Multicast Inference of Packet Delay Variance at
Interior Network Links

N.G. Duffield F. Lo Presti?
LAT&T Labs—Research 2University of Massachusetts

Abstract— End-to-end measurement is a common tool for (e.g., see [1], [2], [8], [21], [16], [23], [24], [26]); seval
network performance diagnosis, primarily because itcanre  measurement infrastructure projects are in development
flect user experience and typically requires minimal suppatr (including CAIDA [6], Felix [10], IPMA [12], NIMI [15],
from intervening network elements. Challenges in this ap- Surveyor [30]) with the aim to collect and analyze end-to-
proach are (i) to identify the locale of performance degrada end measurements across a mesh of paths between a num-

tion; and (ii) to perform measurements in a scalable man- ) )
ner for large and complex networks. In this paper we show ber of hosts. Standard diagnostic tools for IP networks,

how end-to-end delay measurements of multicast traffic can Pi Ng andt r acer out e report roundtrip loss and delay.
be used to estimate packet delay variance on each link of aA recent refinement of this approagat hchar [13], es-
logical multicast tree. The method does not depend on coop-timates hop-by-hop link capacities, packet delay and loss
eration from intervening network elements; multicast prob-  rates. pat hchar is still under evaluation; initial expe-
ing is b_andwidth effi(_:ient. We establish Qesirable statistal  rience indicates many packets are required for inference
properties of the estimator, namely consistency and asymp- leading to either high load of measurement traffic or long

totic normality. We evaluate the approach through model . .
based and network simulations. The approach extends to measurement intervals, although adaptive approaches can

the estimation of higher order moments of the link delay dis- educe this [9]. More broadly, measurement approaches

tribution. based on Time To Live (TTL) expiry require the coop-
Keywords—End-to-end measurement, queueing delay, es- €ration of network elements in returning Internet Control
timation theory, multicast trees, network tomography Message Protocol (ICMP) messages. In future, encapsula-

tion may hide TTL from higher layers that would see just

a single hop between tunnel endpoints. Finally, the suc-
cess of active measurement approaches to performance di-
A. Background and Motivation. agnosis may itself cause increased congestion if intensive

Monitoring the performance of large communicationrobing techniques are widely adopted.
networks and diagnosing the causes of its degradation 4 response to some of these concerns, a multicast-based
a challenging problem. There are two broad approactProach to active measurement has been proposed re-
to performance diagnosis. In tivaternal approach, direct cently in [3], [4]. The idea is that correlation in perfor-
measurements are made at or between network elemeR@Nce seen aimter sectingend-to-end paths can be used to
e.g. of packet loss or delay. This approach has a numBEaw inferences about the performance characteristics of
of potential limitations: it may not be available for gentheir common portion, without cooperation from the net-
eral users; coverage may not span paths of interest; magrk. Multicast traffic is well suited for this since a given
surements may be disabled during period of high load; Racket only occurs once per link in the (logical) multi-
sues of scale gathering and correlating the measurem&Rg! tree. Characteristics such as loss and end-to-end dela
in large networks; how to compose per hop measuremefg§n at different endpoints are highly correlated. Another
to and end-to-end view. advantage is in scalability. Suppose packets are exchanged

This motivatesxternal approaches, diagnosing the nef2n @ mesh of paths between a collectiodomeasurement
work through end-to-end measurements, without necesd¥sts stationed in a network. With unicast the probe load
ily assuming the cooperation of network elements on tR@ the network may grow proportionally v in some

path. There has been much recent experimental worklféks Of the network. with multicast the load grows pro-
understand the phenomenology of end-to-end performaméstionally only toV.

. INTRODUCTION
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Fig. 1. LEFT: Two leaf tree. RGHT: m-leaf tree.

of multicast probe packets. It is assumed that the link dsith the fastest asymptotic rate of convergence.
lays are independent random variables, both spatially (i.e Packet loss reduces the number of packets available for
between different links) and temporally (i.e. between diftelay estimation, hence increasing estimator variance. In
ferent packets); later we discuss the impact of violati@ection V we quantify this for an estimation scheme that
of these assumptions. The method rests on (generalizexkes maximal use of information from surviving packets,
tions of) the following observation. Consider the logicalsing all packets reaching a given node pair for which a
multicast topology of Figure 1(left), in which packets areovariance estimator is calculated.
multicast from the root to receiversl and2. D; isthe  The model used here also assumes temporal indepen-
random delay on link, and the source-to-leaf delays fronience, i.e., that delays between successive probe patkets a
the root0 to the leaf nodes and2 are X; = D+ Dy and 3 given node are not dependent. This can be arranged for
Xy = Dy + D, respectively. Then a simple calculatiomy making the interprobe times greater than the queueing
shows that, under the independence assumption, timescale. However, for a wide class of temporally depen-
Var(Dy) = Cov(X1, Xa), (1) d_ent delay processes-we .require only e_rgodicity—tr_le con-
sistency of the estimators is unaffected, i.e., they stifi-c
i.e. we express the variance of an internal link delay wrerge to the true values as the number of probes grows to
terms of the covariance of the source-to-leaf delays. Wdinity. However, the rate of convergence may be slower.
can form an unbiased estimate ©8v(.X;, X;) directly In Section VI we report two types of simulation (i)
from end-to-end measurements; this constitutes an uniisdel simulations with packet delay chosen pseudo-
ased estimate dfar(Dy). The same method extends teandomly according to a given distribution; and (§[22]
higher order moments; when the nddbad branching ra- simulations that represented both the probe traffic mixed
tio m, we are able to estimate the firstmoments off);; in with background traffic of TCP and UDP sessions and
see Figure 1(right). We specify the delay model in Sedelay occurred as result of queueing against background
tion Il and describe the basic moment estimators in Seraffic, and loss due to buffer overflow. The model simula-
tion 111 tions allow us to compare the theoretical prediction with a
Here we focus on estimation of the delay variance, eiodel in a controlled manner. We verify the accuracy of
ther on individual links, or from the root to a given nodehe delay variance estimator. The variance of the variance
In Section IV we show how the above scheme can be usestimators over many simulation runs is conformant with
to obtain multiple unbiased estimates of the variance of ttiee model; this verifies the benefit in accuracy of using the
delay from the root to a given nodeone estimator for ev- minimum variance estimator. Thes simulation allow us
ery pair of leaf nodes descended through different childraminvestigate the performance of the inference method in a
of k. The estimates are consistent, i.e., they convergeniore realistic setting in which the independence assump-
probability to the true variance as the number of prob&en may not be exactly satisfied. We find that dependence
grows to infinity. Any convex combination of these estibetween delays in different links is smaller when buffers
mators shares these properties; although the rate of care larger, and that inference is correspondingly more ac-
vergence will be different in each case. This rate can berate. In a 12 node topology we find the typical error in
used to distinguish between the estimators. We show hestimation is about 23%, based on a sample size of 1,000
to choose the weights in order to obtain the combinatigmnobes. We believe this is sufficiently accurate to distin-



