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Abstract— The use of end-to-end multicast traffic measurements has
been recently proposed as a means to infer network internal characteristics
as packet link loss rate and delay. In this paper, we propose an algorithm
that infers the multicast tree topology based on these end-to-end measure-
ments. Differently from previous approaches which make only partial use
of the available information, this algorithm adaptively combines different
performance measures to reconstruct the topology. We establish its consis-
tency and evaluate its accuracy through simulation. We showthat in gen-
eral it requires many fewer probes to correctly identify the topology than
other methods.
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I. I NTRODUCTION

Background and Motivation.As communications networks
grows in size and complexity, it has become increasingly im-
portant to measure their performance. To overcome the limi-
tations imposed by administrative diversity whichde factopre-
vents general direct access to large portions of the network, there
has been increasing interest in approaches that aim to character-
ize the network internal behavior from the sole external end-to-
end measurements. Currently, there are several measurements
infrastructure projects (including CAIDA [2], Felix [9], IPMA
[10], NIMI [15] and Surveyor [18]) that collect and analyze end-
to-end measurements across a mesh of paths between hosts.

In these approaches, a fundamental design issue is the type
of measurements to be performed across the network and the
methodology adopted to infer the internal network behavior
in terms of the performance experienced by the measurements
hosts. A promising approach, MINC (Multicast Inference of
Network Characteristics), relies on the use of multicast end-
to-end measurements. In contrast to unicast traffic, multicast
traffic introduces a well structured correlation in the end-to-end
behavior observed by the receivers that share the same multicast
session. This in turn allows to draw inferences about the perfor-
mance characteristics of the internal links without the coopera-
tion of network elements in the path such as packet loss rates,
[3], packet delay distributions, [11], and packet delay variance,
[6]. There is ongoing work [1] to incorporate some of these
techniques into the NIMI measurements infrastructure.

All these inference methods require knowledge of the mul-
ticast tree topology. Unfortunately, this is typically unknown.
This motivates the need for algorithms that can identify the
topology of the tree. Another motivation is that knowledge of
the multicast topology can be of use to multicast applications.
There are several reliable multicast protocols (e.g., RMTP[14])
which organize receivers in logical hierarchies using the under-
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lying topology, if possible. Other applications attempt toiden-
tify receivers that share the same network bottleneck [16].

Several algorithms have been proposed for identifying multi-
cast topologies based on the sole loss observations at receivers.
An algorithm for inferring the topology of a binary tree was first
proposed in [16]. The main idea was the simple observation
that as the number of packets grows multicast receivers shar-
ing a longer portion of the multicast distribution tree alsohave
higher shared loss rates; this information could in turn be used
to reconstruct the topology by recursively grouping the pair of
nodes with the highest shared loss. In [8] the correctness this
algorithm was proven and the approach was extended to general
topologies by introducing several other loss-based algorithms.
More recently, algorithms have been proposed for identifying
multicast topologies based on delay measurements instead.By
observing that the approach in [16] and [8] can be generalized
to any performance measures that (i) monotonically increases as
the packet traverse the tree, and (ii) can be estimated on thesole
basis of end-to-end measurements at the receivers, in [7] several
algorithms are specified based on delay performance measures
as link utilization, delay average and delay variance.

The accuracy of these approaches is limited by the fact that
each of the above algorithm reconstructs the topology usingonly
the information provided by one single performance measure,
e.g., loss rates or delay averages, thus making only partial use
of the available measurements. In addiction, as shown in [7],
no algorithm appears to perform better than the others in gen-
eral. Our experience has shown that typically under moderate
and heavy load network conditions (high link loss and utiliza-
tion) the loss based algorithm is generally the most accurate
while under light load condition (low link loss and utilization),
the algorithm based on link utilization performs best. Therefore,
it is then not clear which algorithm could be best suited to re-
construct multicast topologies across large internetworks where
different portions of the network can experience quite different
conditions. In the most general case, the different algorithms
could yield quite different reconstructed topologies; clearly, a
method which allows to choose among them or better to com-
pose them is much desired.

Contribution.In this paper we propose a new algorithm for iden-
tifying multicast topologies based on joint loss and delay mea-
surements at the receivers. This algorithm combines the differ-
ent performance measures and reconstruct the tree by adaptively
choosing step by step that which insures the best accuracy. In-
tuitively, by so doing we compose the topologies each perfor-
mance measure would yield by choosing for each portion of the
tree its more accurate reconstruction.
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The key contribution underlying this approach is the ability to
determine which performance measure minimizes the probabil-
ity of making an error. We propose a technique for estimating
the probability of incorrect identification of the topology. This
is accomplished by a careful enumeration of all the possibleer-
roneous decisions and by estimating the probability of eachof
them. We also analyze the modes of misclassification and ver-
ify that our estimate converges to the true error probability as
the number of packets increases. Therefore we can use this esti-
mate to determine the level of accuracy of a given reconstructed
topology, or more importantly, the number of probe packets re-
quired to achieve a desired level of accuracy.

We establish that the joint algorithm is consistent,i.e. the
probability of correctly identifying the topology converges to 1
as the number of probes grows to infinity. Analysis of a simple
scenario shows that the joint algorithm can significantly outper-
form any of the algorithms previously considered. We also use
simulation to evaluate its accuracy. In all the scenarios consid-
ered, we find that the joint algorithm has the best performance,
requiring in general many fewer probes to correctly identify the
topology than other methods.

In this paper, we will restrict our attention to topology infer-
ence based solely on loss and utilization performance measures.
A first reason is simplicity; as later shown, the loss processand
the utilization process are formally identical once we substitute
the event of “packet not lost” with the event of “packet not de-
layed”; as a consequence the very same results apply in both
cases. A second reason is that they also have the lowest com-
putational complexity. Finally, they are the most accurate: as
previously mentioned, in most cases, either the loss based or the
utilization based algorithms has the best performance. Hence,
while the joint algorithm extends to accommodate other perfor-
mance measures, in practice most of the benefit is achieved by
combining the loss and utilization estimators.

Implementation Requirement.In contrast to loss, delay measure-
ments require the deployment of measurements hosts with syn-
chronized clocks. Global Positioning System (GPS) which is
used in some of the mentioned measurements infrastructuresal-
lows accuracy within tens of microseconds. This is sufficient
for accurate utilization measurements which, in particular, re-
quire the accurate assessment of the minimum end-to-end delay.
We believe this is not the case for the more widely deployed
Network Time Protocol [12], which only provides accuracy on
the order of tens of milliseconds.

