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ABSTRACT
Statistical summaries of traffic in IP networks are at the heart of
network operation and are used to recover information on arbitrary
subpopulations of flows. It is therefore of great importance to col-
lect the most accurate and informative summaries given the router’s
resource constraints. Cisco’s sampled NetFlow, based on aggregat-
ing a sampled packet stream into flows, is the most widely deployed
such system.

We observe two sources of inefficiency in current methods. Firstly,
a single parameter (the sampling rate) is used to control utilization
of both memory and processing/access speed, which means that it
has to be set according to the bottleneck resource. Secondly, the
unbiased estimators are applicable to summaries that in effect are
collected through uneven use of resources during the measurement
period (information from the earlier part of the measurement pe-
riod is either not collected at all and fewer counter are utilized or
discarded when performing a sampling rate adaptation).

We develop algorithms that collect more informative summaries
through an even and more efficient use of available resources. The
heart of our approach is a novel derivation of unbiased estimators
that use these more informative counts. We show how to efficiently
compute these estimators and prove analytically that they are su-
perior (have smaller variance on all packet streams and subpopula-
tions) to previous approaches. Simulations on Pareto distributions
and IP flow data show that the new summaries provide significantly
more accurate estimates. We provide an implementation design that
can be efficiently deployed at routers.
Categories and Subject Descriptors: G.3: probabilistic algorithms;
C.2.3: network monitoring General Terms: Algorithms, Mea-
surement, Performance Keywords: NetFlow, Network manage-
ment, sketches, data streams, subpopulation queries, IP flows.
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1. INTRODUCTION
Collection and summarization of network traffic data is neces-

sary for many applications including billing, provisioning, anomaly
detection, inferring traffic demands, and configuring packet filters
and routing protocols. Traffic consists of interleaving packets of
multiple flows but the summaries should support queries on statis-
tics of subpopulations of IP flows, such as the amount of traffic that
belongs to a particular protocol, originate from a particular AS,
or both. These queries are posed after the sketch is produced and
therefore it is critical to retain sufficient meta data information and
provide estimators that facilitate such queries.

Two critical resources in the collection of data are the high-speed
memory (usually expensive fast SRAM) and CPU power that are
used to process the incoming packets. The available memory limits
the number of cached flows that can be actively counted. The
processing power limits the level of per-packet processing and the
fraction of packets that can undergo higher-level processing.

The practice is to obtain periodic summaries (sketches) of traf-
fic by applying a data stream algorithm to the raw packet stream.
The most widely deployed such system is Cisco’s sampled NetFlow
(NF): packets are sampled randomly at a fixed rate. Once a flow
is sampled, it is cached, and a counter is created that counts subse-
quent sampled packets of the same flow. The number of counters
is the number of distinct sampled flows. The packet-level sam-
pling that NF performs serves two purposes: Firstly, it addresses
the memory constraint by reducing the number of distinct flows
that are cached (the bulk of small flows is not sampled). Without
sampling, we need a counter for each distinct flow in the origi-
nal stream. Secondly, the sampling reduces the processing power
needed for the aggregation, since only sampled packets require the
higher-level processing required in order to determine if they be-
long to a cached flow.

An algorithm that is able to count more packets than NF using
the same number of statistics counters (memory) is sample-and-
hold (SH) [10, 9]. With SH, as with NF, packets are sampled at
a fixed rate and once a packet from a particular flow is sampled,
the flow is cached. The difference is that with SH, once a flow
is actively counted, all subsequent packets that belong to the same
flow are counted (with NF, only sampled packets are counted). SH
sketches are considerably more accurate than NF sketches [10, 9].
A disadvantage of SH over NF, however, is that the summariza-



tion module must process every packet in order to determine if it
belongs to a cached flow. This additional processing makes it less
practical for high volume routers.

NF and SH use a fixed packet sampling rate, as a result, the num-
ber of distinct flows that are sampled and therefore the number of
statistics counters required is variable. When conditions are sta-
ble, the number of distinct flows sampled using a given sampling
rate has small variance. Therefore one can manually adjust the
sampling rate so that the number of counters does not exceed the
memory limit and most counters are utilized [9]. Anomalies such
as DDoS attacks, however, can greatly affect the number of distinct
flows. A fixed-sampling-rate scheme can not react to such anoma-
lies as its memory requirement would exceed the available mem-
ory. Therefore, anomalies would cause disruption of measurement
or affect router performance. These issue is addressed by adaptive
variants that include adaptive sampled NetFlow (ANF) [10, 8, 13]
and adaptive SH (ASH) [10, 9]. These variants adaptively decrease
the sampling rate and adjust the values of the statistics counters as
to emulate sampling with a lower rate.

Overview
We design sketching algorithms for packet streams that obtain con-
siderably more accurate statistics than existing approaches. We fo-
cus on subpopulation-size queries (packets or bytes of a subpopu-
lation) but the sketches can be used for other queries such as flow
size distribution. We use available resources in a balanced and load-
sensitive way to collect more information from the packet sample.
Then we design unbiased estimators that use the additional infor-
mation. Our algorithms are robust to anomalies and changes in
traffic patterns, and gracefully degrade performance when there is
a decrease in available resources. They are supported by rigorous
analysis.

Step counts for NF and SH. NF, SH, and their adaptive vari-
ants do not equally utilize available resources through the measure-
ment period: The number of cached flows increases through the
measurement period and reaches its maximum only at the end. The
adaptive ANF and ASH fully utilize all counters, but this utilization
is in a sense “wasted” and does not translate into more accurate es-
timates, as each rate adaptation (decrease of the sampling rate) is
implemented by discarding the more informative counts obtained
with the lower sampling rate [10, 8].

Step-counting NetFlow (SNF) and step-counting sample-and-hold
(SSH) process the same packets as their adaptive counterparts, but
when performing rate adaptation, they retain the current counts.
SSH and SNF build on a simple but powerful design [17, 15] of
transferring partial counts from (fast and expensive) SRAM to (slower
and cheaper) DRAM, which allows us to use smaller size coun-
ters in SRAM and add the counts to larger DRAM counters when
the SRAM counters are about to overflow. This design allows us
to distinguish between the resources required for active counting
and those required for intermediate storage. While applicable to all
methods, SNF and SSH are able to make a further use of this design
by transferring, after each rate adaptation, the counts into DRAM.
Counting more of the processed packets in the final summary is the
key for obtaining better estimates.

Hybrids of NF and SH. There are multiple resource constraints
for gathering statistics. At the router, the memory size that deter-
mines the number of statistics counters and the CPU processing (or
size of specialized hardware) that determines the fraction of pack-
ets that can be examined against the flow cache. Other constraints
are the available bandwidth and storage to transmit and store the

final sketch. Previous schemes, however, use a single parameter
(sampling rate) with these multiple constraints: NF (and ANF and
SNF), must set (or adjust) the sampling rate to be low enough so
that the number of counters does not overflow or over utilize the
router memory. As a result, resources available for processing
packets may not be fully utilized. SH (and ASH and SSH) , on
the other hand, do not address CPU processing constraints at all,
and all packets are processed. We propose hybrid schemes of
SH variants that use two packet sampling rates. The first one con-
trols the fraction of packets that are processed in order to determine
if they belong to an already-cached flow. The second, and lower,
rate, determines the fraction of packets that can create new entries
of cached flows.

Estimators. The sketches we produce (for all algorithms) have
the form of a subset of the flows along with the flow attributes and
an adjusted weight associated with each flow. Adjusted weights
have the property that for each flow, the expectation is equal to its
actual size (Adjusted weights of flows not included in the sketch is
defined to be zero). Therefore, an unbiased estimate for the size of
a subpopulation of flows can be obtained by summing the adjusted
weights of flows in the sketch that belong to this subpopulation.
The per-flow unbiasedness property is highly desirable as accuracy
increases when aggregating over larger subpopulations and when
combining estimates obtained from sketches of different time peri-
ods. The heart of our work is the calculation and analysis of unbi-
ased adjusted weights.

The derivation of adjusted weights for NF, which applies fixed-
rate sampling, is standard: a simple scaling of the counts by the
inverse sampling rate. Adjusted weights assignments for ANF and
ASH are provided in [2] along with non explicit derivation for
SSH. We provide an explicit and efficiently computable expres-
sions for SSH and SNF adjusted weights. An important contribu-
tion we make is the understanding of what information to gather
and how to use it to obtain correct adjusted weights. The derivation
and efficient computation of correct unbiased adjusted weights for
SNF and SSH is novel and highly nontrivial. The adjusted weights
we derive have minimum variance among all estimators that use
the same information (the counts gathered by the algorithm for the
flow), and in this sense are optimal.

The quality of the adjusted weight assignment depends on the
distribution over subsets of flows that are included in the sketch, the
information collected by the algorithm for these flows, and the pro-
cedure used to calculate these weights. The distribution of the sub-
sets of flows included in the sketch produced by each of the algo-
rithms NF, SH, hybrids, and variants, is that of drawing a weighted
sample without replacement from the full set of aggregated flows
(for ASH, ANF, and SSH this is shown in [2].) Therefore, the dif-
ference in the quality of the sketches stems only from the variance
of the adjusted weights we assign. More informative counts are
beneficial only if they correspond to adjusted weights with lower
variance. We analyze the variance of the adjusted weight assign-
ment and establish a strong relation between the different methods
that holds for any packet stream and any flow or subpopulation of
flows.

There are typically multiple numeric properties of interest over
subpopulations, such as total bytes, total packets, and number of
distinct flows. We derive unbiased estimators for other aggregates
that are applicable to the same sketches.

