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Abstract— The use of end-to-end multicast traffic measurements has lying topology, if possible. Other applications attempiden-

been recently proposed as a means to infer network internalr@aracteristics tify receivers that share the same network bottleneck [16].
as packet link loss rate and delay. In this paper, we proposeraalgorithm

that infers the multicast tree topology based on these endbtend measure- Several algorithms have been proposed for identifying imult
ments. Differently from previous approaches which make ont partial use  cast topologies based on the sole loss observations aveesei
of the available information, this algorithm adaptively combines different An algorithm for inferring the topology ofa binary tree wassfi
performance measures to reconstruct the topology. We estébh its consis- . . . .
tency and evaluate its accuracy through simulation. We showhat in gen- proposed In [16]' The main idea was the Slmple observation
eral it requires many fewer probes to correctly identify the topology than  that as the number of packets grows multicast receivers shar

other methods. ing a longer portion of the multicast distribution tree aksve
Keywords. End-to-end measurements, Topology Discoverf)igher shared loss rates; this information could in turn Sedu
Adaptive, Estimation Theory, Multicast Tree. to reconstruct the topology by recursively grouping the péi
nodes with the highest shared loss. In [8] the correctndss th
I. INTRODUCTION algorithm was proven and the approach was extended to denera

Background and MotivationAs communications networkstOIOOIOgIeS by mtrodgcmg several other loss-based f';tlgmnp. .
o L ; . - More recently, algorithms have been proposed for idemtgfyi
grows in size and complexity, it has become increasingly im-

portant to measure their performance. To overcome the Iimn?UItlcaSt topologies based on delay measurements insByad.

tations imposed by administrative diversity whigé factopre- ?obZﬁrVITe%fg;érir;[;ziearzzr;)salljcrr;sﬂrg?gi)a;%r[li]tgsir;;Ie %i:g?;“ze
vents general direct access to large portions of the netwloeke yp y

; L . : the packet traverse the tree, and (ii) can be estimated wotae
has been increasing interest in approaches that aim toathara, ! . )
) ) . basis of end-to-end measurements at the receivers, inj&iae
ize the network internal behavior from the sole externatend

alﬁorithms are specified based on delay performance measure
end measurements. Currently, there are several measuseme

infrastructure projects (including CAIDA [2], Felix [9]PMA as link utiization, delay average and d‘_"'aY v_anance.
[10], NIMI [15] and Surveyor [18]) that collect and analyzede The accuracy of thes_e approaches is limited by the fgct that
to-end measurements across a mesh of paths between host£2Ch of the above algorithm reconstructs the topology usifg

In these approaches, a fundamental design issue is the tgﬁemformatlon provided by one single perfprmance measure
of measurements to be performed across the network and He loss rates or delay averages, thus .m?""”g only part|§1l use
methodology adopted to infer the internal network behavigf e available measurements. In addiction, as shown in [7]

in terms of the performance experienced by the measuremer}ﬂsalgorithm appears to perform better than the others in gen
hosts. A promising approach, MINGVi{ilticast Inference of eral. Our experience has shown that typically under moderat

Network Characteristigs relies on the use of multicast end-"],lnd heavy load network C(_)nditi(_)ns (high link loss and uaHiz
to-end measurements. In contrast to unicast traffic, nastic ion) the loss based algorithm is generally the most aceurat

traffic introduces a well structured correlation in the ¢adknd while un(_jer light load cc_)nd|t|c_>_n (I(_)W link loss and utiliza),
behavior observed by the receivers that share the same:aunlti,th_e algorithm based on link ut|I|_zat|0n performs best. 'EHiere,
session. This in turn allows to draw inferences about thfoper itis then not c_Iear which aI_gorlthm could b? best suited to re
mance characteristics of the internal links without thepmya- cpnstruct mu-lt|cast topologies across Iargellnternetwmﬂk_ere
tion of network elements in the path such as packet loss, rat%'ger.e.m portions of the network can experience qwteeniefh.t
[3], packet delay distributions, [11], and packet delayiarace, conditions. In the most general case, the different algorit

[6]. There is ongoing work [1] to incorporate some of theS(éould yield_quite different reconstructed topologies;aclg a
techniques into the NIMI measurements infrastructure. method which allows to choose among them or better to com-

All these inference methods require knowledge of the mdtos€ them is much desired.

ticast tree topology. Unfortunately, this is typically urdwn. o . . -
This motivates the need for algorithms that can identify thontrlbutmn.Inthls paper we propose a new algorithm for iden

L ﬁ‘ying multicast topologies based on joint loss and delaam
topology of the tree. Another motivation is that knowledgg Burements at the receivers. This algorithm combines tlfierdif

?ﬁe:gualtrlg?; tg&?lfe?é t():laenrr?elt'ocfal;fe rt(;)torzg:gc(?t a%p[\lzllﬁo ent performance measures and reconstruct the tree byealgpti
M ! Ui P 9. choosing step by step that which insures the best accuraey. |

which organize receivers in logical hierarchies using theas- witively, by so doing we compose the topologies each perfor

*This work was supported by in part by DARPA and the AFL undeeament ma”F?e measure would yleld by Ch_OOSIhg for each portion of the
F30602-98-2-0238 tree Its more accurate reconstruction.