Structure of the Paper.The rest of the paper is organized as fol-
lows. In Section II and III we review our model and the loss and
utilization topology inference algorithms In Section IV wein-
troduce the joint loss/utilization algorithm; we also describe the
technique for estimating the probability of topology misclassifi-
cation. In Section V we analyze the performance of the differ-
ent algorithms. Their accuracy is then evaluated in SectionVI
through simulation. We conclude in Section VII; some proofs
are deferred to the Appendix.

II. M ODEL & I NFERENCE

Tree Model.The physical multicast tree comprises actual net-
work elements (the nodes), and the communication links than

join them. The logical multicast tree comprises the branch
points of the physical tree, and the logical links between them.
The logical links comprise one or more physical links. Thus
each node in the logical tree, except the leaf nodes and possibly
the root, must have 2 or more children. We can construct the
logical tree from the physical tree by deleting all links with one
child (except for the root) and adjusting the links accordingly by
directly joining its parent and child.

Let T = (V; L) denote a logical multicast tree with nodes
V and linksL. We identify the root node0 with the source of
probes, andR � V will denote the set of leaf nodes (identified
as the set of receivers). The set of children of nodek 2 V is
denoted byd(k). For each nodek, other than the root 0, there
is a unique nodef(k), theparentof k, such that(f(k); k) 2 L.
We will refer to the link(f(k); k) as simply linkk. We shall
definefn(k) recursively byfn(k) = f(f

n�1

(k)) with f

1

= f .
We say thatj is a descendant ofk if k = f

n

(j) for some integer
n > 0, and write the corresponding partial order inV asj � k.
a(i; j) will denote the minimal common ancestor ofi andj in
the�-ordering. Fork 2 V we letT (k) = (V (k); L(k)) denote
the subtree ofT that is rooted atk, and setR(k) = R \ V (k).

Delay and Loss Model.Probe packets are dispatched down the
tree from the root node 0. With multicast, each probe arriving
at anodek gives rises to copy sent to each child node ofk. On
each link, the packet is either lost, or transmitted with some de-
lay. We regard the delay as the sum of two components: a fixed
propagation delay, and a variable queueing delay. We represent
the latter by a random variableZ

k

2 [0;1] that specifies the
queueing delay encountered by a packet attempting to traverse
link k, with Z

k

= 1 signifying packet loss. By convention
Z

0

= 0. The accrued queueing delay for the path from the root
to a nodek is Y

k

=

P

j�k

Z

k

. This yields the property that
Y

k

= 1 for a packet lost on some link between node0 andk;
likewiseY

k

= 0 if no queueing delay is encountered on any link
of the path.

Let �
l

(k) = P[Z

k

< 1] denote the probability of transmis-
sion on linkk, and�

u

(k) = P[Z

k

= 0] the probability of trans-
mission with no queueing delay. A tree is said to becanonicalif
for all links k, 0 < �

u

(k) � �

l

(k) < 1. A tree can be reduced
to canonical form by (i) removing each linkk for which with
�

l

(k) = 1 or �
u

(k) = 1 and identifying its endpoints; and (ii)
pruning all subtree descended from links that have�

l

(k) = 0

or �
u

(k) = 0. Henceforth we work exclusively with canonical
trees; only for these are the link characteristics uniquelyidenti-
fiable.

Loss and Utilization Processes.Here it suffices to analyze a
projection of the delay processesZ

k

. For eachk 2 V let
X

l

(k) = 1

fY (k)<1g

. We call X
l

= (X

l

(k))

k2V

the loss
process: X

l

(k) = 1 if the probe reachesk and 0 other-
wise. For eachk 2 V let X

u

(k) = 1

fY (k)=0g

. We call
X

u

= (X

u

(k))

k2V

theutilization process: X
u

(k) = 1 if the
probe reachesk with no queueing delay, and0 otherwise. The
name arises since link queueing delay is zero iff the link is not
utilized: 1� �

u

(k) is hence the link utilization.

We assume theZ
k

are independent random variables. Then
X

u

andX
l

are Markov processes onT . Their structure is for-
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mally identical. The loss process satisfies

X

l

(0) = 1; X

l

(f(k)) = 0) X

l

(k) = 0;

P[X

l

(k) = 1 j X

l

(f(k)) = 1] = �

l

(k): (1)

The utilization process is formally identical upon replacing the
event of “no loss” with that of “no delay”. Then (1) holds when
X

l

; �

l

are replaced byX
u

; �

u

. In the rest of the paper we will
omit the subscriptsl andu when the same statement holds for
both cases.

Inference of Shared Path Characteristics.When probes are sent
down the tree we cannot observe the entire processesX but only
the outcomes at the receivers(X(k))

k2R

. By exploiting the
correlation of multicast traffic, in [3] it was shown how the link
loss rates can be computed from the distribution of(X(k))

k2R

when the topology is known. Here, to infer the topology, we
will use the following generalization of the results in [3].

Let A(k) =

Q

j�k

�(j) denote the probability that a probe
reaches nodek (theA

l

(k) version) or reaches is without queue-
ing delay (theA

u

(k) version). A short probabilistic argument
shows that for any two nodesi andj, i; j 6= a(i; j),

A(k) = A(i; j) :=

P[_

`2R(i)

X(`) = 1]P[_

`2R(j)

X(`) = 1]

P[_

`2R(i)

X(`) = _

`2R(j)

X(`) = 1]

(2)

wherek = a(i; j). (2) expresses the behavior along the shared
portion of the path from the source to a pair of nodes in terms of
the probabilities of leaf-measurable events.

To infer the probabilities from measurements, consider an
experiment in which a set ofn probes is dispatched from the
source. From the outcomes(x(1); : : : ; x(n)) with x

(m)

=

(X

(m)

(k))

k2R

, we can estimateA(k) by substituting the prob-
abilities in (2) by their empirical means, obtaining

A

(n)

(i; j) =

P

n

m=1

X

(m)

(i) �

P

n

m=1

X

(m)

(j)

n �

P

n

m=1

X

(m)

(i) �X

(m)

(j)

(3)

where we defineX(m)

(k) := _

`2R(k)

X

(m)

(`). It is possible to

show thatA(n)

= (A

(n)

(i; j))

i;j2V

is consistent (A(n)

n!1

�! A

with probability 1) and, asn goes to infinity,
p

n(A

(n)

�A) con-
verges in distribution to a multivariate Gaussian random variable
with mean 0 and covariance matrix�

A

= �

A

(A). Details can
be found in [8].