Implementation. Our implementation design piggybacks on sev-
eral existing ingredients. The basis is the flow counting mechanism
that Cisco’s NF deploys. (Proposed improved implementation such



as [15, 8] can also be integrated.) A router implementation of adap-
tive sampling rate for ANF was proposed in [8, 13] (rate adaptation
was termed renormalization. This design can also be used for ASH
and the step-counting and hybrid variants.

Discretized sampling rates. The pure adaptive models per-
form a rate adaptation each time a flow is “evicted” from the cache.
Rate adaptations, however, are intensive operations [8, 13]. We de-
sign a “router friendly” variant of the pure model with discretized
sampling rates. This design drastically reduces the number of rate
adaptations and also simplifies their implementation. As in [8],
discretization allows us to efficiently perform rate adaptations. The
discretized model, however, differs mathematically from the pure
sampling schemes. We show how to apply the estimators derived
for the pure schemes to the discretized schemes. More importantly,
we show that these estimators are also unbiased and retain other key
properties of the estimators for the pure model. Furthermore, the
particular discretization we used was critical for the unbiasedness
arguments to hold.

Performance study. We evaluate the performance of these meth-
ods on IP flows data collected by unsampled NF running on a gate-
way router and on synthetic data obtained using Pareto distribution
with different parameter values. On the IP data, we consider sub-
populations of flows that belong to specified applications, and on
the synthetic data, we consider prefixes and suffixes of the flow size
distribution. We observe that the step-counting SNF and SSH pro-
vide significantly more accurate estimates than their adaptive coun-
terparts. The SH variants significantly dominate their NF counter-
parts and the hybrid version provides a smooth performance curve
between these two extremes. Even with low sampling rates, the hy-
brids are able to provide much more accurate estimates than plain
NF, ANF, and SNF. We also show that our implementation design
can be tuned to provide a very low number of rate adaptations.

2. RELATED WORK
An orthogonal summarization problem is summarizing aggre-

gated data [11]. For example, using k-mins or bottom-k sketches [1,
3, 5, 4, 7]. Estimators developed for these summaries utilize the
weight of each item, which is not readily available in our unag-
gregated setup. Direct application requires pre-aggregation, that
is, obtaining an exact packet count for each flow as when running
unsampled NF. This is infeasible in high volume routers as it re-
quires processing of every packet and storing an active counter for
every flow. These methods can be used,however, to trim the size of
a sketch obtained using any method that obtains unbiased adjusted
weights (including NF, SH, and their variants), when trimming is
needed in order to address transmission bandwidth or storage con-
straints.

An extension of ASH that does not discard counts when a rate
adaptation is performed was considered in [9] for finding “elephant
flows.” While this extension attempts to provide similar benefit
to step-counting, it is not adequate for estimating subpopulation
sizes. The unadjusted count itself is indeed a better estimator than
the reduced count for each individual flow, but this estimator is
inherently biased. The bias depends on where in the measurement
period the packets occurred, and an unbiased estimator can not be
constructed from the counts collected. The relative bias is very
large on smaller flows (of the order of the inverse sampling-rate)
and if used to estimate subpopulation sizes for such flows, we can
obtain a large relative error on such subpopulations (even is the
subpopulation size is large).

Kumar et al [14] proposed a streaming algorithm for IP traffic
that produces sketches that allow us to estimate the flow size distri-
bution (FSD) of subpopulations. Their design executes two mod-
ules concurrently. The first is a sampled NetFlow module that col-
lects flow statistics, along with full flow labels, over sampled pack-
ets. The second is a streaming module that is applied to the full
packet stream and uses an array of counters, accessed by hashing.
Estimating the flow size distribution is a more general problem than
estimating the size of a subpopulation, and therefore this approach
can be used to estimate the subpopulations sizes. To be accurate,
however, the number of counters in the streaming module should
be roughly the same as the number of flows and therefore the size
of fast memory (SRAM) should be proportional to the number of
distinct flows. As we see here, however, accurate estimates for
subpopulation sizes can be obtained more efficiently using other
approaches.

In some cases, protocol-level information such as testing for the
TCP syn flag [6] on sampled packets and using TCP sequence num-
bers [16] can be used to obtain better estimates of the size of the
flow from sampled packets. These methods can significantly in-
crease the accuracy of estimating the flow size distribution of TCP
flows from packet samples, but are not as critical for subpopulation
size estimates for subpopulations with multiple flows. We focus on
general-purpose all-protocols estimators, but these methods can be
integrated with our sketches.

This paper builds on and expands our earlier work on summa-
rization of unaggregated data streams [2]. The main new contribu-
tions are introducing SNF, closed-form expressions and fast algo-
rithms for computing unbiased adjusted weights for SNF and SSH
sketches, hybrid sketching algorithms, router-friendly design and
discretized variants, and performance study.

3. SKETCHING ALGORITHMS
We provide the underlying mathematical models of the differ-

ent flow sampling schemes. These models are used in the analysis
and are mimicked by the “router friendly” implementations. Our
sampling schemes are data stream algorithms that are applied to a
stream of packets.

Sampled NF performs fixed-rate packet sampling. Packets are
sampled independently at a rate p and sampled packets are aggre-
gated into flows. All flows with at least one sampled packet are
cached and there is an active counter for each flow. The sketch
includes all flows that are cached in the end of the measurement
period.

SH, like NF, samples packets at a fixed rate p and maintains
a cache of all flows that have at least one sampled packet. SH,
however, processes all packets and not only sampled packets. If a
processed packet belongs to a cached flow, it is counted.

We facilitate the analysis through a rank-based view [2] of the
sample space: Each point in the sample space is a rank assign-
ment, where each packet is assigned a rank value that is indepen-
dently drawn from U [0, 1]. The actions of each sampling scheme
are defined by the rank assignment. Implementations do not track
per-packet random rank values or even draw rank values. They
maintain just enough “partial” information on the rank assignment
to maintain a flow cache and counts that are consistent with the
rank-based view.

For each flow f ∈ F and position in the packet stream, we define
the current rank value r(f) to be the smallest rank assigned to a
packet of the flow that occurred before the current position in the
packet stream.

An NF sketch with sampling rate p is equivalent to obtaining a
rank assignment and counting all packets that have rank value < p.



The set of actively counted flows at a given time is {f ∈ F |r(f) <
p}.

An SH sketch with sampling rate p is equivalent to obtaining a
rank assignment and counting all packets such that the current rank
of the flow (including the current packet) at the time the packet is
processed is smaller than p.

The adaptive algorithms ANF and ASH work with a fixed limit
k on the number of cached flows and produce a sketch of k flows.
When the number of cached flows exceeds k, the sampling rate
is decreased, and counts are adjusted, so that only k flows remain
cached. The current sampling rate is defined to be the (k + 1)st
smallest rank among r(f) (f ∈ F ) (it is defined to be 1 if there are
fewer than (k + 1) distinct flows.)

It is sometimes necessary to set a limit pstart < 1 on the initial
sampling rate. In this case, the current sampling rate is defined to be
pstart if there are fewer than (k +1) distinct flows and otherwise is
the minimum of pstart and the (k + 1)st smallest rank among r(f)
(f ∈ F ).

The sampling rate is determined by the rank assignment, the pre-
fix of processed packets, and pstart (it does not depend on the sam-
pling scheme). The effective sampling rate is defined as the value
of the sampling rate at the end of the measurement period.

The set of cached flows at a given time (by either ANF or ASH)
are the flows with current rank that is below the current sampling
rate. The (current) ANF count of a cached flow is the number of
packets seen so far with rank that is below the current sampling
rate. The (current) ASH count of a cached flow f is the number
of packets seen so far such that the rank of the flow just after the
processing of the packet is below the current sampling rate.

The sketch includes the set of cached flows and their counts at
the end of the measurement period.

Step-counting
We refer to a decrease of the current sampling rate as rate adapta-
tion. The adaptive algorithms [10, 8] implement rate adaptation by
decreasing the more informative flow counts that corresponded to
the higher sampling rate. The step-counting algorithms, SNF and
SSH, record these counts instead of adjusting them down. The ac-
tive counting of packets performed by the step-counting algorithms
is just like their adaptive counterparts, but the step-counting algo-
rithms produce a vector of counts, rather than a single count, for
each flow in the sketch.

Using the rank-based view, SNF counts include all packets such
that (i) the rank of the packet is below the value of the sampling rate
when (just after) the packet is processed (ii) the rank of the flow
remains continuously below the sampling rate since the packet was
processed until the current time. SSH counts include all packets
such that when (just after) the packet is processed and continuously
until the current time, the rank of the flow is below the sampling
rate. With both SNF and SSH, a flow is cached if and only if its
rank is below the current sampling rate. Figure 1 motivates, through
an example, the design of the step-counting algorithms. The figure
shows two flows and the expected number of packets included in
the final count by each method. The step-counting SNF and SSH
count many more packets than their adaptive counterparts.