guish links with high delay variance. As far as we arenowledge of the per link delay variance will be increas-
aware there are no studies in deployed networks that meggly useful for the following reasons:

sure delay correlation between different nodes. Howev
we believe that large and long-lasting spatial depende
is unlikely in a real network such as the Internet beca
of its traffic and link diversity.

nmbdel Development. The mapping problem just described

Will become easier upon development of delay models.
% expect these to arise from two sources. The first is
the development of measurement infrastructure projects
C. Implementation Requirements in which selected links are instrumented for one-way de-

lay measurements. The second is the development of

Since the data for_delay mference COMPISES ONE-Wah,ticast-based estimators for the link deldigtribution
packet delays, the primary reqmremenf[ is the deploqumm end-to-end measurements, using a more computa-
of meas_urement hosts W'th synchrgmze@ clocks. _(Aﬁ'onally intensive technique proposed in a companion pa-
tua_llly, since delay covariances are invariant un(_JIer tm‘lﬁér [14]. We anticipate that this will allow the develop-
shifts, the absolute times need not be synchronized, pfo;+ of ink delay distribution models, with the distribu-
vided that the rates are identical). Using Global Positiopz - i tcrred from network measurements
1jng| System (GPS) timing it is p055|_b|hg to makef ONe-Wa¥dering. Identification of links with highest delay vari-

elay measurements _accurate to within tens o m'(_:rosﬁﬁ'ce suggests candidate for links on which performance is
onds or better. GPS is currently used or planned in S%’e’graded for delay sensitive applications

eral of the measurement infrastructures mentioned earli%lay and Delay Variation. The variance of the packet

'(Ij'hel Net;vot:k Tlme'g’rotocol (NTP_) [17} |shmored W'de][ydelay (on a link or path) can be used to estimate or bound
eployed, _Ut provides accuracy in on y the order a feffy yariance of the interpacket delay variation. [étbe

tens of milliseconds, a resolution at least as coarse as[rﬁg delay encountered by packietn a given link. The

queueing delays in practice. An alternative approach imerpacketdelayvariation (or jitter) between packetsd

calibrgtion and synchronization of clocks has been devg—)_llz1 onthelinkis/i = D+ — Di: a similar notion applies
oped in [25], [27], [18].

; . . to end to end delay. Observe
Another requirement is to know the multicast topol-

ogy. There is a multicast-based measurement too{/ar(Ji) = Var(D')+Var(D™') —2Cov (D!, D). (2)

nt race [19], already in use in the Internatt r ace re-

ports the route from a multicast source to a receiver, aloAgsumingl(-) to be stationary, the first two terms on the
with other information about that path such as per-hdpHS of (2) are equal, while under the assumption of tem-
loss and rate. Presently it does not support delay m@aral independence the lastterm is zero, and=s¢J’) =
surements. A potential drawback for larger topologies ®¥/ar(D?). Measurements of end-to-end delays in the In-
thatnt r ace does not scale to large numbers of receivetarnet [1] show that end-to-end delays successive packets
as it needs to run once for each receiver to cover the ane only slightly dependent when the interpacket time is
tire multicast tree. In additiomt r ace relies on multi- longer than the typical queueing timescales. Stronger de-
cast routers responding to explicit measurement queripendence is found at shorter timescales: successive pack-
the feature that can be administratively disabled. An ats are more likely to queue together. With positive corre-
ternative approach that is closely related to the work dation between successive probe del@ygs(D*, D't >
multicast-based loss inference [3], [4] is to infer the &&gi 0; in this caseVar(J?) is bounded above by Var(D?), a
multicast topology directly from measured probe statssticquantity that we can estimate from end-to-end measure-
see [5], [28]. The delay variance estimates of the presem¢nts.

paper can also be used to infer topology. This method ddepol ogy Inference. If the logical multicast topology is not

not require cooperation from the network. initially known, it can be inferred from delay variances.
_ _ This technique uses the estimated variance of the cumula-
D. Useof Delay Variance Estimate tive delay from the source to a given node. Consequently

Although prior work has characterized end-to-end dee shall be interested here in the estimation of cumulative
lays [1], [21], [24], to the best of our knowledge there igelay variance as well as link delay variance.
no generally accepted model for per link delays in real net-
works. Without a model it is difficult to map a given in-
ferred value of the link delay variance to a specific value We identify the physical multicast tree as comprising ac-
of a quality metric, such as the probability of queueing désal network elements (the nodes) and the communication
lay exceeding a given value. Nevertheless, we believe thiaks than join them. The logical multicast tree comprises