The key contribution underlying this approach is the aptlit join them. The logical multicast tree comprises the branch
determine which performance measure minimizes the prébalpioints of the physical tree, and the logical links betweeannth
ity of making an error. We propose a technique for estimatinighe logical links comprise one or more physical links. Thus
the probability of incorrect identification of the topolog¥his each node in the logical tree, except the leaf nodes andijhpssi
is accomplished by a careful enumeration of all the possible the root, must have 2 or more children. We can construct the
roneous decisions and by estimating the probability of edchlogical tree from the physical tree by deleting all links lwviine
them. We also analyze the modes of misclassification and vehild (except for the root) and adjusting the links accogdijrby
ify that our estimate converges to the true error probatélg directly joining its parent and child.
the number of packets increases. Therefore we can usethises| gt 7 = (V, L) denote a logical multicast tree with nodes

mate to determine the level of accuracy of a given recont®tdicy” and linksL. We identify the root nodé with the source of
topology, or more importantly, the number of probe packets rprobes, andz ¢ V will denote the set of leaf nodes (identified
quired to achieve a desired level of accuracy. as the set of receivers). The set of children of nbéde V is

We establish that the joint algorithm is consisteirg, the denoted byd(k). For each nodé, other than the root 0, there
probability of correctly identifying the topology convegto 1 is a unique nod¢ (k), theparentof &, such tha( f(k), k) € L.
as the number of probes grows to infinity. Analysis of a simpigre will refer to the link(f(k), k) as simply linkk. We shall
scenario shows that the joint algorithm can significantlipes-  definef” (k) recursively byf" (k) = f(f*~'(k)) with f* = f.
form any of the algorithms previously considered. We als® ugve say thay is a descendant @fif k = f(;) for some integer
simulation to evaluate its accuracy. In all the scenariositb 5, > 0, and write the corresponding partial ordeflinas; < k.
ered, we find that the joint algorithm has the best perforreang,(i, ;) will denote the minimal common ancestoricand;j in
requiring in general many fewer probes to correctly idgritie  the <-ordering. Fork € V we let7 (k) = (V(k), L(k)) denote
topology than other methods. the subtree of that is rooted ak, and setR(k) = RNV (k).

In this paper, we will restrict our attention to topologyen{
ence based solely on loss and utilization performance messuDelay and Loss ModeProbe packets are dispatched down the
A first reason is simplicity; as later shown, the loss proeess tree from the root node 0. With multicast, each probe argvin
the utilization process are formally identical once we $ilit®  at anodek gives rises to copy sent to each child nodeé:oOn
the event of “packet not lost” with the event of “packet not deeach link, the packet is either lost, or transmitted with sate-
layed”; as a consequence the very same results apply in biah We regard the delay as the sum of two components: a fixed
cases. A second reason is that they also have the lowest comepagation delay, and a variable queueing delay. We reptes
putational complexity. Finally, they are the most accurate the latter by a random variablg, € [0, co] that specifies the
previously mentioned, in most cases, either the loss basé o queueing delay encountered by a packet attempting to saver
utilization based algorithms has the best performance.celenlink &, with Z, = oo signifying packet loss. By convention
while the joint algorithm extends to accommodate othergrerf Z, = 0. The accrued queueing delay for the path from the root
mance measures, in practice most of the benefit is achieveddya nodek is Y, = ZM Zy. This yields the property that
combining the loss and utilization estimators. Y}, = oo for a packet lost on some link between nddandk;
Implementation Requiremei.contrast to loss, delay measurel—'kew'sey’c = 0if no queueing delay is encountered on any link
ments require the deployment of measurements hosts with s%the path. . )
chronized clocks. Global Positioning System (GPS) which is L8t « (k) = P[Z} < oo] denote the probability of transmis-
used in some of the mentioned measurements infrastrulire$ion on linkk, anda, (k) = P[Z}, = 0] the probability of trans-
lows accuracy within tens of microseconds. This is sufficiefiSSion with no queueing delay. A tree is said toch@onicalif
for accurate utilization measurements which, in particuie- for alllinks k, 0 < a (k) < a;(k) < 1. Atree can be reduced
quire the accurate assessment of the minimum end-to-eay ddi© canonical form by (i) removing each link for which with
We believe this is not the case for the more widely deploydt(k) = 1 or (k) = 1 and identifying its endpoints; and (ii)

Network Time Protocol [12], which only provides accuracy oR"uUning all subtree descended from links that havek) = 0
the order of tens of milliseconds. or a,, (k) = 0. Henceforth we work exclusively with canonical

) ) trees; only for these are the link characteristics uniqidsnti-
Structure of the PapeThe rest of the paper is organized as folgp|e.

lows. In Section Il and IIl we review our model and the loss and

utilization topology inference algorithms In Section IV we  Loss and Utilization Processeslere it suffices to analyze a
troduce the joint loss/utilization algorithm; we also d#ise the projection of the delay processes. For eachk € V let
technique for estimating the probability of topology masdifi- Xi(k) = 1y(<oo}- We call X; = (Xi(k))rev the loss
cation. In Section V we analyze the performance of the diffgsrocess X;(k) = 1 if the probe reache# and 0 other-
ent algorithms. Their accuracy is then evaluated in Sedfion wise. For eachk € V let Xu(k) = Liy(ky—op- We call
through simulation. We conclude in Section VII; some proofg, — (Xu(k))rev theutilization process X, (k) = 1 if the

are deferred to the Appendix. probe reachek with no queueing delay, ar@lotherwise. The
name arises since link queueing delay is zero iff the linkas n
Il. MODEL & I NFERENCE utilized: 1 — a,, (k) is hence the link utilization.