Hybrids
Figure 1 shows that ASH and SSH count many more packets than
ANF and SNF. This advantage, however, comes at a cost: ANF
and SNF simply ignore all packets that are not sampled while ASH
and SSH have to process all packets in order to determine if they
belong to a cached flow. Our hybrid algorithms provide a smooth
tradeoff between the fraction of packets that are processed and the

B

A
50  packets50  packets

time

sampling rate p=1/2
sampling rate p=1/10

A B
ANF 10 10
ASH 91 91
SNF ≈30 ≈50
SSH ≈99 ≈99

Figure 1: Expected counts of two 100-packet flows. Flow A has
50 packets with current sampling rate 0.5 and 50 packets with
current rate 0.1. Flow B has 100 packets with current sampling
rate 0.5. The final counts with ANF and ASH only depends on
the final sampling rate. SNF and SSH benefit from the higher
sampling rate at the beginning of the measurement period and
the final counts account for more packets.

fraction that are included in the final count. Hybrid sketching al-
gorithms use a base sampling rate parameter pbase, which controls
the fraction of packets that are processed by the algorithm. The ini-
tial sampling rate is pstart ≤ pbase. A hybrid algorithm samples
all packets independently at a fixed rate pbase and then applies a re-
spective basic algorithm (SH, ASH, or SSH) to the pbase-sampled
stream with initial sampling rate p′

start = pstart/pbase. (Hybrid
NF variants with pstart ≤ pbase are equivalent to applying the
underlying NF variant and therefore we only consider hybrid SH
variants).

The rank-based view of the hybrid algorithms is as follows. Hybrid-
ASH counts include a packet if and only if (i) the rank of the packet
is below pbase and (ii) the rank of the flow at the time (just after)
the packet is processed is below the current sampling rate. Hybrid-
SSH counts include a packet if and only if (i) the rank of the packet
is below pbase and (ii) continuously, from (just after) the time the
packet is processed until the current time, the rank of the flow was
below the sampling rate. A flow is cached with hybrid-ASH and
hybrid-SSH if and only if its rank value is below the current sam-
pling rate.

An equivalent rank-based view of the hybrid algorithms discards
all packets with rank value above pbase, scales the rank values of
the remaining packets and pstart by p−1

base, and applies the respec-
tive basic algorithm.

The following table shows the expected number of packets that
are counted and processed for the example 100-packet flows in Fig-
ure 1. The hybrids use pstart = pbase = 0.5 and have respective
sampling rates of 1 and 0.2 on the pbase-sampled stream. The
step-counting algorithm count more of the processed packets than
their adaptive counterparts. The hybrids provides a tradeoff that
preserves the higher ratios between counted and processed packets.

A B
ANF 10/30 10/50
ASH ≈91/100 ≈ 91/100
hybrid-ASH ≈46/50 ≈46/50
SNF ≈30/30 ≈50/50
SSH ≈99/100 ≈99/100
hybrid-SSH ≈50/50 ≈50/50



4. IMPLEMENTATION DESIGN USING
DISCRETIZED SAMPLING RATES

We design an alternative to the pure models that addresses impor-
tant practical implementation issues. The first is the number of rate
adaptations performed. The second is the implementation of each
rate adaptation, namely, the tracking of flow ranks that determines
which flows are evicted and how counts are adjusted. We then es-
tablish that the discretized version preserves important properties
of the pure model that allow for unbiased estimation and for other
properties of the variance of the adjusted weights to carry over.

Our discretized algorithm uses three tunable parameters that can
be set by the router manufacturer. The first is pbase ≤ 1 that de-
termines the fraction of packets that are processed. The second is
pstart ≤ pbase that determines the initial sampling rate. The third
parameter is 0 < µ < 1 which controls the discretization of the
sampling rates.

The number of rate-adaptations is a performance factor for all
adaptive algorithms. Executing each adaptation is an intensive op-
eration and therefore it is desirable to both limit the number of
rate-adaptations and to carefully implement them [8]. For the step-
counting algorithms, the number of rate adaptations also affects the
size of intermediate storage and the computation of the adjusted
weights (which depend on the number of rate-steps in which an
actively-counted flow had a nonzero count).

The pure models perform a rate adaptation to evict a single cached
flow at a time. It follows from the rank-based view that all adap-
tive algorithms (ANF, ASH, SNF, and SSH) perform the same rate
adaptations. Rate adaptation occurs when the current sampling rate
(the (k + 1)st-smallest rank value of a flow) decreases. This hap-
pens when the cache is full (has k flows) and a sampled packet
(equivalently, packet with rank value which is smaller than the cur-
rent sampling rate) does not belong to a cached flow. The number of
rate adaptations depends logarithmically on the size of the stream,
but linearly on the size of the flow cache:

LEMMA 4.1. [2] Let m be the size of the packet stream. The
expected number of rate adaptations is ≤ (k + 1) ln(pstartm).

This bound is nearly tight for streams that consist of 1-packet flows [5],
and it is Ω(k ln(pstartm)) (asymptotically tight) when at least a
constant fraction of packets belong to small flows. Large number
of small flows is common in Zipf-like data and small flows are of-
ten introduced in DDoS attacks, port or IP address scanning, and
other anomalies.

The actions of a run of a discretized variant of ANF, ASH, SNF,
SSH, and hybrids, are equivalent to those of the original variant
except that when the flow cache overflows (there are more than k
flows with current rank value that is below the current sampling
rate), the sampling rate is decreased by a factor of µ until at least
one flow (but in expectation at most (1 − µ) fraction of the flows)
are evicted. Observe that the discretized implementation does not
always produce sketches with k flows: The number of flows is at
most k but can be smaller even if there are k or more distinct flows
in the pbase-sampled stream.

We provide a discretized rank-based view of the discretized sketch-
ing algorithms. This view is equivalent to replacing sampling rates
and rank values of packets and flows x ∈ [0, 1] with dlogµ(x/pbase)e1.
Packets of the pbase-sampled stream are assigned discretized ranks
using a geometric distribution with parameter (1 − µ). The dis-
cretized rank of a flow is the largest rank of a packet of the flow. The
discretized current sampling rate is initially set to dlogµ(pstart/pbase)e.

1Smaller values have larger discretized values.

After k distinct flows are cached, it is the (k + 1)st largest dis-
cretized rank of a flow, which is equal to the largest discretized
rank of a cached flow plus 1. The discretized effective sampling
rate is the discretized sampling rate at the end of the measure-
ment period. The flow counts collected over the pbase-sampled
stream correspond to those for the pure model: A packet is in-
cluded in the current discretized ANF count if and only if its dis-
cretized rank value is above the discretized current sampling rate;
With discretized ASH, the packet is included if and only if the dis-
cretized rank of the flow after the packet is processed is above the
discretized current sampling rate, and similarly for SNF and SSH.

The following property, that holds for the pure model, extends to
the discretized model:

LEMMA 4.2. A flow f is cached in the discretized model if and
only if its discretized rank is larger than the kth largest discretized
rank of the flows in F \ {f}. (If there are fewer than k flows in
F \ {f} with positive discretized rank value, the flow is cached if
and only if its rank is positive.)

This property is critical for extending the analysis of unbiased esti-
mators and variance relations to the discretized model. It allows us
to simply “plug in” sampling rates and the respective flow counts
into the unbiased estimators developed for the pure model. The
subtle arguments do not carry over to other conceivable implemen-
tations of rate adaptations such as removing a constant fraction of
(highest-ranked) cached flows [13, 8] without having to maintain
additional state.

A side benefit of discretization is that fewer bits are needed to
encode rank values of active flows, as the expected maximum dis-
cretized rank of a flow is logµ(mpbase). Other advantages of such
discretization, such as layered transmission of summaries, are pro-
vided in [8].

The number of rate adaptations is tuned using the parameters
µ and pstart. Larger values of µ correspond to a higher number
of rate adaptations but also to better memory utilization and more
flows in the final sketch (the expected number of active counters
and number of flows in the final sketch is about k(1+µ)/2). Lower
values of pstart eliminate up to dlogµ(pstart/pbase)e rate adapta-
tions. The counts of the step-counting algorithms are reduced by
lower pstart, but if pstart is larger than the effective sampling rate,
then the sketch produced by ANF and ASH are not affected by
the lower pstart. The discretized implementation has a consider-
ably better bound on the number of rate adaptations than the pure
model. In particular, the linear dependence on k exhibited by the
bound obtained for the pure version, is eliminated.

LEMMA 4.3. The expected number of rate adaptations performed
is at most logµ(pstart ∗m).

We outline an implementation of the discretized algorithms. The
execution is divided into counting phases and rate adaptations (a
design of [8] allows them to run concurrently.)
Counting phase. Each counting phase starts with a set of statistics
counters indexed by the flow attributes of cached flows and ap-
plied to the pbase-sampled packet stream. Each packet is labeled
as “sampled” (again) with probability µt, where t is the current dis-
cretized sampling rate. We perform the following2: (i) If the flow is
cached then: If the algorithm is one of ASH, SSH, and hybrids or
the packet is labeled sampled and the algorithm is one of ANF and
SNF, we increment the respective flow counter. (ii) If the packet is
labeled sampled and the flow is not cached, we create a new entry
2With SH variants and hybrids we need to sample the packet only
if the flow is not cached.



in the flow cache. If there are k cached flows, we perform a rate
adaptation.
Rate adaptation. The adaptive algorithms, ANF, ASH, and hybrid-
ASH maintain a single packet count for each cached flow. These
counts are updated during the rate adaptation until at least one flow
has a zero count. For ANF, the updated count is a binomial random
variable with parameters µ and the current count; for ASH, with
probability µ the count remains unchanged and otherwise it is a ge-
ometric random variable with parameters that are the current count
minus 1 and rate µt+1, where t is the current discretized sampling
rate. After the counts of all cached flows are updated, the current
discretized sampling rate is incremented. The update process is re-
peated until at least one flow has a count of zero.3 All flows with a
count of zero are then evicted from the cache.

The step-counting algorithms SNF, SSH, and hybrid-SSH store
a discretized rank for each cached flow. The flow ranks are up-
dated using the counts collected in the most recent counting phase.
The set of cached flows with smallest discretized rank value are
then evicted. The discretized sampling rate is updated to be the
discretized rank of evicted flows.