Il. THE TREE AND DELAY MODELS



the branch points of the physical tree, and the logical linky a uniformly minimum variance unbiased estimator of

between them. The logical links comprise one or mokgs, namelys;, where

physical links. Thus each node in the logical tree, except

the leaf nodes and possibly the root, must have 2 or magre 1 Z\ () o (m
. . = —— Z x " xt

children. We can construct the logical tree from the physv — ,, i j

ical tree by deleting all links with one child and adjust- m=1

ing the links accordingly by directly joining its parent and At a node with branching ratia. we are able to es-

child. : :
. . . timate the firstr» moments of the delay on the shared
Let 7- = (V, L) denote a logical multicast tree Wlthportion of the path from the root; see Figure 1(right).

nc_)tcriletshz :gdrllgﬁL'm\QfS'daedr;'fy Xo/ne'lrlw(()jii,oizeﬂig(ztet The cumulant generating function of the leaf delays
wi u p yand C Vowi (X1,...X,,) is defined fol® € R™ by

of leaf nodes (identified as the set of receivers). The set of

)L ) ()
-— ) XX
m,m’=1

(4)

children of nodegj € V' is denoted byi(;). Each nodek, m
apart from the root has a parefitk) such that(j, k) € L. A(0; X) = log E[exp(> _ 6:X,)]. (5)
Define recursively the compositiorfé = f o f*~! with =1

f' = f. Nodes are said to be siblings if they have thehe cumulants are defined by partial differentiation w.r.t.

same parent. It = f(j) for somem € Nwe say thaj the componentd; (when derivatives exist): for indices
is descended fok (or equivalently that is an ancestorof ;, s ¢ 7_ set

j) and write the corresponding partial ordefdimasj < k.

i v j will denote the minimal common ancestoricdnd o ~ 0

in the <-ordering. Kein(X) = (H 30@) A6 X)
We associate each no#lea random variablé);, taking =t

values in the extended positive real liRe= R4 U {co}. The first and second cumulanis! and K2 of a single

By conventionD, = 0. Dy, is the random delay that wouldrandom variable are its mean and variance respectively.

be encountered by a packet attempting to traverse the Ikowing the cumulants of a set of random variables is

(f(k),k) € L. The valueD,, = ~c indicates the packet isequivalent to knowing their joint distribution. The cumu-

lost on the link. The delay experienced on the path frolants of D, are related to those of th¥; as follows. Set

the root0 to a nodek is Xy = >, D;. We assume 1 = (1,...,1) e R™.

that theD;, are independent. Let, = P[D; < o], the  Theorem1l: K'(X) = K™(X};). Hence any unbi-

probability of successful transmission over libk ased estimator ok* (X) is also an unbiased estimator of

woo O

K™(Xy).
[1I. N ON-PARAMETRIC ESTIMATION OF DELAY Proof: Observe K1(X1,..., X,) = KY(X; —
DISTRIBUTION MOMENTS Xp ooy X — Xp) + KY(1X,) = K™(X}). The first

In this section we present a class of non-parametric &§uality is becausé’ is affine in each of its arguments,
timators of the delay distribution. We assume initiallytthdhe second because the cumulant of a set of independent
all delays are finiteP[DD;, = oc] = 0. Consider first a random variables is zera.
logical subtree formed by the rodf and a non-leaf node
k with two descendents and2 that are leaf nodes; see |V. DELAY VARIANCE ESTIMATION ON GENERAL
Figure 1(left). By writingX; = X\ + (X; — Xj) in the TREES
expression fo€ov (X1, X3), expanding using the bilinear-
ity of the covariance operatdiov(-, -), and using the mu-
tual independence of the links delays,, X; — X and
X9 — X}, we obtain

In a general tree leR (k) = {{i,j} C R|iVvj =
k,} be the set of distinct pairs of leaf-nodes whose
least common ancestor is Any convex combination
> (i, j1eqk) 1ijSi; (i.e. with thep; > 0 and summing
to 1) is also an unbiased estimatorspf An example the

Cov{i, Xp) = Var(X). @) Uniform estimator
Hence any unbiased estimator 6bv(X{, X3) is also 1 Z ® )
. . S
an unbiased estimator ofar(X;). Let X9 x{9 = #Q (k) !

1,2,...n be measured end-to-end delays between the fi.ireqvi)

root 0 and leaf noded and 2 respectively. Abbreviate One potential disadvantage with the uniform estimator is
Cov(X;, X}) by s;, and writesy;, ass;. We estimates,  that high variance of one of the summands may lead to



high estimator variance overall. This motivates choosing a Gaussian random variable of mean zero and variance

convex combinations that are functions of the end-to-epd C'(k) - u

delays themselves in order to reduce variance. In this séc} The minimal asymptotic variandef ,cp, p-C'(k) - p

tion we shall assume that all delays a finite with boundéslachieved when

Tﬁusrg::trlr;%rrc/ents We shall relax the finiteness assumptlor)m = 5 (C (k) = (C(k)‘l ‘ 1)@) /1 LC(k)!
We formalize the notion of (possibly random) convex . _ _ (10)

combinations of;; through ecovariance aggregator For Wwhere C'(k)™" denotes the inverse math o (k) and_

S C R let F,(S) denote ther-algebra generated by thet(is) = b {i,5} € Q(k). The corresponding asyriptotlc

end-to-end delay$.X;).cs (i.e. the set of events thatvariance of the variance estimator(is- C'(k)~" - 1) .