A complication arises in case of utilization estimation as we
have to account for (i) the presence of the fixed delay compo-
nent in the experimental data due to propagation delays and (ii)
the inherent limitation of time measurements accuracy due to
clocks resolution. To this end, we (i) normalize each measure-
ment by subtracting the minimum delay seen at the leaf and (ii)
introduce a tolerance� (typically smaller than1ms) in deciding
whether a given delay is a “minimum” delay. In other words, op-
erationally we defineX(m)

u

(k) = 1

fY

(m)

(k)�min

n

l=1

Y

(l)

(k)��g

whereY (m)

(k) is the delay experienced by themth probe sent
to receiverk. This amounts to assign the observed minimum de-
lay as the propagation delay, under the assumption that at least
one probe has experienced no queueing delay along the path.

1. Input: The set of receiversR = fi

1

; : : : ; i

r

g

2. R

0

:= R; V 0

:= R

0; L0 = ; ;
3. while jR0j > 1 do
4. U := select pair;
5. V

0

:= V

0

[ fUg;
6. L

0

:= L

0

[ f(U; `) : ` 2 Ug;
7 �(`) = A(`)=A(j; k), ` 2 U ;
8. R

0

:= (R

0

n U) [ fUg;
9. enddo
10. V 0

:= V

0

[ f0g ; L0 = L

0

[ f(0; R

0

)g ;
11. Output: tree(V 0

; L

0

) ;
12. procedure select pair
13. return U = fj; kg � R

0 with minimalA(j; k);
14. end procedure

Fig. 1. Deterministic Binary Tree Classification Algorithm(DBT).

III. L OSS ANDUTILIZATION TOPOLOGY INFERENCE

Deterministic Reconstruction of Binary Trees.Our approach
to loss (or utilization) topology inference relies on beingable
through (2) to identify the characteristics along internalpaths of
the multicast tree from the probability of measurable events at
receivers. The key observation is thata(j; k) � a(j

0

; k

0

) im-
pliesA(j; k) < A(j

0

; k

0

), from which it follows that the pair
fj; kg � R which has minimalA(j; k) is a sibling pair; a short
argument shows that if not,A(j; k) would not be minimal. The
idea is to proceed recursively, starting from the receivers, by
adding the parent node as sibling are identified. This approach
is formalized in the Deterministic Binary Tree Classification Al-
gorithm (DBT); see Figure 1.

DBT operates as follows.R0 denotes the current set of nodes
from which a pair of siblings will be chosen, initially equalto
the receiver setR. We first use the procedureselect pairbelow

procedure select pair
return U = fj; kg � R

0 with minimalA(j; k);
end procedure

to find the pairU = fj; kg that minimizesA(j; k) (line 4). This
identifies the members ofU as siblings, and the setU is used
to represent their parent. Correspondingly, we addU to the list
V

0 of nodes (line 5),(U; j); (U; k) to the listL0 of links (line 6),
compute�(j) and�(k) by taking the appropriate quotient (line
7) and replacej andk byU in the setR0 of nodes available for
pairing in the next stage (line 8). This process is repeated until
all sibling pairs have been identified (loop from line 3). Finally,
we adjoin the root node0 and the link joining it to its single
child (line 10).

We say thatDBT reconstructs the binary logical multicast tree
(V; L) if given the receiver setR it produces(V; L) as its output.

Theorem 1:Let T be a binary tree. ThenDBT reconstructs
T .
We postpone the proof to the Appendix.

Reconstruction of Binary Trees from Measurements.It is
straightforward to derive fromDBT an algorithm that es-
timates the topology from the end to end measurements
(x

(1)

; : : : ; x

(n)

). The idea is to estimateT by the topologyT (n)
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obtained by using the estimatesA(n)

(j; k) in place ofA(j; k).
This amounts to modifying the procedureselect pairas follows

procedure select pair
return U = fj; kg � R

0 with minimalA(n)

(j; k);
end procedure

Computation ofA(n)

(j; k) is accomplished via (3); to this end,
observe thatX(m)

(k) = _

`2d(k)

X

(m)

(`), so they can be recur-
sively computed as the tree is reconstructed. It therefore suffices
to add the line

4a. foreachm = 1; : : : ; n doX(m)

(U) = X

(m)

(j) _X

(m)

(k);

We call the resulting algorithm the Binary Tree Classification
Algorithm (BT).

Theorem 2:With probability 1, T (n)

= T for sufficiently
large n. HenceT (n) is a consistent estimator ofT , i.e.,
lim

n!1

P[T

(n)

6= T ] = 0.
Proof of Theorem 2:SinceA(n)

(j; k) converges almost almost
surely toA(j; k), then, with probability 1, for all sufficiently
largen, the relative ordering of theA(n)

(j; k) is the same as that
of theA(j; k) for pairsj; k for which theA(j; k) are distinct.
Hence, for alln sufficiently large,BT reconstructs the tree in
the same manner asDBT, except possibly varying the order in
which it groups pairsfj; kg with identicalA(j; k). The last two
statements then directly follow by standard results.

Finally, observe that in line 7BT computes an estimate
�

(n)

(`) = A

(n)

(U)=�

(n)

(`) of �(`). From Theorem 2 then it
immediately follows that asn goes to infinity�(n)(`) converges
with probability 1 to�(`).

Extension to General Trees.Inference of general trees can be
accomplished by extendingBT. In [8] we propose and analyze
different alternatives. The simplest approach, which alsoturns
out to be the most computationally efficient and accurate, pro-
ceeds in two steps: first it reconstructs a binary tree usingBT;
then it applies a threshold" and prune all linksk such that
�

(n)

(k) > 1 � ". The idea comes from the observation that
the application ofDBT to an arbitrary tree results in a binary
tree in which all linksk which do not exists in the original tree
satisfy�(k) = 1. In BT, the use of a threshold" accounts for
the statistical variability of the estimates.

IV. A JOINT LOSS-UTILIZATION ALGORITHM

We now extend the framework for topology inference by
proposing an algorithm which combines loss and utilization
measurements. We contrast this toBT which is based on a single
performance measure. The idea consists in reconstructing the
topology by adaptively choosing at each step the performance
measures which insures the best accuracy. We describe the al-
gorithm below. The algorithm bases its decisions on estimates
of the probability of misclassification. In the remainder ofthe
section we will present a technique for estimating this probabil-
ity.