The update process of the rank of cached flows emulates the fol-
lowing process that assigns ranks individually to packets counted
in the recent counting step. The first packet counted (SH and hy-
brid variants with flow that was not cached at the beginning of the
phase) and all packets counted (NF variants) obtain a random rank
from a geometric distribution with parameter (1 − µ), conditioned
on it being larger than the current discretized sampling rate. The
rank of each flow is updated to be the maximum of its current rank
and the ranks assigned to the packets of the flow counted at the
recent counting phase.

These updates can be performed efficiently (computation steps
proportional to the number of cached flows with non-empty counts
at the recent step) using the exponential distribution to find the max-
imum discretized rank over a set of packets.

5. ADJUSTED WEIGHTS
We convert the counts collected by the sketching algorithms to

adjusted weights that are associated with each flow that is included
in the sketch. The adjusted weights are always a function of the
observed counts. It turns out that there is a unique deterministic
assignment of adjusted weights for each of the algorithms consid-
ered. Since deterministic assignment has smaller variance than any
randomized one, it is preferable.

Clearly, a correct adjusted weight for NF counts is the number
of counted packets divided by the sampling rate p. The deriva-
tion of the adjusted weight assignments for SH, ANF, and ASH
counts is provided in [2]. For SH counts, the adjusted weight is
equal to the count of the flow plus (1 − p)/p. This assignment
can be interpreted as the first sampled packet of the flow represent-
ing 1/p unseen packets whereas subsequent counted packets of the
flow represent only themselves.

Adjusted weights for ANF are obtained by scaling the counts by
1/p′, and correct adjusted weights for ASH are obtained by adding
(1−p′)/p′ to the count, where p′ is the effective sampling rate [2].

The information we collect using SNF and SSH is the step func-
tion 1 ≥ p1 > p2 > · · · > pr denoted by the vector p =
(p1, . . . , pr) of the current sampling rate and for each sampled
flow, the counts i(f) = (i1(f), i2(f), . . . , ir(f)) of the number
of packets recorded at each step. The adjusted weight assignment

3We can avoid the repeated process by storing discretized rank
value for each flow as proposed next for the step-counting algo-
rithms.

for a flow f is a function of p and i(f). We use the notation

ASNF
p (i(f)) ≡ Ap1,p2,...,pr (i1(f), i2(f), . . . , ir(f))

for the adjusted weight assigned by SNF, and similarly, ASSH
p (i(f))

for the adjusted weight assigned by SSH.
Adjusted weights are computed after the counting period is ter-

minated. After they are computed, the count vectors can be dis-
carded. Therefore, SNF and SSH produce a sketch of size k.

We will show the following:

THEOREM 5.1. The adjusted weight ASNF
p (n) for SNF and

ASSH
p (n) for SSH can be computed using number of operations

that is quadratic in the number of steps with a non-zero count.

We review some definitions and properties from [2] and derive
formulations that allow for efficient computation of adjusted weights
for SSH and SNF sketches.

There is subtlety in the assignment of correct (unbiased) adjusted
weights for ANF and ASH. Since the sampling rate varies it is not
clear that we can “plug in” the effective (final) sampling rate in
the adjusted weights expressions of the non-adaptive variant. The
argument for unbiasedness is based on the fact that the adjusted
weights of each flow are unbiased on each part of some partition of
the sample space [3, 4]. For a flow f ′, we look at the probability
subspace where the kth smallest rank among r(f) (f ∈ F \ {f ′})
is p′ and the conditional distribution of the number of packets of
flow f ′ that are counted. The number of packets is just like what
would have been counted with a fixed-rate respective variant with
rate p′. Therefore, using the respective fixed-rate assignment with
rate p′ yields unbiased adjusted weight for f ′ within this probabil-
ity subspace, and therefore, unbiased weights overall.

For the step-counting algorithms, the adjusted weights assigned
to a flow f are unbiased in the probability subspace defined by the
steps of the rank value of the current kth-smallest rank of a flow
among F \ f . These steps are the same as the current sampling
rate when the flow is actively counted. Technically, we need to
consider the kth-smallest rank of an actively counted flow on steps
that precede the active counting of f . The adjusted weight function,
however, has the property

Ap1,p2,...,pr (0, . . . , 0, ij , ij+1, . . . , ir) =

Apj ,pj+1,...,pr (ij , ij+1, . . . , ir) (1)

and therefore does not depend on the current sampling rate in the
duration before the final contiguous period where the flow is ac-
tively counted. This means that it is sufficient to record the steps of
the current sampling rate. The following generalization of Eq. (1)
states that the adjusted weight assignment does not depend on the
values of the current sampling rate in durations when there are no
counted packets. This allows us to state the adjusted weight of a
flow in terms of an equivalent flow where the number of steps is
equal to the number of steps where the original flow had a nonzero
count.

LEMMA 5.2. Consider a correct assignment of adjusted weight
Ap(n). For an observed count i and p, let 1 ≤ j1 < j2 < · · · <
jr′ = r be the coordinates such that ijk

> 0 or ijk
= r (that is, r

is included also if ir = 0).

Ap1,p2,...,pr (0, . . . , 0, ij1 , 0, . . . , 0, ij2 , . . .) =

Apj1
,pj2

,...,pj
r′

=pr (ij1 , ij2 , . . . , ijr′
) (2)

5.1 Adjusted weights for SSH
Let r be the number of steps and p1 > · · · > pr the corre-

sponding sampling rates. For a flow f , let n = (n1, . . . , nr) be the



number of packets of f in each step and let i = (i1, . . . , ir) be the
number of counted packets in each step. We denote by q[i|n] the
probability that a flow with n packets has a count of i.

In our previous work [2] we derived estimators for SSH sketches
via a system of linear equations of size that is quadratic in the num-
ber of counted packets (

Pr

h=1 ni)
2. We provide an exponentially-

faster way to compute the adjusted weights which is quadratic in
the number of steps. The total number of steps is logarithmic in the
number of packets and therefore reducing the dependence from the
number of packets to the number of steps constitutes a significant
improvement. We then argue that the number of operations can be
further reduced to be quadratic in the number of steps where the
flow has a non-zero count. This distinction is important since many
flows, in particular bursty or small flows, can have non-zero count
on a single step or very few steps.

We define the values ci,j(p, n) (1 ≤ i ≤ j ≤ r) as follows
(the parameters (p, n) are omitted when clear from context, and we
assume n1 > 0 w.l.o.g.):

1 ≤ j ≤ r : c1,j = (1 − pj)

2 ≤ j ≤ r : c2,j = (1 − pj)
n1−1(c1,j − c1,1)

3 ≤ i ≤ j ≤ r : ci,j = (1− pj)
ni−1 (ci−1,j − ci−1,i−1)

The following two lemmas are immediate from the definitions.

LEMMA 5.3. • For 1 ≤ j ≤ r, c1,j is the probability that
the rank of the first packet of the flow is at least pj .

• For 2 ≤ i ≤ j ≤ r, ci,j(p, n) is the probability that the flow
n is fully counted by SSH until the transition into step i, and
at the beginning of step i, the rank of the flow is at least pj .

LEMMA 5.4. The computation of the partial sums
Pi

h=1 ch,h

for i = 1, . . . , r can be performed in O(r2) operations.

By lemma 5.3, ci,i (i ∈ {1, . . . , r}) is the probability that the
SSH counting of the flow progressed continuously from the start
until the transition into step i, and halted in this transition (as the
current rank of the flow was above pi.). So

q[n|n] = 1 −

r
X

h=1

ch,h . (3)

The following theorem expresses the adjusted weight ASSH(n)

as a function of the diagonal sums
Pi

h=1 ch,h (h = 1, . . . , r). The
proof is provided in Section 8.1.

THEOREM 5.5.

ASSH(n) =
(1− p1) +

Pr

i=1 ni(1−
Pi

h=1 ch,h)

1 −
Pr

h=1 ch,h

.

LEMMA 5.6. The adjusted weight ASSH(n) can be computed
using O(r2) operations.

PROOF. The proof follows from Lemma 5.4 and Theorem 5.5.

The proof of Theorem 5.1 is an immediate corollary of Lemma 5.6
and Lemma 5.2 (According to Lemma 5.2 when we compute q[n|n]
and the ci,j’s we can remove from n and p all entries which are 0
in n except for the last entry in n which remains even if it is 0.)

5.2 Adjusted weights for hybrids
Unbiased adjusted weights for hybrid-ASH and hybrid-SSH are

obtained by scaling by p−1

base the adjusted weights computed for
the non-hybrid variant that is applied to the pbase-sampled stream.

5.3 Adjusted weights for SNF
We define di,j(p, n) (2 ≤ i ≤ j ≤ r) as follows.

2 ≤ j ≤ r : d2,j =

„

p1 − pj

p1

«n1 r
Y

h=1

pnh
h

3 ≤ i ≤ j ≤ r : di,j =

„

pi−1 − pj

pi−1

«ni−1

(di−1,j − di−1,i−1)

For 2 ≤ i ≤ j ≤ r, di,j(p, n) is the probability that all packets
of the flow n have rank values below the sampling rate at packet ar-
rival time, that the flow is fully counted by SNF until the transition
into step i, and that at the beginning of step i, the rank of the flow
is at least pj .

The probability that all packets are counted by SNF is equal to
Qr

h=1 pnh
h minus the probability that the counting halts at the tran-

sition into steps 2, . . . , r:

qSNF[n|n] =
r
Y

h=1

pnh
h −

r
X

j=2

dj,j . (4)

THEOREM 5.7.