can be determined from knowirig( ;) ). A covariance Proof: (i) The proof follows from standard results in mul-

aggregator: is sequencei(n)).cy of random vectors tivariate analysis; convergence to the stated Gaussian ran

{pij(n) - {i,5} € Q(k); k € VAR}With0 < p;;(n) < 1 dom variable follows by Corollary 1.2.18 in [20]

andy>; oo 1ij(n) = 1 for eachk € V' \ R. We as- (i) Since they;; sum tol, the proof follows by consid-

sume eachu, to be ¥, (R)-measurable, i.e., it is a func-ering the constrained minimization f C'(k) - p1 — 2k - 1

tion of the measured delays of the firsprobes. We will With Lagrange multipliek. As a covariance matrix;' (k)

usua”y suppress the expncit dependence on the numi:%pOSitive definite and hence invertible; minimization of

of probesn. Lets = {§;(n) : {i,j} € Qk); k € the convex function of. takes place at the the stationary

V'\ R} be a family of estimators; ; (n) being an,, (i, j)- Pointu = kC'(k)~" - 1. This yieldsy*(C (k)) upon nor-

measurable unbiased estimatoaf (X ;). Then we es- malization. The corresponding minimal asymptotic vari-

timateVar(X}) by ance isu* (C(k)) - C(k) - p*(C(k)) = (1-C k)71 -1) 7
]
Vi, 5) = ' Z PijSij (8) Operationally, the coefficients; of the minimum vari-
{i.i}eQ®) ance estimatok;, (u*(C'(k)),%) of Theorem 2 are to be

A covariance aggregator is calleeterministic if it does calculated from aestimateof the covariance matrie ().

not depend on the (). We denote the set of such agket 2" = z'(ﬂ?) — & Lt )(_i(m)' LetC'(k) denote the
gregators with indices it) (k) by D;. An example is the empirical covariance matrix with entries

uniform aggregator that was used in the uniform estimator
(7): ;= (#Q(i v j))~'. Define the covariance matrix C'(k);j), i1y = (n — ) (Z Z )Z](?n)
Ciniemy = Cov ( 2,75 0 ZoZ0 ) (9) n
(i5),(¢m) ( J ) _ l Z ZZ(W)Z](W) Z ZZ»(,m)Z(m)) (11)
n
where 7Z; = X, — E[X;]. We will use C'(k) = m=1 m=1

[C(ij),(ZM)](ij)7(gm)eQ(k) to denote the matrix obtained by (1) is an unbiased estimator af (k). Estimating
letting the indicegij) and((m) in (9) run overQ (k); this  ,*(C'(k)) by = (C (k)) andsy, by Vi (1*(C'), 3) potentially

is a submatrix of the matrix’ (k) obtained by taking the introduces bias and increases variance in the estimation
indices unrestricted over the @t (%) of binary subsets of of the s;,. However, the following Theorem shows that

R(k). it is consistent and has the same asymptotic variance as
o . _ . Vi (17 (C),9). ~
A. Minimum Variance Estimation for Cumulative Delays Theorem 3: Vk( =(C'(k)),3) is a consistent estimator

In the next theorem we characterize the asymptotic dff-sk- vV (Vi (1 “(C(k), ) — si) converges in distribution
tribution of thes;; asn — oo, and give a form for the toa Gau55|an riellndom variable of mean zero and variance
estimatorV; (1, ) of minimum cumulative variance. (1-Ck)~! ) :

Theorem2: (i) For eachk € V \ R the random vari- Proof: CIearIyC( ) converges almost surely to(k) a
ables{v/n (5;; — sx) | {i,j} € Q(k)} converge in n — o0 Since matrix inversion is contlnuous on the set
distribution asn — oo to a multivariate Gaussian ran-Of strictly positive definite matricesy*(C'(k)) converges
dom variable with mean 0 and covariance matflgk). @almost surely (tg.*(C'(k))); since eachy;; converges to
Hence thes;; are consistent estimators ef and so is si; = s, Vi(1*(C(k)),5) is consistent.

V(u,s). For any deterministic covariance aggregaior By thed-method (see e.g. [29)/n (V (u* ((7(k)),§) -
Vn(Vi (1, 5) — si) converges in distribution as — co  s;) converges to a Gaussian random variable with nfean



and variancev - C°(k) - o, where for(¢, m) € Q°(k), C. Criteriafor Assessing Inference Reliability

o In sections IV-A and IV-B we derived expressions for
> s (Ck))si;. (12) the variances of estimates of the cumulative and link de-
{1.7}€Q(k) lays respectively. For a given delay variance estimate, we
can associate its variance by using the plug in estimator
for the corresponding analytic expression. This enables
V= i (C(k))XQ(k)({& m}) use to find confidence intervals for the estimates that will
9 be asymptotically accurate for large For example, if we
+ > Su 05; Mu (C'(k)), (13) usen probes to form the estimaté, (1* (C'(k)), 3), we as-
{i.0YeQ(k sociate with this a varianee? /n wheres? = (1-C'(k)~*
1)~1. We write confidence limits for the estimate as

Differentiating,

wherey g x) denotes the indicator function of the gtk ).

But s;j = sivj = s for {i, j} in Q(k) and so is constant Vil (C(k),3) £ 2520/, (17)

in the sum. Since thg}; sum to 1, the sum in (13) is zero.