The Joint Loss-Utilization Classification Algorithm.The joint
algorithm proceeds likeBT by recursively grouping nodes start-
ing from the set of receivers. Differently fromBT, here we
choose at each step the performance measure on which to base

the grouping decision; more precisely, at each step we determine
the two pairs that minimizeA(n)

l

(:; :) andA(n)

u

(:; :) and group
that which also minimizes the probability of making an error.
Specifically, we modify the procedureselect pairas follows

procedure select pair
foreachX 2 fl; ug

selectU
X

= fj

X

; k

X

g � R

0 with
minimalA(n)

X

(j

X

; k

X

);

return U = fj; kg = argmin
fj

X

;k

X

g;X2fl;ug

P

f;(n)

X;R

0

;
end procedure

whereP f;(n)

X;R

0

denotes the (estimated) probability of misclassi-
fication, given the current set of nodesR0, pairing nodes accord-
ing to performance measureX . We will detail how to compute
this estimate in Section IV-A.

We call the resulting algorithm the Joint Binary Tree Classifi-
cation Algorithm (JBT). DenoteT (n)

j

the topology obtained by
JBT.

Theorem 3:With probability 1, T (n)

j

= T for sufficiently

large n. HenceT (n)

j

is a consistent estimator ofT , i.e.,

lim

n!1

P[T

(n)

j

6= T ] = 0.
We formalize the proof in the Appendix. The intuition beyond
the proof is that, for all sufficiently largen, with probability
1, the relative ordering of theA(n)

(j; k) is the same as that of
A(j; k) (which observe can be different for loss and utilization)
from which it follows that the two pairs of nodes which mini-
mizeA

l

(:; :) andA
u

(:; :) are both siblings pairs.

Extension to General Trees.Inference of general trees is ac-
complished by reconstructing a binary tree usingJBT first and
by then pruning all linksk such that�(n)

l

(k) > 1 � "

l

and

�

(n)

u

(k) > 1 � "

u

, where we use possibly different loss and
utilization thresholds,"

l

and "
u

. The estimates�(n)
l

(k) and

�

(n)

u

(k) are computed in line 7 ofJBT by taking the appropriate
ratio.

A. Estimation of the Misclassification Probability

In this section we describe the estimate of the probability of
misclassification that is used inJBT. Classification proceeds by
a sequence of comparison operations; the analysis of misclassi-
fication is therefore potentially complex due to the need to ana-
lyze a large number of statistically dependent modes of failure.
Our approach to this is to divide and conquer. Correct classifica-
tion requires correct ordering of quantitiesA(j; k) in a number
of comparison. For each such comparison, we approximate the
probability of incorrect ordering in terms of the tail probability
of a Gaussian random variable whose variance we calculate. For
large numbers of probes, the probability of misclassification is
dominated by the largest such misordering probability.

The generic comparison involves three nodesj; k andl, where
a(j; k) 6= a(j; l). Sincea(j; k) � a(j; l) iff A(j; k) < A(j; l),
the correct descendency relation betweena(j; k) anda(j; l) is
identified if

D

(n)

(j; k; l) := A

(n)

(j; l)�A

(n)

(j; k) (4)

has the same sign as its deterministic counterpartD(j; k; l) =

A(j; l)�A(j; k). LetQ(j; k; l) denote this event.
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The following theorem, essentially proved for loss-based
classification in [8], characterizes the asymptotic behavior of
D

(n)

(j; k; l) first for largen, then for small loss and delays. De-
note� = 1� � and lets(k) :=

P

l�k

�(k).

Theorem 4:For each triple(j; k; l),
p

n � (D

(n)

(j; k; l) �

D(j; k; l)), (j; k; l), converges in distribution, as the number of
probesn!1, to a Gaussian random variable with mean 0 and
variance�2(j; k; l). Moreover, ask�k = max

k2V

�(k)! 0:
(i) D(j; k; l) = s(a(j; l))� s(a(j; k)) +O(k�k

2

);
(ii) �

2

(j; k; l) = js(a(j; l)) � s(a(j; k))j+O(k�k

2

);
Measurements yield the statisticD(n)

(j; k; l) with which to
infer the descendency relations. From this we would infer
a(j; k) � a(k; l) if and only if D(n)

(j; k; l) > 0. Misorder-
ing occurs whenD(j; k; l) andD(n)

(j; k; l) have opposite signs.
For largen, Theorem 4 suggests the following approximation
for the probability of misordering

P[Q

c

(j; k; l)] � 	

�

�

p

n

jD(j; k; l)j

�(j; k; l)

�

(5)

where	 is the cdf of the standard normal distribution. Since
D(j; k; l) and�2(j; k; l) are unknown, we need to estimate them
first. The idea is to simply estimateD(j; k; l) by D(n)

(j; k; l).
For the variance, we use the fact that�2(j; k; l) is a con-
tinuous functionD

jkl

of A, �2(j; k; l) = Var[A

(n)

(j; l)] +

Var[A

(n)

(j; k)] � 2Cov[A

(n)

(j; l); A

(n)

(j; k)] = (�

A(j;l)(j;l)

+

�

A(j;k)(j;k)

� 2�

A(j;l)(j;k)

)=n = D

jkl

(A), and estimate it by
�

(n)2

(j; k; l) = D

jkl

(A

(n)

). We thus approximate the probabil-
ity of incorrect orderingP [Q

c

(j; k; l)] by

P

f;(n)

jkl

:= 	

�

�

p

n

jD

(n)

(j; k; l)j

�

(n)

(j; k; l)

�

(6)

where we used in place ofD(j; k; l) and�2(j; k; l) their esti-
mates. The accuracy of (6) relies on the convergence of the
estimatesD(n)

(j; k; l) and�(n)2(j; k; l). We will verify this in
Section VI.

Misclassification Probability Estimate.Consider now thè -th
step ofJBT(or BT) and denote byR(n)

`

the current set of nodes

andfj
n

; k

n

g � R

(n)

`

the pair with minimalA(n)

(j

n

; k

n

). This
pair is chosen on the basis of the orderingsD

(n)

(j; k; l) > 0

for each triple(j; k; l) 2 S(R

(n)

`

) = f(j

n

; k

n

); (k

n

; j

n

)g �

(R

(n)

`

n fj

n

; k

n

g). With each such ordering we associate a mis-

ordering probabilityP f;(n)

jkl

as in (6). From the union bound
P[[

S(R

(n)

`

)

Q

c

(j; k; l)] �

P

S(R

(n)

`

)

P[Q

c

(j; k; l)] we associate

with the selection of(j
n

; k

n

) an estimated misclassification
probability through the sum

P

f;(n)

R

(n)

`

=

X

(j;k;l)2S(R

(n)

`

)

P

f;(n)

jkl

(7)

� max

(j;k;l)2S(R

(n)

`

)

P

f;(n)

jkl

(8)

= 	

 

�

p

n min

(j;k;l)2S(R

(n)

`

)

jD

(n)

(j; k; l)j

�

(n)

(j; k; l)

!