ASNF[n] =

Pr

j=1

nj

pj
(
Qr

h=1 pnh
h −

Pj

`=2 d`,`)
Qr

h=1 pnh
h −

Pr

j=2 dj,j

The proof of the Theorem is provided in Section 8.3.

5.4 Adjusted weights for discretized algorithms
Unbiased adjusted weights for the discretized algorithms are ob-

tained by recording the discretized sampling rates for each step.
We then convert each discretized rate t to a corresponding sam-
pling rate (pstart/pbase)µt and plug them in the corresponding
expressions for ANF, ASH, SNF, or SSH adjusted weights. For
the hybrid versions (pbase < 1), we scale the adjusted weights by
p−1

base.
The arguments for correctness, that are based on obtaining an

unbiased estimator on each part in a partition of the same space,
extend to the discretized version using Lemma 4.2. If the ranks of
all packets in F \{f} are fixed, the discretized sampling rate when
f is counted depends only on these fixed ranks (and not on ranks
assigned to previous packets of f ) and is equal to the sampling rate
at measurement time. Therefore, we can compute unbiased ad-
justed weights while treating the effective sampling rate (for ASH
and ANF) or the steps of the current sampling rate (for SNF and
SSH) as being fixed.

5.5 Relation between the sketching algorithms
The rank-based view shows that the distribution over subsets

of flows included in the sketch is the same for ANF, ASH, SNF,
SSH. The different algorithms applied with the same rank assign-
ment result in the same set of k cached flows (or all flows if there
are fewer than k distinct flows in the packet stream.). The hybrid
algorithms result in “almost” the same distribution: if the pbase-
sampled packet stream contains fewer than k distinct flows then
the sketch will only include those flows, but the included flows are
a subset of the flows included in a sketch generated by the non-
hybrid algorithms using the same underlying assignment.

This distribution is equivalent to weighted sampling without re-
placement of k flows (WS). WS is performed as follows over the set
of aggregated flows: repeatedly, k times, a flow is selected from the
set of unsampled flows with probability proportional to its weight.
Adjusted weights for WS can be obtained using the rank condition-
ing method [4]. These weights are computed using the exact packet



alg sketch size active counters counts collected
ANF k k for k flows
ASH k k for k flows
SNF k k per-step for k flows
SSH k k per-step for k flows
WS k |F | for all flows in F

Table 1: Methods that obtain a sketch of size k that is a
weighted sample without replacement from the set of flows F .

count of each flow and therefore can not be obtained by a stream
algorithm with size-k flow cache. We include these WS sketches in
our evaluation in order to understand to what extent performance
deviates in comparison. The adjusted weight assigned to each flow
is equal to the number of packets divided by the probability that the
flow is included in the sample4 in some probability subspace that
includes the current sample. The probability subspace is defined as
all runs that have the same effective sampling rate p′ and therefore
the probability is equal to 1−(1−p′)|f |, where |f | is the number of
packets in the flow and p′ is the effective sampling rate. Therefore,
the adjusted weight is equal to |f |/(1 − (1− p′)|f |) .

Since these algorithms (see Table 1) share the same distribution,
the difference in estimate accuracy stems from the adjusted weight
assignment. The quality of the assignment depends on the informa-
tion the algorithm gathers and the method we apply to derive the ad-
justed weights. When the adjusted weights have smaller variance,
the estimates we obtain are more accurate. We explore the relation
of estimate quality between the different sketches. The proofs are
provided for the pure models where these algorithms are all applied
with a flow cache of size k, but they extend to the discretized model
as well.

5.6 Variance of adjusted weights
An algorithm dominates another, in terms of the information it

collects on each sketched flow, if we can use its output to emulate
an output of the second algorithm. It is not hard to see that SNF
dominates NF, that SSH dominates both ASH and SNF (and there-
fore also dominates NF), that SNF and ASH are incomparable, and
that they are all dominated by WS. Therefore, SSH sketches are the
most powerful and ANF sketches are the least powerful. The vari-
ance of the adjusted weight assignments reflects this dominance
relation, with lower variance for the methods that gather more in-
formation. In [2] it is shown that for any packet stream and any
flow f , VAR(AWS(f)) ≤ VAR(ASSH(f)) ≤ VAR(AASH(f)) ≤

VAR(ASNF(f)). We extend this relation to SNF: (The proof is
provided in Sections 8.2 and 8.3)

THEOREM 5.8. For any packet stream and any flow f we have
the following relation between the variance of the adjusted weight
assignment for f .

VAR(ASSH(f)) ≤ VAR(ASNF(f)) ≤ VAR(AANF(f)) (5)

The relation is established by showing that adjusted weights for
“more informative” sketches have smaller variance. This approach
extends to show that the relation between the variance of the differ-
ent methods also applies to the discretized variants of the sampling
algorithms and to fixed-rate and fixed-steps variants of WS NF and
SH. A variance relation also holds for the hybrids: the variance is
non-increasing with the packet-processing rate pbase.

4This is the Horvitz-Thompson unbiased estimator obtained by di-
viding the weight of the item by the probability that it is sampled.

6. ESTIMATING OTHER AGGREGATES
The sketches support estimators for aggregates of other numeric

flow properties over a queried subpopulation. We distinguish be-
tween flow-level and packet-level properties.

6.1 Flow-level properties
We classify a numeric property h(f) of the flow f as flow level

if it can be extracted from any packet of the flow and some external
data (therefore, we know h(f) for all the flows that are included
in the sketch). Examples are the number of hops to the destination
AS, unity (flow count), and flow identifiers (source or destination
IP address and port, protocol). Flow-level properties can be aggre-
gated per-packet or per-flow.
Per-packet aggregation. For a subpopulation J ⊂ F , the per-
packet sum of h() over J is

P

f∈J w(f)h(f). The per-packet av-

erage is
P

f∈J w(f)h(f)
P

f∈J w(f)
. If h(f) is the number of AS hops traveled

by the flow f then the per-packet sum is the total number of AS
hops traveled by packets in the subpopulation J and the per-packet
average is the average number of hops traveled by a packet in J .
If h(f) is unity, the per-packet sum is the weight of the subpop-
ulation. It is not hard to see that for a sketch with unbiased ad-
justed weights,

P

f∈J A(f)h(f) is an unbiased estimator of the
per-packet sum of h() over J . (A (possibly biased) estimator for
the per-packet average is

P

f∈J A(f)h(f)
P

f∈J A(f)
.)

Per-flow aggregation. The per-flow sum of h() over J is
P

f∈J h(f).
The per-flow average of h() over J is

P

f∈J h(f)/|J |. If h(f) ≡
1, the per-flow sum is the number of distinct flows in a subpopula-
tion. If h(f) is the number of AS hops then the per-flow average is
the average “length” of a flow in J .

Our generic estimator for per-flow sums is based on assignments
of adjusted counts to flows. An adjusted count #(f) for f ∈ F
is a random variable that is zero for flows that are not included in
the sketch s and for all f ∈ F , E(#(f)) = 1 . Hence, for any
subpopulation J ,

P

f∈J #(f) is an unbiased estimator on |J |, the
number of distinct flows in J .

For each f ∈ F , E(#(f)h(f)) = h(f), therefore
X

f∈J

#(f)h(f) =
X

f∈J∩s
#(f)h(f)

is an unbiased estimator of the per-flow sum of h() over J . We
use the notation #L

p(f) ≡ #L
p(n) for the adjusted count assigned

to a flow f by algorithm L (for sampling rate p and when f has
observed count n). For L ∈ {SNF, SSH}, p and n are vectors and
for L ∈ {ANF, ASH NF, SH} they are scalars. For the adaptive
algorithms, we use the effective sampling rate.

We derive expressions for adjusted counts by applying the meth-
ods we developed for adjusted weight derivation (see Section 8). As
is the case for adjusted weights, there is a unique adjusted counts
function #L

p(n). Adjusted counts can also be obtained from the
unbiased flow size distribution (FSD) estimators, that have a form
of a linear combination over observed counts, with coefficients that
correspond to adjusted counts. (NF variants have ill-behaved FSD
estimators [12, 6] and SH variants [2] have well-behaved estima-
tors.)

• L ∈ {SH, ASH}: #L
p (1) = 1/p; for n > 1, #L

p (n) = 1.

• SSH: If |n| = 1 (there is one packet counted) then #SSH
p (n) =

1/pr . Otherwise (|n| > 1), if n has at least one packet in
the last step, then #SSH

p (n) = 1. Otherwise, let ` < r

be the last step with a positive packet count. #SSH
p (n) =



1 +
c`+1,r

q[n|n]
. (If we eliminate steps with zero count except

the last step, ` + 1 ≡ r.) The adjusted counts need to be
computed when the adjusted weights are computed, before
discarding the per-step counts.

• NF variants: Adjusted counts are defined by applying meth-
ods developed for adjusted weights derivation (see Section 8).
L ∈ {NF, ANF}: the solution of the triangular system of lin-
ear equations obtained from the the unbiasedness constraints:
For a flow with count |f |,

|f |
X

i=0

 

|f |

i

!

pi(1 − p)|f |−i#L
p (i) = 1 .

SNF: Solution of a system of linear equations with variables
#SNF

p (s) for all s ≤ n. (The vector notation s ≤ n means
that the relation holds per coordinate) using the unbiasedness
constraints. Alternatively, they can be defined using domi-
nance of SNF over ANF. As is the case for FSD estimators,
these systems are ill-behaved for low sampling rates.