Hencea - CO(k) - o = p*(C'(k)) - C(k) - w*(C(k)). m wherez;, denotes the number that cuts off an af¢ain
the right tail of the standard normal distribution. This is

B. Minimum Variance Estimation for Link Delays used for a confidence interval of leveel- 4.

We can estimate the link delay variance as the difference vv. |mpACT OF LOSS ONESTIMATOR VARIANCE

of two cumulative variances since . - .
We relax the assumption of finite delays, Here we iden-

Var(Xy) = Var(X () + Dy) = Var(X () + Var(Dy), tify infinite delays with packet loss, although the same re-
(14) sults would hold were we to treat as lost any packet with
by the independence assumption on link delays. An u§Rurce to leaf delay greater than some finite value. The
biased estimator of;, := Var(Dy) is Vi, (1= (C(k)),3) — link and cumulative delay random variables will be de-
Vi (15 (C(f(K))),3). We now show that joint optimiza- noted byD) and X, respectively each possibly taking the

tion of the aggregators ift, and V; ;) will result in an valueoo. We useDk to be the distribution of; con-
estimator of lower variance. ditional on D}, < oo, and similarly forX;. We assume

Given a pairy = (u(k), u(f(k))) € Dy x Dy of throughout that thé;, have finite fourth moments. Since

deterministic covariance aggregators with indice®ik) We are interested in delay variance, we want to estimate

and Q(f(k)) respectively, we can form a unbiased estiar(X;) andVar(Dy) even in the presence of packet loss.
mate ofr;, as For estimation, the effect of packet loss is to reduce the

number of delay samples available, and hence to increase
Wi, 3) == Vi(u(k),s) = Vi) (u(f(k)),5)  (15) the variability of the estimates. A simple way to apply
the foregoing theory is to restrict attention to only those
LetC (k) denote thetQ (k)+#((f (k) dimensional ma- packets that are received at every leaf (or at least at every
trix written in block form element ofR(k) when estimating;,). A disadvantage of
. C(k) C(k, f(k)) this approach is that is does not scale well as the topology
C(k) = ( Clk, fNT  C(f(k)) ) 1 (16) grows. For assuming link loss rates to be bounded away
7 from zero, the proportion of packets reaching all receivers
where C'(k, f(k)) is the #Q(k) x #Q(f(k)) matrix in a tree decays geometrically fast in the number of links
of covariances|[C(;; )](”)GQ( B.(em)co(kyy  Then inthe tree.
statements analogous to Theorem 2(ii) follow straight- An alternative that wastes less data is to calculate pair-
forwardly, using parallel arguments. In par'uculanse estimates of;; that use all packets received:aand
V(Wi (r, S) — ri) converges to a Gaussmn random varj- Let us formalize this. For a subset of receivérs. V'
able of mean 0 and variange- C’(k) "'y and the min- definel, (S) = {i € {1,2,....,n}| X ) < % Vje St
imum over deterministic aggregators of the asymptotice subset of the first probes that are received at all nodes
variance takes the value; + cs +2c3)/(cic2 — c2) where in S; setN,(S) = #1,(S). We will sometimes write
=1 C(k)—l Lp,ca =1y - C(f(k) ™" -1ppyand 1,(iy,...,4) for I,({i1,...,4.}), and similarly for,.
c3 = Ly - C(k, f(k))~" - 11. (Here the subscripts onFor S C R let V(S) be the set of nodes in the minimal
1g, Lyny dlstlngwsh the subspaces in which these vectdree spanning andS. SetB(S) = Hiev(s) «;, where
live). «; is the probability of successful transmission over link
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Fig. 2. TREESUSED IN SIMULATIONS. LEFT: 8-leaf binary tree for model simulations j&HT: Heterogeneous 7-leaf tree for
ns simulation.

k. Clearlyn='N,(S) converges almost surely t8(S) where the sums run ovéy, (4, j, k, ().

asn — oo. Estimator variance can be reduced by us- The corresponding version of the minimum variance
ing all packets ir/,, (¢, j) to estimates;;, not just those in link delay variance estimator follows by replacingby

I, (R(iV j). Define G ands by v throughout Section IV-B.

VI. SIMULATION EVALUATION

~ 1 m m 1 m m!
Vij = ZXZ»( )X]( )_WZXZ'( )X]( )

We conducted two types of simulation (i) model simula-
(18 tion with packet delay chosen pseudo-randomly according
to a given distribution; and (ins[22] simulations that rep-
resented both the probe traffic mixed in with background
traffic of TCP and UDP sessions and delay occurred as re-
sult of queueing against background traffic, and loss due to
buffer overflow. The model simulations allow us to com-

bution asn — oo to a multivariate Gaussian random variPare the theoretical prediction with a model in a controlled

able with mean 0 and covariance matéixk),;; _manner; their purpose is to show that the statistical prop-
C () iy ey B 4, £ m) [ (B, ) B(L, m)) ﬁé’r(fg t_he erties of the estimators conform to the model used. e
17 m 1S 1 1 -

simulation allow us to investigate the performance of the
inference method in a more realistic setting in which the
model assumption (such as independence) may not be ex-
actly satisfied. Their purpose is to investigate conforreanc
of the predicted delay variances with those occurring in the
network interior.

m,m’

where N abbreviatesV, (7, j) and in the sumsn, m’ run
over I, (¢, 7). v;; is an unbiased estimate afy. Analo-
gous to the previous results we have

Theorem4: (i) For eachk € V \ R the random vari-
ables{\/n (v;; — si) | {i,j} € Q(k)} converge in distri-

v;; are consistent estimators gf and so isVj(u, v) for
any deterministic covariance aggregatorFor any deter-
ministic covariance aggregator /n(Vy(u, v) — s) con-
verges in distribution a8 — oo to a Gaussian random
variable of mean zero and varianee G'(k) - /..