Tree Model.The physical multicast tree comprises actual net- We assume th¢;, are independent random variables. Then
work elements (the nodes), and the communication links th&n, and X; are Markov processes ¢h. Their structure is for-



mally identical. The loss process satisfies 1. Input The set of receiver® = {i1, ..., i}
2. RR=R;V':=R;L'=0;
Xi1(0)=1; Xi(f(k)) =0= X;(k) =0; i WhlIeU|R’| > Il df _
. := select pair;
PG = 1] Xi(f(R) = =) W) 5 0y,
[ ! . .
The utilization process is formally identical upon reptagthe (75 s(é)__LAL(Jg%’(K.)]%)K EEUI}J
event of “no loss” with that of “no delay”. Then (1) holds when, R '—_(R’ \ ) d’{U’}_ ’
X, oq are replaced by, a,,. In the rest of the paper we will S’ enddo T '

omit the subscripté andu when the same statement holds fog’L'0 V= V'U{0}; L = L' U{(0,R)};

both cases. 11. Qutput tree(V', L") ;
t12. procedure select pair
return U = {4, k} C R’ with minimal A(j, k);
4. end procedure

Inference of Shared Path Characteristi¥ghen probes are sen
down the tree we cannot observe the entire procesdas only
the outcomes at the receivefX (k))rer. By exploiting the
correlation of multicast traffic, in [3] it was shown how thiel
loss rates can be computed from the distributiofXfk)),cr
when the topology is known. Here, to infer the topology, we
will use the following generalization of the results in [3]. n
Let A(k) = [];,,, a(j) denote the probability that a probe o _ _
reaches nodg (the 4, (k) version) or reaches is without queuePeterministic Reconstruction of Binary TreeSur approach
ing delay (theA, (k) version). A short probabilistic argumentto loss (or utilization) topology inference relies on beinige
shows that for any two nodésndyj, i, j # a(i, j), through (2) to identify the characteristics along interpeths of
the multicast tree from the probability of measurable evextt

1P[Vier(HX(£) =1] receivers. The key observation is thdy, k) < a(j', k') im-

Fig. 1. Deterministic Binary Tree Classification Algorith(idBT).

. L 0SS ANDUTILIZATION TOPOLOGYINFERENCE

PIVeer@ X (6) =
PlVeeri)X (£) = Vier(j)X(£)

] @ plies A(j3,k) < A(j', k"), from which it follows that the pair

{j,k} C R which has minimald(j, k) is a sibling pair; a short
wherek = a(i, 7). (2) expresses the behavior along the sharégigument shows that if nofi(j, k) would not be minimal. The
portion of the path from the source to a pair of nodes in terinsidea is to proceed recursively, starting from the receivbys
the probabilities of leaf-measurable events. adding the parent node as sibling are identified. This ambroa

To infer the probabilities from measurements, consider igformalized in the Deterministic Binary Tree ClassificatiAl-
experiment in which a set of probes is dispatched from thegorithm (OBT); see Figure 1.

A(k) = Al j) =

source. From the outcomds: (V... (™) with z(™ = DBT operates as follows?’ denotes the current set of nodes
(X (™) (k))rer, we can estimatel(k) by substituting the prob- from wh!ch a pair of sjblings will be chosen, initially equal
abilities in (2) by their empirical means, obtaining the receiver seR. We first use the proceduselect paibelow

n (m) (7). S (m)( procedure select pair
AW 5 = Emﬂ),f Q) E,m=1X ,(3) (3) return U = {j, k} C R’ with minimal A(j, k);
e Y e X (@) - X () end procedure

m=1

where we definél (™) (k) := Ve gy X ™ (€). Itis possible to to find the paitlU = {j, k} that minimizesA(j, k) (line 4). This
show thatd(™) = (A (i, j)); ;cy is consistentd(™ "=3° 4 identifies the members df as siblings, and the sét is used
with probability 1) and, as goes to infinity,/n(A(™ — A) con- 10 represent their parent. Correspondipgly, we & t.he list
verges in distribution to a multivariate Gaussian randoriage V' of nodes (line 5)(U, j), (U, k) to the listL’ of links (line 6),

with mean 0 and covariance matiy = o4(A). Details can computex(j) anda(k) by taking the appropriate quotient (line
be found in [8]. 7) and replacg andk by U in the setR’ of nodes available for

A complication arises in case of utilization estimation as V\pairi.ng_ in thg next stage (Iipe 8),'_Thi5 process i; repeanid u
have to account for (i) the presence of the fixed delay compd). SiPling pairs have been identified (loop from line 3). &y,
nent in the experimental data due to propagation delaysii)nd\(’e adjoin the root nodé and the link joining it to its single

the inherent limitation of time measurements accuracy due{i!d (line 10). , , _
clocks resolution. To this end, we (i) normalize each measur We say thaDBT reconstructs the binary logical multicast tree

ment by subtracting the minimum delay seen at the leaf apd @'Va L) if giventhe receiver Set it producegV, L) as its output.
introduce a tolerance (typically smaller tharims) in deciding ~ Theorem 1:Let 7 be a binary tree. TheBBT reconstructs
whether a given delay is a “minimum” delay. In other words, 0[7- .

erationally we defineX@(Lm)(k) = Ly tm) (k) —min_, YO (k) <r} We postpone the proof to the Appendix.

whereY (™) (k) is the delay experienced by the'" probe sent Reconstruction of Binary Trees from Measuremertsis

to receivelk. This amounts to assign the observed minimum detraightforward to derive fronDBT an algorithm that es-
lay as the propagation delay, under the assumption thaasit l[dimates the topology from the end to end measurements
one probe has experienced no queueing delay along the pattiz("), ..., z("). The idea is to estimatg by the topology7 (")



obtained by using the estimate$™ (j, k) in place of A(j, k). the grouping decision; more precisely, at each step werméter
This amounts to modifying the procedselect pairas follows the two pairs that minimizel(”),(_,.) andA(™ (., .) and group
that which also minimizes the probability of making an error

procedure select pair Specifically, we modify the proceduselect pairas follows

return U = {j, k} € R with minimal A (j, k);

end procedure procedure select pair
. )5 1) . _ _ ) foreach X € {l,u}
Computation ofA!™ (j, k) is accomplished via (3); to this end, selectlUy = {jx,kx} C R’ with