: (9)

This is the misclassification estimate we use inJBT. The ap-
proximation arises because for largen, the term with the small-
est argumentjD(n)

(j; k; l)j=�

(n)

(j; k; l) will dominate the rest.

Observe thatP (n)

R

(n)

`

, D(n)

(j; k; l) and �(n)(j; k; l) can be di-

rectly computed fromfA(n)

(j; k): fj; kg 2 R

(n)

`

g. Further-
more, when selecting between the loss and utilization methods
during step̀ , we need only select that with the smallest com-
posite argumentmin

(j;k;l)2S(R

(n)

`

)

jD

(n)

(j; k; l)j=�

(n)

(j; k; l).

Topology Misclassification Probability Estimate.(7) associates
a misclassification probability estimate with a single grouping
decision. Using a simple union bound argument, we can also
associate a misclassification probability estimate with the en-
tire reconstructed topologyT (n). In JBT, since we group the
pair of nodes which yields the smallestP

f;(n)

R

(n)

`

, we can estimate

the topology misclassification probability by summing overthe
minimum between the loss and utilization misclassificationes-
timates,

P

f;(n)

j

:=

jV nRj�1

X

`=1

minfP

f;(n)

l;R

(n)

`

; P

f;(n)

u;R

(n)

`

g: (10)

It is easy to realize that we can also associate a misclassification
probability estimate to the topology inferred byBT. The differ-
ence is that it is simply computed by summing over (7),i.e.,
P

f;(n)

:=

P

jV nRj�1

`=1

P

f;(n)

R

(n)

`

. In Section VI we will illustrate

applications of these estimates.

V. A NALYSIS OF CLASSIFIER PERFORMANCE

A. Performance of Single Classifier usingBT

The analysis of the actual misclassification probabilitiesmir-
rors much of the previous analysis. Consider a nodei 2 V

which is to be identified during the step̀of BT. Let h(i)
and h�(i) denote its two children. Correct identification of
i occurs if neitherh(i) nor h�(i) is incorrectly paired with
some other element ofR

`

, the set of nodes available for
pairing at step`. Thus, the event of correct classification
at step` is Q

`

= \

(j;k;l)2S(R

`

)

Q(j; k; l) where S(R
`

) =

f(h(i); h

�

(i)); (h

�

(i); h(i))g � (R

`

n fh(i); h

�

(i)g). Correct

classification of the whole tree is the eventQ = \

jV nRj�1

`=1

Q

`

.
Now, the variousQ(j; k; l) are not independent events, and

neither are theQ
`

. However, we can use union bounds to bound
above the probability of misclassification:

P

f

:= P[Q

c

] �

jV nRj�1

X

`=1

P

f

R

`

; where (11)

P

f

R

`

:= P[Q

c

`

] �

X

(j;k;l)2S(R

`

)

P[Q

c

(j; k; l)] (12)

According to Theorem 4, then for largen, these sums will be
dominated by the expression	(�

p

n�) where

� =

jV nRj�1

min

`=1

min

(j;k;l)2S(R

`

)

D

2

(j; k; l)

�

2

(j; k; l)

(13)

For largen, the approximation forlogP f is asymptotically lin-
ear inn with negative slope�=2. A simple approximation is
thusP f

� e

�n�=2.
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Fig. 2. THE THREE-RECEIVERBINARY TREE.

If we consider the asymptotic regime of small loss and delay,
k�k ! 0, from relations (i) and (ii) in Theorem 4 it follows that

min

(j;k;l)2S(R

`

)

D

2

(j; k; l)

�

2

(j; k; l)

= �(i) +O(k�k

2

); (14)

the minimum being attained, for small enoughk�k, where
a(j; k) = i anda(j; l) = f(i). Picking the dominant contribu-
tion to (11) then� � inf

i2V nR

�(i) yieldingP f

� e

�n�(i)=2.
Thus, in this regime, the probability of correctly identifying the
topology is controlled by the smallest loss rate or link utiliza-
tion.

The above argument can be formalized using Large De-
viation theory. However, calculation, of the decay rate ap-
pears computationally infeasible, although the leading exponent
inf

i2V nR

�(i) can be recovered in the smallk�k regime.

B. Comparative Performance of Loss and Utilization-Based
Classifiers

As an example we consider the three receiver tree with uni-
form link probabilities�

u

(k) = �

u

and�
l

(k) = �

l

; see Fig-
ure 2. The topology is correctly inferred when nodes 4 and
5 are grouped together; this requiresA(n)

(4; 5) < A

(n)

(4; 3)

andA(n)

(5; 4) < A

(n)

(5; 3). The argument controlling the
misclassification probability is� = D

2

(4; 5; 3)=�

2

(4; 5; 3) =

D(5; 4; 3)

2

=�

2

(5; 4; 3). We plot this as a function of the com-
mon probability� in Figure 3. The curve is approximately lin-
ear in� for small� = 1 � �, in agreement with (14). As�
increases,� reaches a maximum at about� = 0:2 (� = 0:8),
then decreases to0. Thus in this homogeneous tree, the misclas-
sification probability is minimized when� � 0:2.

We compare the relative performance of the loss and utiliza-
tion classifiers in Figure 4, indicating the regions where each of
the relevant slopes�

u

; �

l

is higher. The loss classifier is best
when loss rates are higher than about0:2 (i.e., �

l

� 0:8) or
when utilization is high (i.e., low �

u

). However, it is outper-
formed by the utilization classifier when there is low utilization
(i.e. high�

u

).