(i) The minimal asymptotic variandef ,,cp, 1 -G (k) - p

is achieved whep = p*(G); the corresponding minimal -

asymptotic variance il - G/(k)™' - 1) 7", A Modd Simula.mons _ _

(i) Vk(u*(@) %) has the same asymptotic properties The model simulation used an 8 I_eaf b_mary tree (see
Vi(i*(G), ) V\7/here the estimated covariangas defined q—sigure 2(I.eft)); delays were exponentially dlst_rlbutedeT

by ' delay variances were heterogeneous: leaf links 8 and 15

had delay variance 10, all other links had delay variance 1.
. Losses were not modeled. This heterogeneity was chosen
Nu(i, J)No(k O) & = 22 2 i ord I he ad fgh Y .
N t7)s 7
NoGir gk, 0) (i5), (k) = ; s 2y in order tp evaluate the advantages of t e_mlnlmum vari-
. m ance estimator. We present a representative set of results
- 7Um) g{m) NT g m) 7 (m) —(19)  from experiments for the link delay variang€ and the
Ni(t, 7,k ) zm: v ; B cumulative delay variancg.
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Fig. 3. VARIANCE OF ESTIMATED VARIANCE. Cumulative Delay Variance to nodes 1,6,10,15 in Figuref@(ILEFT: Calculate
Variance; RGHT: Empirical Variance from 100 simulations.

Weighty;; | Link pairs(z, j) ence is particularly evident for link 1 (which has 2 high
0.000018 | (8,15) variance links as descendents, 8 and 15) and link 3, which
0.001213] (8,12) (8,13) (10,15) (11,15) has link 15 as a descendent. The variance of the estima-
0.001811 | (8,14) (9,15) tors W, for both these links is decreased in the minimum
0.081286 | (10,12) (10,13) (11,12) (11,13) variance estimator, relative to the uniform estimator,dsy r
0.121322| (9,12) (9,13) (10,14) (11,14) ducing the weighj:;; when: or j corresponds to a high
0.181077 | (9,14) variance link. This is particularly striking in the mini-

TABLE | mum variance estimator for link 1; we tabulate the weights

WEIGHTS FORMINIMUM VARIANCE ESTIMATOR. Topology % (C(l)_) in Table I_' The yveight for.the painf8,.15) of
high variance links i90~* times the highest weight, that

of Figure 2. Links 8 and 15 have ten times variance of others. i
for pair (9, 14).
A.1 Convergence To see the statistics of estimator variation reduction, we
display in Figure 5 the ratio of the standard deviation of
Figure 3 shows the variance of the cumulative delgle yniform estimator to the standard deviation of the min-
variance from sources to nodés= 1,6,10,15in Fig- jmum variance estimator, and a function of the number
ure 2(left), plotted as a function of the number of probegs probes. This in shown on the left for the cumulative
On the left is the theoretical variander(Vi.(11"(C'),5));  variance, and on the right for the link delay variance. For
on the right the empirical variance from 100 samples e cumulative variance we display only for links, 1,2 and
Vi(w*(C),5) found by simulation. Observe in both cases: the other internal links the uniform and minimum vari-
the decay of the variance towards O as the number ffce estimators are identical because there is only one term
probes increases; furthermore the experimental variancgyithe sum fort/. The figures show that the reduction in
very close to the theoretical values over the range of prop&iance is roughly uniform across a range of experiment
numbers. length up to 10,000 probes. The standard deviation was
Figure 4 shows detail from a single simulation; sampughly halved for the cumulative delay variance, and be-
ple paths of the link variance estimatdf (., s) for links  tween 0.3 and 0.5 for the link delay variance. Reduction
k = 1,3,5,10 as function of the number of probes, fofyas somewhat greater for the standard deviation of the link
up to 10,000 probes. On the left figure, the aggregatordelay variance, except for nodes 4 and 7. These nodes have
is uniform, on the right, the minimum variance aggregatggly two descendants, one of which terminates a high vari-

-~

1~(C'). Observe in both cases that the estimate approachfige link; there is no flexibility to avoid the high variance
the model value, 1, as the number of probes increases. of the first term o, = V, — Vih-

A.2 Variance Reduction B. Network Smulation

In Figure 4, convergence is tighter for the minimur%
variance estimator (on the right) than in the uniform case;
this is particularly apparent in the left region of each plot Thenssimulations used the topology in Figure 2(right).
corresponding to smaller numbers of probes. The diffafe arranged for some heterogeneity between the edges

1 Methodology



Uniform Estimator Minimum Variance Estimator

— link1 |] 18- — link1 |]
--- link3 --- link 3
--- link5 [ 1.6 --- link5 [
link 10 link 10
1 1.4f 1
\ N —. 7 ¢
NN o 120 1
ST T ) « M B o
1 & T S
I NN = \:r'\w" R -
08h | i 1 08F v
(- o o
06F | g 0.6
[
0.4\ ! 4 0.4F
\
02 ' 1 02}
|
0 . . . . 0 . . . .
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
no. of probes no. of probes
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Fig. 5. VARIANCE REDUCTION Ratio of standard deviation the uniform estimator to stasdkeviation minimum variance
estimator. [EFT: cumulative delay variance,IBHT: link delay variance.

and the center of the tree in order to mimic the differen&2 Comparison of Inferred and Actual Delay Variance
between the core and edges of a large WAN, with the in-

terior of the tree having higher capacity (5Mb/sec) and la- Figure 6 shows scatter plots of 1200 pairs of (inferred,
tency (50ms) than at the edge (1Mb/sec and 10ms). Eactual) link delay variance, based on 1000 probes, on the
node had a finite buffer capacity; packet losses were de# with buffer capacity of 4 packets, on the right with
to drops for the tail of the buffer. We used buffer capaduffer capacity 20 packets. Also shown is the line through
ities of 4 and 20 packets in two different sets of experihe origin at gradient 1; a point on this line would indi-
ments. The cross traffic comprised 66 FTP sessions ovate an instance of perfect inference. In the scatter plots
TCP, and 29 UDP traffic sources following an exponefe differentiate between predictions using the uniform es-
tial on-off model; there were on average around 8 badimator, and those using the minimum variance estimator.