observe thal (™) (k) = Veq(r) X ™ (€), so they can be recur- minimal A™ x (jx, kx );
sively computed as the tree is reconstructed. It therefdfiees Ny X_ SR £.(n).
t0 add the line return U = {j, k} = argmin; . 1 xequpPx re s
end procedure
4a. foreachm = 1,...,ndo X("™(U) = X" (5) v X" (k); £(m) _ B . _
wherePy ) denotes the (estimated) probability of misclassi-
. . . ~fication, givén the current set of nodRS pairing nodes accord-
We. call the resulting algorithm the Binary Tree Classificati ing to performance measufé. We will detail how to compute
Algorithm (BT). 3 o this estimate in Section IV-A.
Theorem 2:With probability 1, 70" = 7 for sufficiently  \yg call the resulting algorithm the Joint Binary Tree Clfissi

(n) j ' - -
Igrge - He()n)ceT 'S & consistent estimator df, i.e, cation Algorithm BT). Denote7.™ the topology obtained by
lim,, oo P[T\™ # T] =0. IBT J

Proof of Theorem 2:SinceA(™ (j, k) converges almost almost AN o (n) _ -

surely t0 A(j, k), then, with probability 1, for all sufficiendy | corem 3:With (pr)o?ab"'tyl' 77 = 7 for sufficiently
largen, the relative ordering of thd () (j, k) is the same as that!arge n. Hence 7;™ is a consistent estimator o, i.e.,

of the A(j, k) for pairsj, k for which the A(j, k) are distinct. lim, o, P[T," # 7] = 0.

Hence, for alln sufficiently large,BT reconstructs the tree inWe formalize the proof in the Appendix. The intuition beyond
the same manner d3BT, except possibly varying the order inthe proof is that, for all sufficiently large, with probability
which it groups pairg j, k} with identical A(j, k). The lasttwo 1, the relative ordering of the (") (j, k) is the same as that of
statements then directly follow by standard resgts. A(j, k) (which observe can be different for loss and utilization)
from which it follows that the two pairs of nodes which mini-

Finally, observe that in line BT computes an eSt'matemizeAl(.,.) andA, (., ) are both siblings pairs.

™ (0) = A(U)/a!™ (£) of a(¢). From Theorem 2 then it _ _
immediately follows that as goes to infinityo(™) (¢) converges EXxtension to General Treetnference of general trees is ac-
with probability 1 toa(?). complished by reconstructing a binary tree usi&y first and

; : n
Extension to General Treemference of general trees can bc;by ghen pruning all linkss such thatal( )(k) > 1-¢& and
accomplished by extendirBT. In [8] we propose and analyzeau' (k) > 1 — e,, where we use possibly different loss and
different alternatives. The simplest approach, which &lsns utilization thresholdsg; ande,. The estimatesxl(”)(k) and
out to be the most computationally efficient and accurate; pr, (™ (k) are computed in line 7 afBT by taking the appropriate
ceeds in two steps: first it reconstructs a binary tree uBiig atio.

then it applies a threshold and prune all linksk such that

o™ (k) > 1 —e. The idea comes from the observation tha. Estimation of the Misclassification Probability

the application oDBT to an arbitrary tree results in a binary | his section we describe the estimate of the probabifity o

tree in which all linksk which do not exists in the original tree misclassification that is used IBT. Classification proceeds by

satisfya(k) = 1. In BT, the use of a thresholdaccounts for 5 sequence of comparison operations; the analysis of raiscla

the statistical variability of the estimates. fication is therefore potentially complex due to the needna-a

lyze a large number of statistically dependent modes dfiffail

Our approach to this is to divide and conquer. Correct diaasi
We now extend the framework for topology inference byjon requires correct ordering of quantitids;, %) in a number

proposing an algorithm which combines loss and utilizatiasf comparison. For each such comparison, we approximate the

measurements. We contrast thi8fbwhich is based on a single probability of incorrect ordering in terms of the tail prdtiity

performance measure. The idea consists in reconstru¢teng éf a Gaussian random variable whose variance we calculate. F

topology by adaptively choosing at each step the perfor@angrge numbers of probes, the probability of misclassiftrats

measures which insures the best accuracy. We describe-thgjahinated by the largest such misordering probability.

gorithm below. The algorithm bases its decisions on est@mat The generic Comparison involves three noﬂésandl, where

of the probability of misclassification. In the remaindertio¢ a(j, k) # a(j,1). Sincea(j, k) < a(j,1) iff A(j,k) < A(j,1),

section we will present a technique for estimating this ptob  the correct descendency relation betweéf k) anda(j, 1) is

ity. identified if

The Joint Loss-Utilization Classification Algorithrihe joint (n)(; A sy A [

algorithm proceeds likBT by recursively grouping nodes start- DG ko) = ARG D = AT ) @)

ing from the set of receivers. Differently frofT, here we has the same sign as its deterministic counterpdt k,1) =

choose at each step the performance measure on which to bhgel) — A(j, k). LetQ(j, k, 1) denote this event.