C. Performance ofJBT

In this case, the analysis of the misclassification probabil-
ity is complicated by the fact thatJBT uses the misclassifica-
tion estimates to take grouping decisions. Here, to illustrate its
modes of misclassification and assess its relative benefit with
respect toBT we analyze the performance ofJBT in the three

0
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0.1
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α

Fig. 3. THREE-RECEIVER TREE. Asymptotic slope of misclassification proba-
bility for a single classifier, as function of uniform link probability�
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Fig. 4. THREE-RECEIVER TREE. Partition of parameter space(�

l

; �

u

) where
loss or utilization estimator has better performance, i.e.largest asymptotic
slope for misclassification probability. Note�

l

< �

u

.

receiver binary tree scenario in Figure 2 with uniform link prob-
abilities. In JBT, the topology is correctly inferred when for
the chosen performance measureA

(n)

(4; 5) < A

(n)

(4; 3) and
A

(n)

(4; 5) < A

(n)

(5; 3). To keep the complexity manageable,
we focus on the first event and assume misclassification occurs
whenA(n)

(4; 5) � A

(n)

(4; 3), i.e., whenD(n)

(4; 5; 3) < 0.
The behavior of the classifier is then completely character-

ized by the bivariate random variablex(n) = (x

(n)

l

; x

(n)

u

) where

x

(n)

=

D

(n)

(4;5;3)

�

(n)

(4;5;3)

. From (6), the misclassification estimate

for both performance measures isP f;(n)

453

= 	(�

p

njx

(n)

j);
the joint algorithm groups the nodes based on loss information
when jx(n)

l

j � jx

(n)

u

j and on utilization otherwise (we assume
ties are resolved in favor of loss). Misclassification occurs when
the chosen performance measure results in grouping the wrong
pair; this happens whenjx(n)

l

j � jx

(n)

u

j andx(n)
l

< 0 or when

jx

(n)

u

j > jx

(n)

l

j andx(n)
u

< 0 which simply amounts to the con-

ditionx(n)
l

+x

(n)

u

� 0. The misclassification probability is then

P

f

j

:= P[x

(n)

l

+ x

(n)

u

� 0] (15)

Normal Approximation.We now consider the asymptotic behav-
ior of P f

j

. An application of the Delta method (see Chapter 7 of
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Fig. 5. JOINT CLASSIFIER. Contour plot of the ratio of the (log-scale) mis-
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[17]) shows that asn!1,
p

n(x

(n)

�x), wherex = (x

l

; x

u

),
x =

D(4;5;3)

�(4;5;3)

= H(A) with continuousH, converges in distri-
bution to a bivariate Gaussian random variable with mean zero
and covariance matrix�

x

= (rH(A

l

);rH(A

u

)) � �

A

l

;A

u

�

(rH(A

l

);rH(A

u

))

T , where�
A

l

;A

u

the asymptotic covari-
ance matrix of

p

n � (A

l

; A

u

) and :T denotes the transpose.
(�

A

l

;A

u

can be computed generalizing the approach used in [8]
to compute�

A

.)
Therefore, we have the following approximation

P

f

j

�

Z

x

(n)

l

+x

(n)

u

�0

e

�

n

2

(x

(n)

�x)��

�1

x

�(x

(n)

�x)

T

dx(16)

� e

�

n

2

inf

x

(n)

l

+x

(n)

u

=0

(x

(n)

�x)��

�1

x

�(x

(n)

�x)

T

(17)

where for largen, we consider the leading exponential order.
The infimum in (17) isx2

j

= (x

0

� x) � �

�1

x

� (x

0

� x)

T , where
x

0

= (x

0

l

; x

0

u

) = (x

0

l

;�x

0

l

) is the tangent point between the

line x

(n)

l

+ x

(n)

u

= 0 and the ellipse of the family(x(n) � x) �

�

�1

x

� (x

(n)

� x)

T

= a

2 parameterized ina. Thus, asn goes to
infinity we expect the curvelogP f

j

vs. n being asymptotically
linear with negative slopex2

j

=2. A simple approximation is then

P

f

j

� e

�nx

2

j

=2. Moreover, the minimizing pair(x(n)
l

; x

(n)

u

) =

(x

0

l

;�x

0

l

) indicates that misclassification most likely occurs by
having the two estimated misclassification probabilities equal,
loss and utilization yielding two different pairs for grouping, and
picking the wrong pair.

To illustrate the results, we study the relative performance of
JBT by comparing the asymptotic slope of the logarithm of the
misclassification probabilityx2

j

with that of the best single clas-
sifier. This is computed by considering the leading exponential

order approximationP f

� 	

�

�

p

n

D(4;5;3)

�(4;5;3)

�

� e

�nx

2

=2 of

the misclassification probability inBT. Figure 5 shows the con-

tour plot of the ratio
x

2

j

maxfx

2

l

;x

2

u

g

of the (log-scale) asymptotic

slopes as function of link characteristics.(�
l

; �

u

). JBT per-
forms better than either version ofBT for a significant range
of values (the region within the contour line correspondingto
1). The performance improvement is more pronounced in the

region where the loss and utilization classifiers have similar per-
formance (which corresponds to the line separating the two re-
gions in Figure 4) and loss and utilization estimates have low
correlation (which occurs when�

l

� �

u

). This is not surpris-
ing since we expect that: (i) little improvement can be achieved
when one classifier significantly outperforms the other; and(ii)
strong correlation offsets the benefits of using both loss and uti-
lization estimates.

To show the effect of correlation, consider the casex

l

= x

u

,
i.e., when the loss and utilization classifiers have the same per-
formance. In this case, it is easy to verify thatx

2

j

=

2

1+�

x

2

l

,

where� denotes the coefficient of correlation ofx(n)
l

andx(n)
u

.
At one extreme,� = 1 andx2

j

= x

2

l

, i.e., P f

j

= P

f : we have
maximal correlation between the loss and utilization classifiers
andJBT cannot provide any performance improvement; at the
other extreme,� = 0 andx2

j

= 2x

2

l

, i.e., P f

j

= P

f

l

P

f

u

: we have
statistical independence and the probability of misclassification
is the product of the two misclassification probabilities.

From Figure 5 we also observe thatJBT does not always pro-
vide better performance. In this example, we have that under
very high or very low utilization the loss and utilization clas-
sifiers, respectively, have better performance thanJBT. In these
cases, because of the high variance of the misclassificationprob-
abilities estimates,JBT is likely to mistakenly give preference
to the worst performance measure.

VI. EXPERIMENTAL EVALUATION

In this section we evaluate the performance ofJBT and com-
pare it with that ofBT through two types of simulation. Inmodel
simulationsdelay and loss are chosen to follow our statistical
model, allowing us to test algorithm performance in the setting
on which our analysis is based.Network simulations, using the
ns [13] simulator, test the algorithms in a more realistic setting,
where delay and loss are due to queueing delay and buffer over-
flows at nodes as multicast probes compete with background
TCP/UDP traffic.