6.2 Packet-level properties
Packet-level properties have numeric h()-values that are associ-

ated with each packet. For a flow f we define the h()-value of f as
h(f) =

P

c∈f h(c). If h(c) is the number of bytes in the packet
c then h(f) is the number of bytes in the flow. If h(c) is unity,
then h(f) = w(f) is the number of packets of the flow. h(f) is
available only if all packets of f are processed and therefore is not
provided for flows included in NF and SH variants sketches.

The algorithms are adapted to collect information needed to fa-
cilitate unbiased estimators. For any desired packet-level property
h(), we produce adjusted h()-values HL

p (f). For any f , H(f) is
an unbiased estimator of h(f) and H(f) = 0 for flows that are not
included in the sketch. For any subpopulation J ,

P

f∈J H(f) =
P

f∈J∩s H(f) is an unbiased estimator for
P

f∈J h(f).

• L ∈ {NF, ANF}: Let N(f) be the set of counted pack-
ets and let n(f) be the packet count maintained by L for a
cached flow f . To facilitate h()-values estimation, the al-
gorithm maintains the h() counts n(h)(f) = h(N). The
adjusted h()-value is HL

p (f) = n(h)(f)/p. A subtle point is
correctly updating n(h) for ANF when performing rate adap-
tation. The updated value should include the sum of the h()
values of resampled packets which if strictly done, requires
us to store the h() value of all packets in N(f), which is
prohibitive. We argue, however, that it is sufficient to store
the total n(h)(f) and update it proportionally to the reduc-
tion in the packet count n(f). That is, if resampling re-
duces the packet count to n′(f), we update the h()-count
n(h)(f)← n(h)(f)n′(f)/n(f).
The updated n(h)(f) is the expectation of the updated h()
count that would have been obtained if we explicitly main-
tained N and per-packet h() values and sampled from N
a subset of size n′(f). (all subsets of N(f) that are of the
same size have the same probability of being in the resample,
regardless of the packet position or its h() value.)
This consideration extends to a sequence of rate adaptations:
The final n(h)(f) has the expectation of the h() count over
all resamples that resulted in the same sequence of packet
count reductions. Interestingly, done this way, we obtain a
lower variance estimator than if we had maintained and used

per-packet h() values for N(f), as the h() count we use is
the expectation of the latter in each part of a partition of the
sample space.

• L ∈ {SH, ASH}: we obtain the unbiased estimator HASH(f) =
h(c0(f)) 1−p

p
+ h(N(f)), where N(f) is the set of counted

packets of f and c0(f) ∈ N(f) is the first counted packet of
f . To facilitate this estimator, the algorithm needs to record
the h() value of the first packet and the sum of h() values
of all subsequent packets. For ASH, the resampling makes
a direct implementation infeasible, as we need to record per-
packet h() values for all packets in N . We can not use aver-
aging as we did for ANF, since later packets are more likely
to be counted than earlier packets. Fortunately, there is effi-
cient implementation for SSH.

• L ∈ {SNF, SSH}: To facilitate estimators, the algorithms
need to maintain per-step h() counts,

h(N1), h(N2), . . . , h(Nr) ,

where Ni is the set of packets counted in step i. For SSH,
we also need to maintain the h() value of the first packet c0

when the flow enters the cache. The expressions for adjusted
h() values are provided in Eq. (7) (for SSH) and Eq. (15) (for
SNF).

• Hybrid SH variants: We obtain adjusted h() values for the
sampled stream and scale them by p−1

base.

6.3 Flow size distribution
We derive unbiased estimators for subpopulations flow size dis-

tribution queries using hybrid sketches. We use existing flow size
distribution estimators as components, applicable to ASH and SSH
sketches [2] and NF sketches [12, 6].

For hybrid-ASH (or hybrid-SSH) we apply the respective (ASH
or SSH) estimators in [2] to the counts obtained on the pbase-
sampled stream. We obtain unbiased estimates Mj (j ≥ 1) for the
number of flows of size j in the pbase-sampled stream. We then
“treat” these Mj values as observed counts with NF with sampling
rate pbase, and “plug them” in a corresponding estimator. Since
the NF estimators are ill behaved for low sampling rates, these es-
timators are ill behaved for low values of pbase.

LEMMA 6.1. The resulting estimates Ĉ′
i (i ≥ 1) are unbiased

estimates of the number of flows of size i in the original stream.

PROOF. We review the derivation of flow size distribution esti-
mators. These estimators are derived by expressing Oj (j ≥ 1),
the expected number of flows with a certain observed counts (for
step-counting algorithms we use observed count vectors) as a lin-
ear combination of Ci (i ≥ 1), the number of flows of size i. The
matrix is then inverted, and we express each Ci as a linear com-
bination of the expectations of the observed counts. The estimates
Ĉi are linear combinations of the observed counts. Since this is a
linear combination, we can replace the observed counts with any
other random variables with the same expectation and still obtain
unbiased estimators Ĉ′

i .

7. SIMULATIONS
We use simulations in order to understand several performance

parameters: The accuracy of the estimates derived and its depen-
dence on the algorithms, parameter settings, and the consistency
of the subpopulation, the tradeoffs of the hybrid approach, and the



effectiveness of the parameters controlling the number of rate adap-
tations. The simulations were performed using the discretized vari-
ants of the algorithms, with parameters k (maximum number of
counters), 0 < pbase ≤ 1 that determines the fraction of processed
packets (hybrid approach), and µ and pstart, that control a tradeoff
between accuracy/utilization and the number of rate adaptations.

7.1 Data
We used both synthetic and IP flows datasets. The IP flows data

was collected using unsampled NetFlow (flow-level summary of
each 10 minute time period that includes a complete packet count
for each flow) deployed at a gateway router. A typical period has
about 5000 distinct flows and 100K packets. The synthetic datasets
were produced using Pareto distributions with parameters α = 1.1
and α = 1.5. We generated distributions of flow sizes by drawing
5000 flow sizes. We simulated a packet stream from each distribu-
tion of flow sizes by randomly permuting the packets of all flows.

The cumulative distributions of the weight of the top i flow sizes
for each distribution is provided in Figure 2.
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Figure 2: Fraction of packets belonging to the i heaviest flows.

The subsets (subpopulations) we considered for the synthetic
datasets were the 2i largest flows and the 50%, 30%, and 10%
smallest flows. This selection enables us to understand how per-
formance depends on the consistency of the subpopulation (many
smaller flows or fewer larger flows) and the skew of the data. The
subpopulations we used for the IP flows (gateway) data were a par-
tition of the flows according to destination port.

7.2 Quality of sketches
We compare the accuracy of subpopulation-size estimates ob-

tained using ANF, SNF, ASH, and SSH. We evaluate performance
as a function of the size k of the sketch (and the size of the flow
cache). We also include weighted sampling without replacement.

Results that show the average absolute value of the relative error
as a function of the cache size k are provided in Figures 3 and 4.
The averaging for each data point was performed over 200 runs.
The figures reflect the relation established theoretically: SSH dom-
inating ASH which in turn dominates ANF and that SNF dominates
ANF. They also show that ASH dominates SNF on our data. For
subpopulations consisting of large flows, such as top-i flows and
applications with medium to large flows, the performance gaps are
more pronounced. This is because on these flows, the more domi-
nant methods count more packets and obtain adjusted weights with
smaller variance. Our adjusted weight assignments have minimum
variance with respect to the information they use (the counts col-
lected for the flow). This “optimality” enables us to translate the
larger counts to smaller errors.

On subpopulations of very small flows, such as bottom-50% of
flows or DNS (port 53) traffic (only the latter is shown), all meth-

ods have similar performance. In particular, there is no advantage
for WS (the strongest method) over ANF (the weakest) on subpop-
ulations consisting of 1-packet flows.

The results strongly support the use of step-counting as an al-
ternative to the adaptive variants: On subpopulations consisting of
many medium to large size flows, the relative error obtained using
SNF and SSH is significantly smaller than what is obtained using
ANF or ASH, respectively.

7.3 Evaluation of the hybrid algorithms
We decrease the parameter pbase while maintaining the same

flow cache size k = 400. Figure 5 shows that the estimate quality
gracefully degrades and a smooth performance curve is obtained.
Even for pbase = 0.1, the hybrid-ASH and hybrid-SSH outper-
form ANF and SNF, respectively.

Figure 6 shows the number of packets counted as a function of
pbase as a fraction of the number of packets in the pbase-sampled
stream and as a fraction of the total number of packets. The hybrids
provide a desirable smooth tradeoff that provides high counting rate
of processed packets, while enabling us to fully control the fraction
of total packets that are processed.
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Figure 5: Sweeping pbase to evaluate hybrid algorithm. Esti-
mating subpopulations of top-64 flows in Pareto 1.1 and Pareto
1.4, k = 400, pstart = pbase, µ = 0.9.
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Figure 6: Sweeping pbase to evaluate the tradeoffs in the hy-
brid algorithms. Fraction of packets in the pbase-sampled
stream that are counted (left). Fraction of total packets that
are counted (right). (k = 400, pstart = pbase, µ = 0.9).

7.4 Controlling the number of rate
adaptations

We sweep the parameter µ, which controls the rate of decrease
of the sampling rate, and through it, the total number of rate adap-
tations performed. We expect the (absolute value of the) relative
error of the estimates to increase when µ is decreased, as fewer
packets are counted and reflected in the final sketch. On the other
hand, the number of rate adaptations performed and the size of in-
termediate temporary storage needed to store the count vectors for
SNF and SSH should decrease with µ. The effectiveness of the
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Figure 3: Estimating subpopulations consisting of top flows pbase = 1, µ = 0.9, pstart = 1.
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Figure 4: Estimating subpopulations of IP flows for various port numbers, pbase = 1, µ = 0.9, pstart = 1.

parameter µ and the feasibility of a router implementation depends
on this tradeoff.