IV. A JOINT LOSSUTILIZATION ALGORITHM
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The following theorem, essentially proved for loss-basedbserve thatP(’Z,)L), D™ (j,k,1) and o™ (j, k,1) can be di-
classification in [8], characterizes the asymptotic bebraof

D™ (j, k, 1) first for Iargen thenfor small loss and delays. Del€ctly computed from{ A (j,k): {j,k} € R\"}. Further-
note@ = 1 — o and lets(k) := Y, a(k). more, when selecting between the loss and ut|I|zat|on nustho

Theorem 4:For each triple(j,k_,l), Vi - (D™ (k1) — during stept, we peed only seleclt)gg)at_vxztr; the(S{ngILeSIt com-
D(j,k,1)), (4,k,1), converges in distribution, as the number grosite argumenhm(j,w)GS(RE”)) | (s ke, DI/ R ).
probesn — oo, to a Gaussian random variable with mean 0 armbpology Misclassification Probability Estimai@) associates
varianceo?(j, k,1). Moreover, aga || = maxzey @(k) = 0:  a misclassification probability estimate with a single griog

() D(j, k1) = s(a(j,1)) — s(a(j,k)) + O(|a|); decision. Using a simple union bound argument, we can also
(i) o%(4,k,1) = |s(a(4,1)) — s(a(j,k2)| +0(|a|*); associate a misclassification probability estimate with efn-
Measurements yield the statistie™ (4, k, ) with which to tire reconstructed topology (™. In JBT, since we group the

m(fer ;fhe d?sce)n?en%y rellatlfons (From) this we WOUC:d inf@fair of nodes which yields the smaller(Ef}), we can estimate
j, k) = a(k,l) if and only if D" (4, k,1) > 0. Misorder-
ing occurs whetD (j, k, 1) andD™) (4, k, 1) have opposite signs. the topology misclassification probability by summing otfez

For largen, Theorem 4 suggests the following approxmatloﬂ]r:]n;:gls’m between the loss and utilization misclassificagsn
for the probability of misordering '

PO (j, b, 1)] o @ [ —y/m PR DI 5) RONERE £(n) phin)

g o(j, k1) b= Z mln{Pl R u:Rgn)}- (10)
where V¥ is the cdf of the standard normal distribution. Since
D(j,k,1) ando? (4, k, [) are unknown, we need to estimate thertt is easy to realize that we can also associate a misclasfic
first. The idea is to simply estimai@(j, k,1) by D(")(4,k,1). probability estimate to the topology inferred Bf. The differ-
For the variance, we use the fact that(j,k,[) is a con- ence is that it is simply computed by summing over (&,
tinuous functionD;y of A, o*(j,k,1) = Var[A(j,0)] + prm .= FIVIHI- 1Pf((n’}). In Section VI we will illustrate

(n) (5 - () (5 (n)(; — o

Var[A™(j, k)] — 2Cov[A™ (5, 1), A (), k)] = (046060 + apphcatlons of these estimates.
TAGR) Gk — 2040G,0Gk))/7 = Djr(A), and estimate it by

o(M2(4 k,1) = Djr (A™). We thus approximate the probabil- V. ANALYSIS OF CLASSIFIER PERFORMANCE
ity of incorrect orderingP[Q¢(4, k,1)] by

(=1

A. Performance of Single Classifier usiBg

ijk z(n) — ( vn M) (6) The analysis of the actual misclassification probabilitiéss
(4, k,1) rors much of the previous analysis. Consider a nbde V
where we used in place db(j, k,1) ando2(j, k, 1) their esti- which is to be identified during the stepof BT. Let h(i)
mates. The accuracy of (6) relies on the convergence of #ed h*(i) denote its two children. Correct identification of
estimatesD (") (5, k, 1) ando ™2 (j, k,1). We will verify this in ¢ occurs if neitherh(i) nor h*(i) is incorrectly paired with
Section VI. some other element of;,, the set of nodes available for

Misclassification Probability EstimateConsider now the-th pairing at stept.  Thus, the event of correct classification
y at steplis @, = m(]k!)eS(RZ)Q(]ak l) whereS(R,;) =

step ofJBT(or BT) and denote byz,&") the current set of nodes{(h( ), 1 (0)), (h* (i), h(i))} x (Re \ {h(i), h*(i)}). Correct

and{jn, kn} C R ' the pair with minimald ™) (j,, k,). This classification of the whole tree is the evéht= m'V\Rl Q..

pair is cho§en qn the basis Of the ordeng@ (4, k, l_) >0 Now, the various)(j, k,1) are not mdependent events, and
for each triple(j, k,1) € S(RY™) = {(jn,kn), (kn,jn)} X neither are thé),. However, we can use union bounds to bound
(R(”) \ {jn, kn}). With each such ordering we associate a mistbove the probability of misclassification:

ordering probablhtfo ™) as in (6). From the union bound

) . \V\R| 1
n < n ¢
Plg () @B, D] < 2o ) PIQ°( K, D] we associate Pro= PRI< S Ph, where  (11)
with the selection of(j,, k,) an estimated misclassification =t
probability through the sum . o
oo o P, = PQI< X PRGK (12
Phoy = >, P (7) (kD) ES(Re)

(j.k,1)ES(R™M) : .
| According to Theorem 4, then for large these sums will be
max P]f,;l(n (8) dominated by the expressidn —/n3) where
(G,k,1)ES(R™)

Q

) [VAR|-1 D?*(j,k,1)
|D" (5, k, 1) U , J: k,
- |- 9 f= min  min . (13)
( \/E(JAZ;EEER(”)) oM (j,k,1) - © =1 (j,k,)ES(Re) 02(],k,1)

This is the misclassification estimate we useJBIT. The ap- For largen, the approximation folog P/ is asymptotically lin-
proximation arises because for langethe term with the small- ear inn with negative slopgd/2. A simple approximation is
est argumentD (™ (5, k,1)| /o™ (3, k, 1) will dominate the rest. thusP/ ~ e="0/2,
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If we consider the asymptotic regime of small loss and delay,

