the
testing data, and (2) the predicted sector is in the overlapping set of the actual sector.
We also count how often we cannot make a prediction and reportthe result. To form
a base for comparison, we also employ a naive scheme (denotedby “Popular”), where
among all possible next leaps, we pickm leaps with the most transitions.

In Figure 6, we compare the prediction accuracy of the popularity based approach,
second- and third-order Markov models (with and without destination information). We
selectm=2 and report both accuracy measures. In the figure, the accuracy of predict-
ing any one among the overlapping set is significantly higherthan predicting the exact
match, which is well expected. We make three observations. First, the Markov mod-
els significantly outperform the simple popularity-based approach. Specifically, when
using the overlapping set of the actual sector, the accuracyof the popularity-based ap-
proach is 68%, while the accuracy of Markov models is 80% or higher. Second, the
knowledge of destination information can further improve the prediction accuracy of
the exact sector (e.g., from 33% to 46% in second-order Markov model) but helps little
when we use the overlapping set of the predicted sector to measure accuracy. Finally
we observe that the accuracy gain from using longer history in the third-order Markov
models is marginal. On the other hand, the probability of being able to predict a sector
is lowest with the third-order Markov model with destination information (62%). This
is because training data is often unavailable for consecutive leap transitions with a par-
ticular destination. In contrast, the popularity based approach, due to its simplicity, can
make a prediction for 99.5% of the cases, and the second-order Markov model without
destination information can make a prediction for 98.4% of the cases. In practice, we
can start with as much information as possible and fall back to less demanding settings
if needed [16].

5 Applications

There are many potential applications of future sector prediction. In this section we
focus on two example applications, namely prefetching and handover optimization, and
quantify the application specific performance of our prediction schemes.



5.1 Prefetching

In this application scenario, we prefetch user requested content to a predicted future
cell tower, such that the user can retrieve the content upon entering the range of the cell
tower. The content a user is going to request is often predictable [5,18]. Users can also
request for prefetching since it saves time for them.

Once a prefetching request is made, a prediction is made based on the user’s current
mobility history. One complication here is that at a given sector in a raw trace, there
could be multiple different leap traces leading to it as wellas multiple different leap
traces “leaping over” it, e.g., depending on which sector westart with in the raw trace.
We lose information by considering only leap trace and ignoring the rest. In this paper
we combine the predictions made with these different leap traces using the following
simple heuristic (assuming second order Markov model).

We extract all possible leap traces and from them we get the different ending leaps.
Let Lij = (si, sj) be one of the ending leaps, wheresi andsj are sectors. LetP (S|Lij)
be the probability vector predicted usingLij , whereS is a vector of potential future
sectors. The final prediction is then computed asP (S) =<< P (S|Lij) >i>j (<>i

means taking average over alli).
For prefetching, the criteria for a good prediction is that the cell tower of the pre-

dicted sector become within reach later. In our evaluation we consider a prediction
correct if the sectors on the predicted cell tower appears inthe active set in the future.

Due to space limit, we only present herein the result using second order Markov
model without assuming destination knowledge. We make a prediction in the middle of
the segment, and we choose the segments that have more than 3 leaps after the predic-
tion is made to ensure that the user remains active after our prediction point. Then we
prefetch the content to the cell tower of the topm predicted sectors. We varym from 1
to 3. We run 10k tests and record how many times the prefetchedcontent become avail-
able to the user after the prediction. We find that we can make aprediction for 99.6%
of the times, which is slightly higher than the leap-based case (98.4%) because we ef-
fectively combine the predictions of different ending leaps. Out of the predictions we
make, the accuracy is 84.7% whenm = 1, suggesting 84.7% of the times the prefetched
content becomes available to the user. Increasingm to two and three increase the num-
ber to 91.3% and 94.4%, respectively. We also find that 97% of the time the content
becomes available within an hour. In comparison, prefetching to the cell tower at the
most popular leap achieves lower than 40% accuracy.

5.2 Handover optimization

Next we use future sector prediction to optimize handovers.The idea is based on the
predicted leap, we can suggest which sector to hand over to, such that we reduce the
total number of handovers. Detailed simulation of handovers is not trivial, as it requires
a detailed modeling of signal strength variations, traffic load, load changes, etc. In this
paper we only consider an idealized scenario to demonstratethe potential gain we can
achieve. Specifically, after each leap we make a prediction of the next leap. Based on
the prediction we first rank the sectors in the active set by giving preference to sectors
that overlap with the predicted sector. Then we break ties using physical distance to the
predicted sector (the closer the better). We use the highestranked sector as the suggested
handover target. To evaluate how many handovers we can potentially save, we count



how many consecutive future handovers in the real trace havethe suggested sector in
the active set before the next leap actually happens, as these handovers can potentially
be replaced by one handover to the suggested sector. In our evaluation we only consider
the traces that have at least 2 leaps. We predict the second leap based on the first one
using second-order Markov model without assuming destination information. We run
the test for 10k times and we find that less than 0.1% of the times the suggested sector
does not appear in future handovers, which means the prediction is wrong and may
cause extra handovers; 59% of the times we can save at least one handover by using
the suggested sector, and 32% of the times we can save three ormore. On average, our
handover optimization reduces the handover count by 38%.

6 Related Work

Despite the plethora of work in mobility modeling, we believe that this is the first work
to address the unique challenges of mobility prediction using cellular handover traces
and to present an approach that works well on real data. We survey a key selection of
prior work here.

An important body of work focused on predicting locations asdefined by Wi-Fi as-
sociations [10,15,16,19]. Much of this work focused on evaluating the effectiveness of
well known location predictors such as Markov-models [19],compression-based pre-
dictors [16], and CDF predictors [15]. Others have focused more on modeling [10]. In
contrast to cellular handover traces, which include many handovers that occur when a
user is stationary, changes in Wi-Fi associations represent real movement in most cases.
Thus, our work is unique in addressing the inherent challenge of ambiguity in predict-
ing future cell sectors in cellular traces. Nonetheless, webuild upon the same principled
predictors, such as Markov-models.

There have been previous proposals on location prediction in cellular networks [1,3,
4,11,13]. However, they either make unrealistic assumptions (e.g., that basestations are
mobile [13] or a prefect sector structure [4]), require information that is not typically
available to a cellular operator (e.g., reports of device location and velocity [1, 11]), or
are designed for different purposes (e.g., to limit cell updates [3] and paging [6]). As a
result, all of these approaches have only been evaluated on synthetic data. Our approach
is the first to be evaluated on real cellular handover traces.

Finally, there have been studies on the predictability of wireless attributes, such as
cellular connectivity [7], Wi-Fi connectivity [12], and commute routes [2]. The predic-
tors for them use similar data to our work, but are orthogonalin design and purpose.

7 Conclusion

In this paper we introduced a novel leap based approach to extract user mobilities from
soft handover data, which is readily available but also contains significant fluctuations
even for a stationary device due to signal strength change orload balancing. Our study
showed that our approach can effectively reduce fluctuations in the raw handover data
while maintaining real user mobility pattern. In our experiments, we demonstrated sig-
nificant gain in prediction accuracy using our leap based approach, and performance
improvement in two example applications that we considered. While our approach is
provider-centric, a service provider can potentially makelocation prediction for a user



available to selected applications on the user’s device, sothat the applications can pro-
vide a better service to the user. In the future, we plan to apply our approach to real
world location based services to find further application specific optimizations and see
its benefit in real systems.
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