Model Simulation.We conducted 10000 experiments over ran-
domly generated 15 node binary trees. In Figure 6, we plot the
fraction of incorrectly classified topologies as a functionof the
number of probes for the different classifiers. We considered
two regimes: a light load regime with low loss (randomly chosen
between 1% and 5%) and utilization (randomly chosen between
10% and 40%), and a heavy load regime with higher loss (ran-
domly chosen between 1% and 20%) and utilization (randomly
chosen in between 30% and 80%).

In both cases, the joint classifier dramatically outperformthe
loss and utilization classifiers with a difference in accuracy al-
ready of more than one order of magnitude in accuracy for just
400 probes.

The accuracy of our approach to joint classification lies in that
of the misclassification probability estimates. In Figure 6we
also superimposed the mean over the experiments of the topol-
ogy misclassification probability estimates. From the Figure, we
observe that the curves well track the actual slopes, bound from
above the actual values and preserve their relative order.

We can use the topology misclassification probability esti-
mate to determine the number of probes required to achieve a
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Fig. 6. MODEL SIMULATION . Fraction of incorrectly classified topologies and misclassification estimates for different classifiers as function of number of probes:

(a) light load scenario; (b) heavy load scenario.

JBT
� 0.05 0.1 0.2

fract. of mis. topologies 0.003 0.008 0.032
average # of probes 145 117 86

BT (loss)
� 0.05 0.1 0.2

fract. of mis. topologies 0 0 0.011
average # of probes 415 318 240

TABLE I

ACCURACY OF THEINFERREDTOPOLOGY. FRACTION OF MISCLASSIFIED

TOPOLOGIES AND AVERAGE NUMBER OF DISPATCHED PROBES FOR

DIFFERENT VALUES OF�.

desired level of accuracy of the inferred topology. The ideais to
proceed by dispatching probes until the estimated misclassifica-
tion probability is below a given threshold� corresponding to a
desired level of accuracy. Thus, for example, to insure a proba-
bility of misclassification no greater than 0.05, we send probes
until P f;(n)

� 0:05.
We performed 1000 experiments over random generated 15

node binary trees. In each experiment probes were dispatched
until the misclassification probability fell below a given thresh-
old � and we verified whether the inferred topology was correct.
ForJBT andBT under the light load regime, we summarise the
results in Table I where, for different values of�, we display the
average number of probes that were dispatched and the fraction
of topologies that were misclassified. Since the estimate bounds
from above the misclassification probability, it is no surprise that
the fraction of misclassified topologies is well below the chosen
threshold. Observe that the number of probes required byJBT
is about one third of those required byBT with loss.

Finally, to illustrate the benefit of combining loss and utiliza-
tion measurements we compareJBT with a simpler approach
which simply consists in choosing among the inferred topolo-
gies separately computed with the loss and utilization classifiers

32

65
4 7

8

0

1

11109

1Mb/sec, 10ms

5Mb/sec, 50ms

Fig. 7. ns SIMULATION TOPOLOGY.

that with the smallest misclassification probability estimate. De-
noteT (n)

X

the topology inferred by classifierX ,X 2 fl; ug and

P

f;(n)

X

its estimated probability of misclassification. We select

T

(n)

best

= T

(n)

Y

, whereY = argmin
X2fl;ug

P

f;(n)

X

. In Figure 6

we also superimposed the fraction of timesT (n)

best

was incorrect.
This approach yields more accurate results than either lossand
utilization classifiers, yet not as accurate asJBT: the distance
from theJBT curve quantifies the significant gain achievable by
the adaptive scheme which use both performance measures; the
fact the two curves are parallel suggests that misclassification is
ultimately dominated by the same event in both cases.

TCP/UDP Network Simulation.The ns simulations used the
topology shown in Figure 7. We arranged for some heterogene-
ity with the interior links having higher capacity (5Mb/sec) and
propagation delay (50ms) then at the edge (1Mb/sec and 10ms).
Each link is modeled as a FIFO queue with a 20-packets buffer
capacity.

The root node0 generates probes as a 20Kbit/s stream com-
prising 40 byte UDP packets according to a Poisson process with
a mean interarrival time of 16ms. The background traffic com-
prises a mix of infinite data source TCP connections (FTP) and
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Fig. 8. ns SIMULATION . Fraction of incorrectly classified topologies for dif-
ferent classifiers as function of the number of probes.

exponential on-off sources using UDP. Averaged over the differ-
ent simulations, the link loss ranges between1% and13% and
link utilization ranges between10% and88%.

Figure 8 plots the fraction of incorrectly identified topologies
over 100 simulations. The relative accuracy among the different
classifiers is in good agreement with the results from the model
simulations. Performance of the utilization and joint classifiers
are somewhat inferior due to: (i) wide spread of link utilization
values among the different links; (ii) presence of spatial corre-
lation among probe delays. In the simulations, probes are more
likely to experience similar level of congestion on consecutive or
sibling links than dictated by the modes independence assump-
tion. We calculated the off-diagonal elements of the correlation
matrix of the actual link delays. The mean was 0.021 and the
maximum 0.17. Despite correlation affected its accuracy,JBT
shows, albeit reduced, performance gain overBT.

In the simulations we also observed the presence of short-
term temporal correlation among successive probes that encoun-
tered the same congestion events. This does not affect estimator
consistency, although the convergence rate may be slowed.

VII. C ONCLUSIONS

In this paper we have presented an algorithm for the inference
of the multicast tree topology from end-to-end measurements.
The algorithm combines different performance measures andre-
construct the tree by adaptively choosing that which insures the
best accuracy. This is accomplished by a careful enumeration of
all the possible erroneous decisions and by estimation of their
probability. These estimates in turn can be used to determine
the number of probe packets to achieve a desired level of accu-
racy.

We investigated the statistical properties of the algorithm and
showed that it is consistent. Analysis of a simple scenario
showed that it can significantly outperform any of the algorithms
previously considered. We also used simulation to evaluateits
accuracy and found out that, in general, it required many fewer
probes to correctly identify the topology than other approaches.
ns experiments showed that spatial correlation negatively af-
fects its accuracy. We believe that diversity of traffic in real net-
works makes large and long lasting correlation unlikely. Weare

currently investigating the effect of correlation on the accuracy
of topology inference algorithms; this is part of a more general
effort to characterize network traffic correlation and its effects
on end-to-end measurements based inference.