“ @ “ — 0, fromrelations (I) and (") in Theorem 4 it follows thatFig. 3. THREE-RECEIVER TREE Asymptotic slope of misclassification proba-

bility for a single classifier, as function of uniform linkgivability o

D*(j,k,1) 2
i ~—~ =a(i) + O(||a|), 14

G lus TR a(i) +o(lla|”),  (14) .
the minimum being attained, for small enoudgt||, where s | 1 class
a(j, k) = i anda(j,1) = f(i). Picking the dominant contribu- ' '
tion to (11) thend = inf;cy\ g @(i) yielding P/ ~ e="@(0)/2, ol
Thus, in this regime, the probability of correctly identifg the '
topology is controlled by the smallest loss rate or linkizdit ° o4
tion. 1

The above argument can be formalized using Large De- loss class.

viation theory. However, calculation, of the decay rate ap- 0.2
pears computationally infeasible, although the leadinmpeent
inf;cy\ g @(i) can be recovered in the smalit || regime. 0 0 02 o4 06 08 1

o
B. Comparative Performance of Loss and Utilization-Based '

Classifiers Fig. 4. THREE-RECEIVER TREE Partition of parameter spage , o, ) Where

As an example we consider the three receiver tree with uni- loss or utilization estimator has better performance, laegest asymptotic
form link probabilitiesa. (k) = o, anday(k) = ar; see Fig- slope for misclassification probability. Notg < o, .
ure 2. The topology is correctly inferred when nodes 4 and
5 are grouped together; this requird§” (4,5) < A(™(4,3) receiver binary tree scenario in Figure 2 with uniform linklp-
and A (5,4) < A (5,3). The argument controlling the abilities. InJBT, the topology is correctly inferred when for
misclassification probability i = D?(4,5,3)/0%(4,5,3) = the chosen performance measur@) (4,5) < A(™(4,3) and
D(5,4,3)?/0*(5,4,3). We plot this as a function of the com-A(")(4,5) < A(™(5,3). To keep the complexity manageable,
mon probabilityc in Figure 3. The curve is approximately lin-we focus on the first event and assume misclassification sccur
ear ina for smallad = 1 — q, in agreement with (14). A& whenA(™ (4,5) > A(™(4,3),i.e, whenD( (4,5, 3) < 0.
increasesf reaches a maximum at abamt= 0.2 (o = 0.8), The behavior of the classifier is then completely character-
then decreases o Thus in this homogeneous tree, the misclagzed by the bivariate random variabté®) = (wl(”) ,z") where
sification probability is minimized whefi = 0.2. (n) _ D™(453)
We compare the relative performance of the loss and utiliza-  ~ (453
tion classifiers in Figure 4, indicating the regions whereheaf for both performance measures ®.(" = W(—\/njz™));
the relevant slopeg,,, §; is higher. The loss classifier is besthe joint algorithm groups the nodes based on loss infoomati
when loss rates are higher than abou (i.e., a; < 0.8) or when|a:l(")| > |x£”)| and on utilization otherwise (we assume
when utilization is highi(e., low «,). However, it is outper- ties are resolved in favor of loss). Misclassification osouhen
formed by the utilization classifier when there is low usiliion the chosen performance measure results in grouping thegwron

From (6), the misclassification estimate

(i-e. higha). pair; this happens whefa!™ | > |\/| andz{™ < 0 or when
(n) (n) (n) b o )
C. Performance ofBT |z | > |2, | andzy " < 0 which simply amounts to the con

] ] ] o dition a;l(") -|-ac§[‘) < 0. The misclassification probability is then
In this case, the analysis of the misclassification probabil

ity is complicated by the fact thaXBT uses the misclassifica- pl = P[a:(”) +z(M < 0] (15)

. . . .. . . VI l u =

tion estimates to take grouping decisions. Here, to ilatstits

modes of misclassification and assess its relative benefit wNormal ApproximationWe now consider the asymptotic behav-
respect tdBT we analyze the performance #BT in the three ior of ij. An application of the Delta method (see Chapter 7 of



1 region where the loss and utilization classifiers have singier-

18 — N formance (which corresponds to the line separating the &~vo r
os | %'S e P gions in Figure 4) and loss and utilization estimates ha\(e lo
15 ’ correlation (which occurs whesw, > «,,). This is not surpris-
1 -ememe ing since we expect that: (i) little improvement can be aahie
06 08 when one classifier significantly outperforms the other; @ind
5 - strong correlation offsets the benefits of using both loskLan
04 lization estimates.
To show the effect of correlation, consider the cage= z,,,
02t ) s i.e., when the loss and utilization classifiers have the same per-
P formance. In this case, it is easy to verify th@t = ﬁx%
oL~ : : : : wherep denotes the coefficient of correlation;mffz) andz{".
0 0.2 0.4 0.6 0.8 1

At one extremep = 1 anda? = 17, i.e, P/ = P': we have

maximal correlation between the loss and utilization dfess

Fig. 5. JDINT CLASSIFIER. Contour plot of the ratio of the (log-scale) mis-andJBT cannot provide any performance improvement; at the
classification probability asymptotic slope between thitjand best basic other extremep = 0 andz? = 23;'12, ie., Pl = PlfPL{; we have
classifier. statistical independence and the probability of miscfasgion

is the product of the two misclassification probabilities.

[17]) shows thatas — oo, \/n(x(™ —x), wherex = (z;,z,,), From Figure 5 we also observe tiBT does not always pro-
_ D((;l,55733)) = 7{(A) with continuous}, converges in distri- Vide better performance. In this example, we have that under

bution to a bivariate Gaussian random variable with meaa zef€"Y high or very low utilization the loss and utilizatiorast
and covariance matring = (VH(A)), VH(AL)) - 04, 4, - sifiers, respectively, have better performance than. In these
- ) (3 1w

(VH(A,), VH(A,))Y, whereo, 4, the asymptotic covari- cases, because of the high variance of the misclassifigartidnr

ance matrix ofy/n - (47, A,) and.” denotes the transposeabilities estimates]BT is likely to mistakenly give preference
L ]the worst performance measure.