ground traffic sources per link. In each simulation we UseTaking each plot separately we observe that inference
the source-to-leaf delays of probes as data to infer de{gynore accurate for the minimum variance estimator than
variance per internal link by and also from the source tatge uniform estimator, the difference being more evident
given internal node. Since the simulations exhibit packgjy the smaller buffer size. Comparing the plots we see that
loss, the inference was performed using the algorithms @eference is more accurate when for the simulated network
scribed in Section V. We compared the inferred vald&s ith |arger buffer capacities, particularly for small dela
with the actual delay variance for probes on internal linksriances. A small number of inferred values were nega-
that was observed during the simulation run. The compgze. This occurred for some links of high bandwidth for
ison was performed over each link in Figure 2(right) fafhich queueing delays were small. Estimation of the link
100 simulation runs. delay variance as the difference between the variance of
the cumulative delays (see (15)) is sensitive to estimation
errors. Nevertheless, the estimation error is sufficiently
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Fig. 6. SCATTER PLOTS FOR LINK DELAY INFERENCE Pairs of (actual,inferred) over 12 links in 100 experinserach using
1000 probes EFT: nodes have 4 packet buffersidT: nodes have 20 packet buffers.

small that is would not impair identification of those links buffer = 4 pkts. | buffer = 20 pkts.
with the largest delay variance. Furthermore, in practice z | unif. | min. var. | unif. | min. var.
we can avoid the worst small variance estimation errors 0| 231 2.06 1.32 1.32
by eliminating estimates that are not significantly différe 2| 1.56 1.76 1.23 1.23
from zero according at some confidence level. Similar to

TABLE I

(17), these are the estimatids from n probes for which
Wi < zso/y/n, 1 — ¢ is the desired (one-sided) confi-
dence level, and? is the appropriate asymptotic variance  INFERENCE ON1000 RACKETS. Link delay variance
expressed in terms of the estimated covariance. estimation, according to number of standard deviattoims

We attribute bias of inference to departures of the de|59nfidence level to avoid small variances. Errors are smialie
process from the independence assumption of the modB@linimum variance estimator than uniform estimator, and als
We calculated the off-diagonal elements of the correlation with increased buffer capacity.
matrix of the actual link delays. For buffer size 4 the mean
value was 0.071, the maximum 0.51. For buffer size Zpiartile-weighted median (QWM)
the mean was 0.021, the maximum 0.17. Thus correla-
tions were more pronounced for the smaller buffer size,
leading to greater inference inaccuracy. We found that bias
was more pronounced in the inference of cumulative delay,
particularly for buffer size 20 where the cumulative delayhereQ, denotes the'" quantile of a given set of error
variance is almost always overestimated. Bias was less Bgtors.

ident for the link delay variance. Since this is expressed agn Table Il we display the QWM of error factors for
a difference of estimated cumulative delay variance, cofhk variance estimation. Small or negative inferred vari-
sistent bias in the latter quantities should cancel somewgces were omitted, the quantitybeing the number of
in subtraction. Conversely, small delay variances arebettandard deviations characterizing the confidence irtterva
estimated for for the cumulative than the link case. about0. z = 0 corresponds to rejecting only negative
In order to quantify the accuracy of inference we defiriaferred variances. Ruling out these small variances de-
a metric for evaluating estimator accuracyuwlfandw are creases the QWM of the error factor: the smaller variances
the actual and inferred delay variances (either cumulatigically have higher error factor. (Fer= 2, buffer =4,
to a link or at the link itself) we form theirror factor it happens that the 75percentile of the error factor dis-

QUARTILE WEIGHTED MEDIAN ERRORFACTORS FOR

(Qa5+2Q5+ Q.75)/4, (21)

tribution is larger for the minimum variance estimator, but
this is atypical). For large buffer sizes the error factoes a
noticeably smaller; the difference in accuracy between the
uniform and minimum variance estimator is smaller too.

For example, ifiw is either twice or halfo, their error fac- We found no great advantage in increasing the number of
toris2. As a robust summary statistic to capture the cenfa@mobes to 10,000 since bias becomes a larger part of the
of the distribution of error factors, we use the two-sidestrors.



VIl. CONCLUSIONS AND FURTHER WORK

In this paper we have proposed a novel technique for tie
inference from end-to-end measurements of the variance
of the delay encountered by multicast packets on an intgr-
nal link. The cooperation of intervening network nodes Is
not required.

We constructed a convex family of variance estimatoi@
and found the estimator of minimal asymptotic variancgy
Evaluating the minimal variance estimator comes at some
computational cost, namely, the inversion of the covari-
ance matrixC. In work to be reported elsewhere, we sho@!
how this computation may be considerably simplified for
binary trees, although at the cost of increasing estimatdr
variance somewhat. Another approach is to compromise]
between the computational simplicity of the uniform esti-
mator and variance reduction. An example would be to g&t]
wi; = 0 for {7, j} in some subset of) (k) in which the
measures end-to-end varianégsare high. It remains to [12]
develop a robust approach along these lines. [13]

Thens experiments showed typical errors of about 20(’]94
in estimation of the delay variance using 1,000 probes. We
observe that using a 40 bytes probe every 100ms, the |
on the network is less that 4kb/sec and the measurements
can be completed within 2 minutes. [16]