Acknowledgment.We thank Don Towsley for useful comments
and suggestions.

APPENDIX

The proof of Theorem 1 is based on the following result. We
will find it useful to identify a subsetS of V as astratum if
fR(k) : k 2 Sg is a partition ofR.

Lemma 1:LetS be a stratum. Then,
(i) a pair of nodesfj; kg � S are siblings if and only if

A(j; k) < min

fj

0

;k

0

g�S:jfj

0

;k

0

g\fj;kgj=1

A(j

0

; k

0

); (18)

(ii) if fj; kg � S are such that

A(j; k) = min

fj

0

;k

0

g�S

A(j

0

; k

0

) (19)

thenfj; kg are sibling;
(iii) if fj; kg � S is a pair of sibling nodes, then(S n fj; kg) \
fa(j; k)g is a stratum.

Proof:. Observe first that by definition of stratum, ifj 2 S, then
no ancestor or descendent ofj can belong toS. (i) the only if
part follows from the observation that ifj andk are sibling, then
a(j; k) � a(j; `); a(`; k) for any` 2 S n fj; kg which implies
A(j; k) < A(j; `); A(`; k). For theif part assume thatfj; kg �
S satisfies (18) and supposej andk are not siblings. Let̀ be
the sibling ofj. Then,` =2 S since, if` 2 S, a(j; `) � a(j; k)

impliesA(j; `) < A(j; k), contradicting (18). Thus, sinceS is
a stratum, there is a set of nodesT = ft

1

; : : : ; t

n

`

g � V (`) \ S

such that[n`
i=1

R(t

i

) = R(`) since otherwise[
i2S

R(i) would
not coverR. Now eitherk 2 T ork =2 T . Butk 2 T implies that
a(i; k) � a(j; k), i 2 T so thatA(i; k) < A(j; k) contradicting
(18) whilek =2 T implies thata(j; i) � a(j; k), i 2 T so that
againA(j; i) < A(j; k) contradicts (18). Thereforej andk are
siblings. (ii) then is an immediate consequence of (i) and (iii)
follows immediately from the definition of stratum.

Proof of Theorem 1.It suffices to observe that inDBT, at the
beginning of each iteration,R0 is a stratum; therefore, the pair of
nodes which minimizesA(:; :) is always a pair of sibling nodes.
This property holds before the first loop (R is a stratum), and
(ii) and (iii) of Lemma 1 ensure it holds subsequently.

Proof of Theorem 3.SinceA(n)

(j; k) converges almost surely to
A(j; k), then, with probability 1, for all sufficiently largen, the
relative ordering of theA(n)

(j; k) is the same as that ofA(j; k)
(which observe can be different for loss and utilization). Then, it
suffices to observe that for all sufficiently largen, the two pairs
of nodes which minimizeA

l

(:; :) andA
u

(:; :) are both siblings
pairs providedR0 is a stratum. This property holds before the
first loop (R is a stratum), and (iii) of Lemma 1 insure it holds
subsequently, irrespectively of the actual pair of nodes selected
for grouping. Then the last two statements directly followsfrom
standard results.



10

REFERENCES

[1] A. Adams, T. Bu, R. Caceres, N.G. Duffield, T. Friedman, J.Horowitz,
F. Lo Presti, S.B. Moon, V. Paxson, D. Towsley, “The Use of End-to-End
Multicast Measurements for Characterizing Internal Network Behavior”,
IEEE Communications Magazine, May 2000.

[2] CAIDA: Cooperative Association for Internet Data Analysis. For more
information seehttp://www.caida.org

[3] R. Caceres, N.G. Duffield, J.Horowitz and D. Towsley, “Multicast-Based
Inference of Network Internal Loss Characteristics”,IEEE Trans. on In-
formation Theory, November 1999.

[4] R. Caceres, N.G. Duffield, J.Horowitz F. Lo Presti and D. Towsley, “Sta-
tistical Inference of Multicast Network Topology”,Proc. IEEE Confer-
ence on Decision and Control, Phoenix, AZ, Dec 1999.

[5] Cooperative Association for Internet Data Analysis, “Internet
Measurement Efforts,” http://www.caida.org/Tools/
taxonomy.html#InternetMeasurement

[6] N.G. Duffield and F. Lo Presti, “Multicast Inference of Packet Delay Vari-
ance at Interior Network Links”,Proc. IEEE Infocom 2000, Tel Aviv,
March 2000.

[7] N.G. Duffield, J.Horowitz, F. Lo Presti, D. Towsley, “Multicast Topol-
ogy Inference from End-to-End Measurements”,to appear in Proc. of
ITC Specialist Seminar on IP Traffic Measurement, Modeling and Man-
agement, Monterey, CA, Sept 2000.

[8] N.G. Duffield, J.Horowitz, F. Lo Presti and D. Towsley, “Multicast Topol-
ogy Inference from Measured End-to-End Loss”, submitted for publica-
tion.

[9] Felix: Independent Monitoring for Net-
work Survivability. For more information see
ftp://ftp.bellcore.com/pub/mwg/felix/index.html

[10] IPMA: Internet Performance Measurement and Analysis.For more infor-
mation seehttp://www.merit.edu/ipma

[11] F. Lo Presti, N.G. Duffield, J.Horowitz and D. Towsley, “Multicast-Based
Inference of Network-Internal Delay Distributions”, submitted for publi-
cation, September 1999.

[12] D. Mills, “Network Time Protocol (Version 3): Specification, Imple-
mentation and Analysis”,RFC 1305, Network Information Center, SRI
International, Menlo Park, CA, Mar. 1992.

[13] ns - Network Simulator. For more information see
http://www-mash.cs.berkeley.edu/ns/ns.html

[14] S. Paul at al. “Reliable Multicast Transport Protocol (RMTP)”, IEEE
JSACVol. 15, No. 3, pp. 407-421, April 1997.

[15] V. Paxson, J. Mahdavi, A. Adams, M. Mathis, “An Architecture for
Large-Scale Internet Measurement,”IEEE Communications, Vol. 36, No.
8, pp. 48-54, August 1998.

[16] S. Ratnasamy & S. McCanne, “Inference of Multicast Routing Tree
Topologies and Bottleneck Bandwidths using End-to-end Measure-
ments”,Proc. IEEE Infocom’99, New York, NY (1999)

[17] M. Schervish, “Theory of Statistics”, Springer, New York, 1995.
[18] Surveyor. For more information see

http://io.advanced.org/surveyor/