(04,,4, can be computed generalizing the approach used in f@
to computer 4.) VI
Therefore, we have the following approximation

a

r =

. EXPERIMENTAL EVALUATION

In this section we evaluate the performancdBT and com-
/ e—g(w(”)—w)-ail-(w(”)—w)wa(]_G) pare it with that oBT through two types of simulation. imodel
™ 42 (M <0 simulationsdelay and loss are chosen to follow our statistical
model, allowing us to test algorithm performance in theisgtt
(17) on which our analysis is baseNetwork simulationsusing the
ns [13] simulator, test the algorithms in a more realisticiagtt
where for largen, we consider the leading exponential ordefyhere delay and loss are due to queueing delay and buffer over

The infimum in (17) ist? = (2’ — ) - 03" - (2’ — )", where flows at nodes as multicast probes compete with background
' = (z},z;,) = (x;,—x;) is the tangent point between thercp/UDP traffic.

i n n i i n

Im_el ml( )(:5 o = 0 a";d the eII|pS(_a of t_he familf ™) — ) - Model SimulationWe conducted 10000 experiments over ran-
oz (& —z)" =a paramet?nzed . Thus, asy 90?5 to domly generated 15 node binary trees. In Figure 6, we plot the
infinity we expect the curviog P’; vs. n being asymptotically ¢action of incorrectly classified topologies as a functigrthe
linear with negative slope? /2. A simple approximation is then nymper of probes for the different classifiers. We considlere
ij ~ e "i/2_ Moreover, the minimizing pai(a:l("),xg‘)) = tworegimes: alightload regime with low loss (randomly aios
(z}, —x;) indicates that misclassification most likely occurs bipetween 1% and 5%) and utilization (randomly chosen between
having the two estimated misclassification probabilitigeat, 10% and 40%), and a heavy load regime with higher loss (ran-
loss and utilization yielding two different pairs for grdog, and domly chosen between 1% and 20%) and utilization (randomly
picking the wrong pair. chosen in between 30% and 80%).

To illustrate the results, we study the relative perforngamic ~ In both cases, the joint classifier dramatically outperftmm
JBT by comparing the asymptotic slope of the logarithm of thiess and utilization classifiers with a difference in accyral-
misclassification probability'j. with that of the best single clas-ready of more than one order of magnitude in accuracy for just
sifier. This is computed by considering the leading expdaknt400 probes.
order approximatior?! ~ W (_\/ED((:,?;))) ~ e~ /2 of The accuracy of our approach to joint classification liefat t

. e A S of the misclassification probability estimates. In Figuravé
the misclassification probability iBT. Figure 5 shows the con- ; :

i 22 ~ also superimposed the mean over the experiments of the-topol
tour plot of the ratio =5y of the (log-scale) asymptotic ogy misclassification probability estimates. From the Figwe
slopes as function of link characteristic;, a,,). JBT per- observe that the curves well track the actual slopes, bowmd
forms better than either version 8T for a significant range above the actual values and preserve their relative order.
of values (the region within the contour line corresponding We can use the topology misclassification probability esti-
1). The performance improvement is more pronounced in theate to determine the number of probes required to achieve a

7
P

Q

™ —x).o (™ —w)"

_ninf
2 in wl(n)+w£‘ln)=0(

~
~
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Fig. 6. MODEL SIMULATION . Fraction of incorrectly classified topologies and missifisation estimates for different classifiers as functibnumber of probes:

(a) light load scenario; (b) heavy load scenario.

JBT

5 [005] 01 | 02

fract. of mis. topologieg 0.003| 0.008| 0.032

average # of probes | 145 117 86

° ° o0
1Mb/sec, 10ms

——eo
5Mb/sec, 50ms 1

BT (loss)
0 | 005] 01 | 0.2
fract. of mis. topologies 0 0 0.011
average # of probes | 415 | 318 | 240

TABLE |

ACCURACY OF THEINFERREDTOPOLOGY. FRACTION OF MISCLASSIFIED
TOPOLOGIES AND AVERAGE NUMBER OF DISPATCHED PROBES FOR

DIFFERENT VALUES OFd.

desired level of accuracy of the inferred topology. The idda

.
8 9 10 11

Fig. 7. ns SIMULATION TOPOLOGY.

that with the smallest misclassification probability estten De-

proceed by dispatching probes until the estimated misiitzess note7") the topology inferred by classifiet, X € {I,u} and
tion probability is below a given threshoddcorresponding to a P)’;’(") its estimated probability of misclassification. We select
desired level of accuracy. Thus, for example, to insure &gro 7,") — 7.0V ‘wherey = argmirb(e{z,u}P)J?(n)- In Figure 6

bility of misclassification no greater than 0.05, we sendopso

until P¥(n) < 0.05.

est
we also superimposed the fraction of timkggz was incorrect.
This approach yields more accurate results than eitheralods

We performed 1000 experiments over random generated, Ly, ation classifiers, yet not as accurate & the distance
node binary trees. In each experiment probes were d'sﬁtcﬂ%m theJBT curve quantifies the significant gain achievable by

until the misclassification probability fell below a givemésh-

the adaptive scheme which use both performance measuees; th

old 9 and we verified whether the inferred topology was COrTegh . e two curves are parallel suggests that misclastficis
ForJBT andBT under the light load regime, we summarise thﬁltimately dominated by the same event in both cases.

results in Table | where, for different values@fwe display the

average number of probes that were dispatched and theofnraciCP/UDP Network SimulatioriThe ns simulations used the

of topologies that were misclassified. Since the estimatmts
from above the misclassification probability, it is no sispithat
the fraction of misclassified topologies is well below thesén
threshold. Observe that the number of probes requiredBiy

is about one third of those required By with loss.