Figure 7 shows the dependence of the average absolute value
of the relative error on the parameter µ. We can see that there is
minimal performance loss in terms of estimate quality when µ is
reduced from 0.9 to 0.5.

Figure 8 shows that selecting a smaller µ = 0.5 is very effective.
First, the number of rate adaptations is much smaller, and secondly,
the size of intermediate temporary storage needed for collecting the
count vectors, is much smaller with µ = 0.5 than with µ = 0.9.
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Figure 7: Sweeping µ to evaluate how it affects the (aver-
age absolute value of the) relative error. The figure shows
subpopulations of top-64 flows for pareto 1.1 and pareto 1.4
pstart = pbase = 1, k = 400.

8. DEFERRED PROOFS
The adjusted weights we assign are a function of the observed

count of the flow and the sampling rate. The sampling rate (effec-
tive sampling rate or sampling rate steps) in the adaptive algorithms
is treated as fixed because for any flow f , it is determined by the
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Figure 8: Sweeping µ to evaluate effectiveness decrease. Num-
ber of rate adaptations and number of counts pstart = pbase =
1, k = 400.

sampling performed on all “other” flows (F \ {f}). Therefore,
within the probability subspace where the sampling on all other
flows is fixed, the sampling rate is fixed. The adjusted weight of
each flow is unbiased within each such subspace.

We deploy three different techniques to derive adjusted weights.
These techniques are general tools applicable to other quantities
such as adjusted counts, unbiased FSD estimators, and adjusted se-
lectivities.

• System of equations: The unbiasedness constraints correspond
to linear equations over the variables AL

p(n). For a flow
f , the expected adjusted weight over all possible observ-
able counts n � f of f must be equal to w(f): w(f) =
P

n�f q[n|f ]AL
p(n), where q[n|f ] is the conditional proba-

bility that L obtains a count of n for a flow f . The system
of equations can be used to derive expressions for the ad-
justed weights, be solved numerically to compute adjusted
weights for each instance, or establish properties of the so-
lution such as uniqueness (A unique solution to this system



implies that there is a unique deterministic assignment of ad-
justed weights that is a function of the observed counts of the
flow and the sampling rate).

• Dominance: Algorithm A1 dominates A2 [2] if A1 counts
are “more informative”, that is, each possible set of A1 counts
corresponds to a probability distribution over sets of A2 counts
such that applying A1 and drawing an A2 count from the
corresponding distribution is equivalent to applying A2. For
example, SSH dominates ASH and ASH dominates ANF.
We can derive adjusted weights for A1 from those of A2 by
taking the expectation of A2 adjusted weights over the dis-
tribution that corresponds to the A1 counts. If there is no
closed form for A1 adjusted weights, we can draw multiple
times from the corresponding distribution and take an aver-
age of the A2 adjusted weights. The resulting per-item ad-
justed weights of A1 are unbiased and have equal or lower
variance than A2 adjusted weights (same arguments as for
mimicked sketches [5]). Dominance implies that if an algo-
rithm has unique deterministic adjusted weights, the per-item
variance of these adjusted weights is at most that of any al-
gorithm that it dominates.

• Per-packet Horvitz-Thompson (HT) analysis. The HT esti-
mator is applicable when both the weight and the sampling
probability of each item are provided. The weight is avail-
able for packets, but in our unaggregated setting, not for
flows, and therefore we compute an adjusted weight for each
packet. The adjusted weight of the flow is then the sum of the
adjusted weights of packets of the flow. The second ingre-
dient needed for HT estimators is the sampling probability,
which can not be determined from the sketch. We apply HT
with sample space partitioning [4] to “bypass” knowledge of
the sampling probability. Per-packet analysis allows us to
derive unbiased estimators for other packet-level properties.

8.1 Adjusted weights for SSH
We prove Theorem 5.5 using a per-packet application of the HT

estimator.
Let h be a per-packet weight function and let h(f) =

P

c∈f h(c)

be the h()-value of f . (h(c) ≡ w(c) = 1 for packet counts but we
can also use other packet-level properties such as the number of
bytes in c.) We compute unbiased adjusted h() values HSSH(c)
for each packet from which we can obtain unbiased adjusted h()

values for each flow using HSSH(f) =
P

c∈f HSSH(c). By def-
inition, packets that are not counted have adjusted h()-values zero.

The HT estimator of h(c) is the ratio of h(c) and the probability
that the packet c is counted in the sketch. It is clearly unbiased. This
probability, however, can not be computed from the sketch. We use
a partition of the sample space such that within each subspace in the
partition there is a positive probability that the packet is sampled
and this conditional probability can be determined from the sketch.
The adjusted h() value for each packet is an application of the HT
estimator within this subspace.

We consider the adjusted h() value HSSH(c) of a counted packet
c of a flow f . We partition the sample space such that all rank as-
signment in the same subspace of the partition share the following.

1. The rank values of packets in F \ {f}.

2. The number of packets of f that are counted continuously up
to and not including c (Note that this could be 0).

Note that the subspace that our rank assignment is mapped to also
includes rank assignments where f does not appear in the sketch

at all or that f appears but c is not counted. This happens if the
current sampling rate drops below the current rank of the flow right
before or after c is processed.

We compute the conditional probability that c is counted assum-
ing that the rank assignment belongs to the particular subspace that
it maps to. Since the ranks of packets of flows in F \ {f} are fixed
in this subspace then so are the steps, p, of the kth smallest rank of
a flow in F \{f}. Furthermore, in any rank assignment in the given
partition where packet c is counted, we count the same number of
packets in each step. Let n be the vectors of counts we obtain for
f in any rank assignment where c is counted. (In rank assignments
in the same subspace where c is not counted this vector could be
different.)

HSSH(c) is computed according to one of the following cases.

1. Packet c is one of the ni packets counted in step i for some
i > 1. In this case the conditional probability that c is
counted is

q[n|n]

1−
Pi

h=1 ch,h

. (6)

To see this, fix the ranks of packets of F \ {f}. Then (1 −
Pi

h=1 ch,h) is the probability that we count all n1 + · · ·+ni

up to and including the packets of step i. q[n|n] is the prob-
ability that we count all n packets. Therefore, Eq. (6) is
the conditional probability that we count n given that we
counted all packets up to c. It follows that HSSH(c) =

h(c)
1−

Pi
h=1

ch,h

q[n|n]
.

2. Suppose c is the first packet among the n1 packets of step 1.
In this case, the conditional probability that c is counted is
q[n|n], and HSSH(c) = h(c)/q[n|n].

3. Suppose that c is a packet of step 1 other than the first. Fix-
ing the ranks of packets of flows in F \ {f} we count the
packets of step 1 with probability p1: That is the probability
that the first packet in step 1 is counted. So the conditional
probability that c is counted is q[n|n]/p1 and HSSH(c) =
h(c)p1/q[n|n].

Let Ni be the set of packets counted in step i, and let c0 be the
first counted packet.

H
SSH (f) =

X

c∈f

H
SSH (f) =

X

j≥1

X

c∈Ni

H
SSH (c) =

h(c0) + (h(N1) − h(c0))(1 − c1,1) +
P

r
i=2

h(Ni)(1 −
P

i
h=1

ch,h)

q[n|n)
=

h(c0)c1,1 +
P

r
i=1

h(Ni)(1 −
P

i
h=1

ch,h)

q[n|n)
. (7)

To facilitate this estimator, the algorithm needs to collect per-
step sums h(Ni) over counted packets in the step and to separately
record h(c0).

8.2 Variance relation
We denote by AL(f), where L ∈ {ASH,ANF,SSH,NF,SH,SNF},

the random variable that is the adjusted weight assigned to the flow
f by the algorithm L.

An important property of L ∈ {ASH,ANF,SSH,NF,SH} (estab-
lished in [2]) is zero covariances: For two flows f1 6= f2, we have
COV(AL(f1), A

L(f2)) = 0. The proof is based on conditioning
on the rank values of packets belonging to flows in F \ {f1, f2},



and the methodology carries over to establish this property for SNF
and for the discretized versions. This property implies that for any
J ⊂ F VAR(AL(J)) =

P

f∈J VAR(AL(f)).
Therefore, to show that an adjusted weight assignment has lower

variance than another on all subpopulations, it suffices to show
lower variance on each individual flow.

VAR(A
WS

(f)) ≤ VAR(A
SSH

(f)) ≤ VAR(A
ASH

(f)) ≤ VAR(A
ANF

(f))

Consider a flow f with |f | packets and the probability subspace
where ranks of packets belonging to all other flows (F \ {f}) are
fixed. It is sufficient to establish the relation between the methods
in this subspace. Consider such a subspace. Let p be the steps of
the effective sampling rate and pr be the final effective sampling
rate. The adjusted weight assignment for all methods has expec-
tation |f | within each such subspace. We consider the variance
of the different methods within such subspace. and use the nota-
tion VAR(AL(f)|p) for L ∈ {SSH,SNF}, and VAR(AL(f)|pr)
for L ∈ {WS,ANF,ASH}. This conditioning is equivalent to es-
tablishing the variance relation when the sampling rate pr is fixed
or when the steps p are fixed (and the last step is pr). It is the
key for extending the proofs to the discretized version, since we
simply condition on a different step function p determined by the
discretized (k + 1)th largest rank. It also shows that the variance
relation holds for the fixed-rate and fixed-steps variants of WS NF
and SH.