We found inference to be more accurate in networks
with larger buffers; there was smaller correlation betwem]
delays at different nodes and hence closer conformance to
the underlying model. It appear that the larger buffers agsg;
mit a greater diversity of connections through a node over
gueueing timescales, diluting the correlation seen betwgeg]
delays at successive nodes. We believe that diversity of
traffic in real networks such as the Internet makes largpe]
and long lasting correlations unlikely. Furthermore the i
troduction of Random Early Detection (RED) [11] policies
in Internet routers may help reduce dependence; evide
for this comes from related work on internal link loss in-
ference [4], where the introduction of RED was found t
increase accuracy of inference relative to networks witH%4!
Drop from Tail packet discard mechanism. [25]

Acknowledgment [26]

We thank Joseph Horowitz for his suggestion to find ﬂf%]

minimum variance estimator.
[28]

REFERENCES

J. Bolot, “Characterizing End-to-End Packet Delay ams4$.in
the Internet.” Journal of High-Speed Network, vol. 2 n. 3, pp.
289-298, Dec. 1993. 30]
J-C. Bolot and A. Vega Garcia “The case for FEC-basedrerrl)
control for packet audio in the Internati appear in ACM Mul-
timedia Systems.

R. Caceres, N.G. Duffield, J.Horowitz and D. Towsley,

(1] [29]
(2]

(3]

11

“Multicast-Based Inference of Network Internal Loss Clrara
teristics”to appear in |IEEE Trans. of Information Theory.

R. Caceres, N.G. Duffield, J .Horowitz, D. Towsley and Ti,B
“Multicast-Based Inference of Network Internal Loss Clara
teristics: Accuracy of Packet EstimatioRtoc. of Infocom’ 99,
New York, NY, Mar. 1999.

R. Caceres, N.G. Duffield, J .Horowitz, F. Lo Presti and
D. Towsley, “Loss-Based Inference of Multicast Network ®6p
ogy” IEEE Conference on Decision and Control, 1999, to ap-
pear.

CAIDA: Cooperative Association for Internet Data Analy.
For more information see http://www.caida.org

K. Claffy, G. Polyzos and H-W. Braun, “Measurements ddns
erations for Assessing Unidirectional Latencielsiterntwork-
ing: Research and Experience, Vol. 4, no. 3, pp. 121-132,
Sept. 1993.

R. L. Carter and M. E. Crovella, “Measuring Bottlenecknki
Speed in Packet-Switched Network&ERFORMANCE ' 96,
Oct. 1996.

A. Downey, “Using pathchar to estimate Internet link chcter-
istics, On Proceedings ACM SIGCOMM’99, Cambridge, MA.
Felix: Independent Monitoring for Net-
work  Survivability. For more information see
ftp://ftp.bellcore.com/pub/mwag/felix/index.html

S. Floyd and V. Jacobson, “Random Early Detection Gayeswy
for Congestion Avoidance,"|[EEE/ACM Transactions on Net-
working, Vol. 1, no. 4, August 1993.

IPMA: Internet Performance Measurement and AnalyBi.
more information see http://www.merit.edu/ipma

V. Jacobson, Pathchar - A Tool to Infer Characteristichkter-
net paths. For more information see ftp://ftp.ee.Ibl.gattichar
F. Lo Presti and N.G. Duffield, “Multicast-Based Inface of
Network-Internal Delay Distributions”, Preprint AT&T Lalpa-
tories and University of Massachusetts.

J. Mahdavi, V. Paxson, A. Adams, M. Mathis, “Creatingeaab
able Architecture for Internet Measuremerd,appear in Proc.
INET ’98.

M. Mathis and J. Mahdavi, “Diagnosing Internet Congmast
with a Transport Layer Performance TooBRtroc. INET ’'96,
Montreal, June 1996.

D. Mills, “Network Time Protocol (Version 3): Specifitian,
Implementation and Analysis”RFC 1305, Network Informa-
tion Center, SRI International, Menlo Park, CA, Mar. 1992.

S. Moon, P. Skelly and D. Towsley, “Estimation and Realov
of Clock Skew from Network Delay Measuremen®foc. of
Infocom’99, New York, NY, Mar. 1999.

mtrace — Print multicast path from a source to a receiver
For more information see ftp:/ftp.parc.xerox.com/put/n
research/ipmulti

R.J. Muirhead, “Aspects of Multivariate Statisticaigory”, Wi-
ley, New York, 1982.

A. Mukherjee, “On the Dynamics and Significance of Lovefr
guency Components of Internet Loadhternetworking: Re-
search and Experience, Vol. 5, pp. 163-205, Dec. 1994.

ns — Network Simulator. For more information see htgpaw-
mash.cs.berkeley.edu/ns/ns.html

V. Paxson, “End-to-End Routing Behavior in the IntefhBroc.
SIGCOMM 96, Stanford, Aug. 1996.

V. Paxson, “End-to-End Internet Packet Dynamiéxpc. SIG-
COMM 1997, Cannes, France, pp. 139-152, Sept. 1997.

V. Paxson, “Measurements and Analysis of End-to-Enerhret
Dynamics,” Ph.D. Dissertation, University of CalifornBerke-
ley, Apr. 1997.

V. Paxson, “Automated Packet Trace Analysis of TCP knpl
mentations,Proc. SGCOMM 1997, Cannes, France, 167-179,
Sept. 1997.

V. Paxson, “On calibrating measurements of Packet ditan
Times”,Proc. of SGMETRICS’ 98, Madison, June 1998.

S. Ratnasamy and S. McCanne, “Inference of MulticasttRRg
Tree Topologies and Bottleneck Bandwidths using End-tb-en
Measurements”, Proceedings IEEE Infocom’ 99, New York, NY,
Mar. 1999.

M.J. Schervish, “Theory of Statistics”, Springer, NeXark,
1995.

Surveyor. For more
http://io.advanced.org/surveyor/

information see