Finally, to illustrate the benefit of combining loss andimét

topology shown in Figure 7. We arranged for some heterogene-
ity with the interior links having higher capacity (5Mb/$emd
propagation delay (50ms) then at the edge (1Mb/sec and 10ms)
Each link is modeled as a FIFO queue with a 20-packets buffer
capacity.

The root nodé generates probes as a 20Kbit/s stream com-

tion measurements we compatBT with a simpler approach prising 40 byte UDP packets according to a Poisson proceks wi
which simply consists in choosing among the inferred topola mean interarrival time of 16ms. The background traffic com-
gies separately computed with the loss and utilizatiorsdfi@ss prises a mix of infinite data source TCP connections (FTP) and



currently investigating the effect of correlation on thewaacy
L Loss — of topology inference algorithms; this is part of a more gahe
) Utilization e effort to characterize network traffic correlation and iteets
on end-to-end measurements based inference.
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APPENDIX

The proof of Theorem 1 is based on the following result. We
will find it useful to identify a subsef of V' as astratum if
{R(k) : k € S} is a partition ofR.

Fraction of incorrectly classified trees

1e-01 0 260 460 560 860 1000 Lemma 1:Let S be a stratum. Then,
no. of probes (i) apairofnodeqj,k} C S are siblings if and only if
Fig. 8. ns SIMULATION . Fraction of incorrectly classified topologies for dif- A(j, k) < min A(j', k'); (18)
ferent classifiers as function of the number of probes. {j",k yCS: {5,k yn{j,k} =1

(i) if {j,k} C S are such that

exponential on-off sources using UDP. Averaged over tHerdif
ent simulations, the link loss ranges betweéhand13% and A(j k) = min A(j, k') (19)
link utilization ranges betweer0% and88%. ke

Figure 8 plots the fraction of incorrectly identified topgies then{j, k} are sibling;
over 100 simulations. The relative accuracy among therdiffe (jii) if {j,k} C Sis a pair of sibling nodes, thei® \ {j,k}) N
classifiers is in good agreement with the results from thee‘noc[a(j, k)} is a stratum.
simulations. Performance of the utilization and joint sifisrs
are somewhat inferior due to: (i) wide spread of link utitina
values among the different links; (ii) presence of spatate-
lation among probe delays. In the simulations, probes amem
likely to experience similar level of congestion on consieLor
sibling links than dictated by the modes independence gssu
tion. We calculated the off-diagonal elements of the catieh
matrix of the actual link delays. The mean was 0.021 and t

T e Comellon aflecte 13 SCBR 4 Stumher st o (., € (115
s . SltICh thatJ?“, R(t;) = R({) since otherwiseJ;csR(i) would

In the simulations we also observed the presence of ShonrotcoverR Now eitherk € T ork ¢ T. Butk € T implies that
term temporal correlation among successive probes thati@nc (i, k) < ( k), i € T so thatd(i, k) < A(j, k) contradictin

tered the same congestion events. This does not affectaetim AN b J; 9

. (18) whilek ¢ T implies thata(j,7) < a(j,k), i € T so that
consistency, although the convergence rate may be slowed. againA(j, i) < A(j, k) contradicts (18). Therefogeandk are

siblings. (ii) then is an immediate consequence of (i) aiy (i
follows immediately from the definition of straturg.

In this paper we have presented an algorithm for the inferenc
of the multicast tree topology from end-to-end measuremerroof of Theorem 1lt suffices to observe that iDBT, at the
The algorithm combines different performance measuresendbeginning of each iteratio®}’ is a stratum; therefore, the pair of
construct the tree by adaptively choosing that which instiie nodes which minimized(., .) is always a pair of sibling nodes.
best accuracy. This is accomplished by a careful enumeratio This property holds before the first loof (s a stratum), and
all the possible erroneous decisions and by estimationesf th(ii) and (iii) of Lemma 1 ensure it holds subsequengy.
probability. These estimates in turn can be used to determin
the number of probe packets to achieve a desired level of acPuoof of Theorem 3SinceA(™ (4, k) converges almost surely to
racy. A(j, k), then, with probability 1, for all sufficiently large, the

We investigated the statistical properties of the algatitind relative ordering of thel("™)(j, k) is the same as that of(j, k)
showed that it is consistent. Analysis of a simple scenarfawhich observe can be different for loss and utilizatior)e, it
showed that it can significantly outperform any of the altjomis  suffices to observe that for all sufficiently largethe two pairs
previously considered. We also used simulation to evalitiste of nodes which minimized,(.,.) and A,(.,.) are both siblings
accuracy and found out that, in general, it required mangfewpairs providedR’ is a stratum. This property holds before the
probes to correctly identify the topology than other apphess. first loop (R is a stratum), and (iii) of Lemma 1 insure it holds
ns experiments showed that spatial correlation negatively aubsequently, irrespectively of the actual pair of nodéscsed
fects its accuracy. We believe that diversity of traffic ialneet- for grouping. Then the last two statements directly folldman
works makes large and long lasting correlation unlikely. il standard results.

Proof:. Observe first that by definition of stratum jife S, then
no ancestor or descendentjtan belong taS. (i) the only if
gart follows from the observation thatjfandk are sibling, then
a(j, k) < a(j,?),a(l, k) forany? € S\ {j,k} which implies
A4, k) < A(J,0), A(L, k). For theif part assume thdtj, k} C
rg, satisfies (18) and suppogeandk are not siblings. Lef be
hhee sibling ofj. Then,¢ ¢ S since, if¢ € S, a(j,¢) < a(j, k)
implies A(j,¢) < A(j, k), contradicting (18). Thus, sincg is

VII. CONCLUSIONS
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