For SNF, similarly to SSH, the variance VAR(ASNF(f)|p) de-
pends on the way the packets of the flow f are distributed across
these steps. The variance is lowest when all packets occur when
the sampling probability is highest, and the variance is highest, and
equal to that of ANF, when all packets occur on the step with the
lowest sampling probability. The variance relation is established
using the following Lemma.

LEMMA 8.1. [2] Let A1 be an estimator and consider a par-
tition of the sample space. Consider the estimator A′

1 that has a
value that is equal to the expectation of A1 on the respective part of
the partition. Then E(A1) = E(A′

1) and VAR(A1) ≥ VAR(A′
1).

LEMMA 8.2. VAR(ASSH(f)|p) ≤ VAR(ASNF(f)|p)

PROOF. Consider a flow f and a probability space Ω(p) con-
taining all rank assignments such that the steps (as defined by the
kth smallest rank in F \ f ) are p. Consider a partition of Ω to
subspaces Ω

(p)

n according to the SSH count vector n obtained for
f .

Consider one such subspace Ω
(p)

n . By definition, the adjusted
weight assigned to the flow f in this subspace is fixed and is equal
to ASSH

p (n).

We define another SSH adjusted weight assignment, A′SSH
p (n)

as the expectation of the estimator ASNF
p over rank assignments in

Ω
(p)

n .
For any rank assignment, a packet is counted by SNF only if it

is counted by SSH. The first counted packet by SSH, must also be
counted by SNF. Therefore, s is a possible SNF count of f in Ω

(p)

n
if and only if it has the form s ≤ n (component wise) and s1 > 0
(we assume WLOG that n1 > 0). For notation convenience, we
define the vectors n′ = (1, n1 − 1, n2, . . . , nr), s′ = (1, s1 −
1, s2, . . . , sr) and p′ = (p1, p1, p2, . . . , pr). (That is, we create a
“dummy” step with probability p1, that precedes the first step and
contains the first packet of n.) This notation allows us to specify
that the first “packet” of n is counted.

The probability over Ω
(p)

n of a rank assignment with correspond-
ing SNF count s is equal to

qSNF
p′ [s′|n′]/qSSH

p [n|n] .

Therefore,

A′SSH
p (n) =

X

s≤n|s1>0

qSNF
p′ [s′|n′]

qSSHp[n|n]
ASNF

p (s) . (8)

It follows from Equation (8) that A′SSH
p (n) is a deterministic func-

tion of p and n.5 Using corollary 8.1, the estimator A′SSH
p is un-

biased and has variance that is at most that of ASNF
p over Ωp (and

therefore, over any probability space that consists of subspaces of
the form of Ωp.)

In Sections 5.1 and 8.1 we show that ASSH
p (n) is the unique so-

lution of a system of equations. Therefore, it is the only possible
assignment of adjusted weights that are a deterministic function of
p and n and are unbiased (has expectation |f |) for any possible f

and a corresponding probability space Ω(p). Since the estimator
A′SSH

p (n) is also a deterministic function of n and p and is unbi-
ased on Ω(p) it follows that ASSH

p ≡ A′SSH
p .

8.3 Adjusted weights for SNF
We provide the proof of Theorem 5.7 (derivation of adjusted

weights for SNF). This proof also establishes the variance relation
VAR(ASNF(f |p)) ≤ VAR(ANF(f |pr)).

PROOF. We fix the ranks of the packets of flows in F \ f . The
the steps p of the kth smallest rank of a flow in F \ f are then
fixed. Let n be the number of packets of f in each of these steps.
(We assume without loss of generality that n1 > 0.) We consider
the subspace V of rank assignments where f is fully counted. Let
ASNF(n) be the adjusted weight that f obtains at any point of this
subspace. We show that ASNF(n) is the average of the adjusted
weight of NF in V . Note that the fraction of V is qSNF[n|n].

Consider first points in V where the first packet that has rank at
most pr is a packet t of step 1.

The probability that SNF counted all packets and packet t +
1 was the first packet to obtain rank value at most pr is (p1 −

pr)
tprp

n1−t−1
1

Qr

h=2 p
nh
h . Conditioned on this, the adjusted weight

assigned by NF is the number of counted packets divided by pr.
The expected number of counted packets from step 1 is 1 + (n1 −
t − 1)(pr/p1) and the expected number from step 2 ≤ j ≤ r
is nj(pr/pj). Therefore, the expected adjusted weight assigned
by NF is (1/pr +

Pr

j=1 nj/pj − (t + 1)/p1). We sum over
t = 0, . . . , n1 − 1 and divide by qSNF[n|n] to obtain the con-
tribution to the average adjusted weight of NF in V of the points
where the first packet that has rank at most pr is of step 1.

Qr
h=2 p

nh
h

Pn1−1
t=0 (p1 − pr)tprp

n1−t−1
1

“

1
pr

+
Pr

j=1
nj

pj
−

(t+1)
p1

”

qSNF[n|n]
.

(9)

5This also follows the fact that SSH dominates SNF (this notion of
dominance was defined in [2]) in the sense that SNF sketches can
be emulated from SSH sketches. That is, given p and n, we can
draw an SNF sketch from Ω

(p)

n .



The derivation of the contribution to the average of points where
the first packet having rank at most pr is in steps ` = 2, . . . , r− 16

is similar to that of Eq.(9), observing that (d`,r−d`,`)

p
n`
`

(p`−pr)tprp
n`−t−1
`

is the probability that SNF fully counted the flow and the first
packet to obtain rank value at most pr was packet t + 1 during
step `. We omit the denominator qSNF[n|n] from the following
two Equations.

(d`,r − d`,`)

p
n`
`

n`−1
X

t=0

(p` − pr)t
prp

n`−t−1

`

0

@

1

pr

+
r

X

j=`

nj

pj

−
t + 1

p`

1

A .

(10)

We obtain that Eq. (10) (contribution of step ` > 1) is equal to

(d`,r − d`,`)
pr

p`

n`−1
X

t=0

„

p` − pr

p`

«t

0

@

1

pr
+

r
X

j=`

nj

pj

−
t + 1

p`

1

A

= (d`,r − d`,`)
pr

p`

{

0

@

p` − pr

p`pr

+
r

X

j=`

nj

pj

1

A

n`−1
X

t=0

„

p` − pr

p`

«t

1

p`

n`−1
X

t=0

„

p` − pr

p`

«t

t} (11)

The first sum in the expression above is geometric, and the second
is of the form

Pm

k=0 kqk for q = p`−pr

p`
. Since

Pm

k=0 kqk =
Pm

k=0(f(k + 1) − f(k)) = f(m + 1) − f(0) where f(x) =
1

q−1

“

xqx − qx+1

q−1

”

, we obtain that

m
X

k=0

kqk =
1

q − 1

„

(m + 1)qm+1 −
qm+2

q − 1
+

q

q − 1

«

.

Using these observation we obtain that Equation (11) is equal to

= (d`,r − d`,`){

0

@

p` − pr

p`pr

+
r

X
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nj
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A
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n`

p`
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p`pr
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p`pr
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=

0

@

p` − pr

p`pr

+
r

X

j=`

nj

pj

1

A (d`,r − d`,` − d`+1,r)

+
n`

p`

d`+1,r +
p` − pr

p`pr

d`+1,r −
p` − pr

p`pr

(d`,r − d`,`)

= (d`,r − d`,`)
r

X

j=`

nj

pj

− d`+1,r

r
X

j=`+1

nj

pj

(12)

By applying similar manipulations to Eq. (9), we obtain that the
numerator of that equation is equal to

r
Y

h=1

pnh
h

r
X

j=1

nj

pj

− d2,r

r
X

j=2

nj

pj

(13)

We sum the contributions of steps ` = 1, . . . , r−1 (Eq. (13) and
Eq. (12) for ` = 2, . . . , r− 1) and obtain that the total contribution
to the expectation is

r
Y

h=1

p
nh
h

r
X

j=1

nj

pj

−
r

X

`=2

d`,`

r
X

j=`

nj

pj

=
r

X

j=1

nj

pj

(
r

Y

h=1

p
nh
h −

j
X

`=2

d`,`) .

6Observe that the contribution of the last step must be zero unless
it is the only step, since if the flow is fully counted its rank must be
at most pr before the beginning of the last step.

Therefore,

ASNF(n) =

Pr

j=1

nj

pj
(
Qr

h=1 p
nh
h −

Pj

`=2 d`,`)

qSNF[n|n]
. (14)

The proof follows using Eq.(4).

By applying the HT estimator to obtain an adjusted h()-value for
each observed packet, as we did for SSH, we obtain the following
expression for adjusted h()-values.

HSNF(f) =

Pr
i=1

h(Ni)
pi

Qr
h=1 p

nh
h

−
Pi

j=2 dj,j
Qr

h=1 p
nh
h −

Pr
j=2 dj,j

. (15)

(where Ni ⊂ f (i = 1, . . . , r) is the set of packets of f that are counted at
step i.)

9. CONCLUSION
Accurate summarization of IP traffic is essential for many net-

work operations. We design summarization algorithms that gen-
erate a sketch of the packet streams that allows us to process ap-
proximate subpopulation-size queries and other aggregates. Our
algorithms build on existing designs, but are yet able to obtain sig-
nificantly better estimates through better utilization of available re-
sources and careful derivation of unbiased statistical estimators that
have minimum variance with respect to the information they use.
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