
On Adaptive Bandwidth Sharing with Rate Guarantees

N.G. Duffieldy T. V. Lakshman� D. Stiliadis�

y AT&T Laboratories � Bell Labs
Rm A175, 180 Park Avenue Lucent Technologies
Florham Park, 101 Crawfords Corner Road
NJ 07932-0971 USA Holmdel, NJ 07733, USA

Abstract—The objective of recent research in fair queueing schemes has
been to efficiently emulate a fluid-flow generalized (weighted) processor
sharing (GPS) system, as closely as possible. A primary motivation for the
use of fair-queueing has been its use as a means of providing bandwidth
guarantees and as a consequence end-to-end delay bounds fortraffic with
bounded burstiness. The rate guarantees translate to scheduling weights
which are set when admission control is done. A consequence of fair queue-
ing systems closely emulating GPS is that when one or more connections are
not backlogged, any “excess” bandwidth is distributed to backlogged con-
nections in proportion to their weights. However, weights are set based on
the long-term requirements of traffic flows and not in any state-dependent
manner that reflects instantaneous needs. In this paper, we question the no-
tion that queueing systems should closely emulate a GPS system. Instead of
emulating GPS, we propose three modified scheduling schemeswhich pre-
serve the rate guarantees of fair queueing (and hence preserve determin-
istic delay bounds) but adaptively redistribute the excessbandwidth such
that either losses are reduced or delays equalized. We compare the per-
formance of the proposed schemes to that of fair queueing using different
traffic sources such as voice and video, as well as sources which have aggre-
gate long-range dependent behavior. We find that the proposed schemes,
in comparison to packet GPS (PGPS), reduce packet losses andcurtail the
tails of delay distributions for real-time traffic and hence permit the use of
significantly smaller playout buffers for the same network load.

Keywords—fair queueing, scheduling, jitter, delay bounds, real-time traf-
fic, traffic management

I. I NTRODUCTION

Much research attention has recently been focused on the development of
fair-queueing systems [3], [10], [19], [20], [21], [24] that, within the non-
preemption constraints of a packet system, closely emulatefluid flow general-
ized processor sharing systems (GPS) and operate at high speeds. Demers, Ke-
shav, and Shenker proposed a fair queueing scheme that emulated GPS by using
a simulated fluid flow GPS system as a reference and basing packet scheduling
decisions on the order of departures in the simulated GPS system. The compu-
tational burden of simulating GPS was reduced in the self-clocked fair queueing
scheme proposed by Golestani [10] which showed how fair queueing could em-
ulate GPS without simulating GPS for reference. Subsequentwork has led to
both improved emulation bounds, further reductions in computational complex-
ity and efficient methods for implementation [11], [20], [21], [24]. However,
there is no detailed examination of whether the exclusive emulation of GPS is
always appropriate for all networking applications.

In this paper, we question the notion that queueing systems must emulate
GPS closely. A primary motivation for the expected use of fair queueing in
routers and switches is its ability to guarantee worst case end-to-end delay
bounds for leaky bucket controlled sources [17]. However, to guarantee worst
case delay bounds the scheduler merely needs to isolate flowsso that each
flow receives its guaranteed share of the link bandwidth [1],[19]. The guar-
antees do not depend on the property of GPS systems that the unused shares
of non-backlogged flows be redistributed to backlogged flowsin proportion to
their guaranteed fractional share of link bandwidth (or equivalently scheduling
weights). A fair queueing system need act as one only when allconnections are
backlogged. When excess bandwidth (i.e. bandwidth beyond what has already
been guaranteed to backlogged connections) is available, the fair queueing sys-
tem, instead of emulating GPS that distributes excess bandwidth according to
long term needs, should redistribute this excess bandwidthin a manner which
reflects the current or instantaneous needs of backlogged flows (i.e. a flow state
dependent redistribution). The redistribution policy canbe picked to optimize
measures such as packet loss probabilities or to control thetails of delay distri-
butions.

It has been shown in [1], [23] that even when a FIFO scheduler is used and

all sources are leaky-bucket shaped, the mean and 99th percentile of delays are
much lower than the worst-case bounds guaranteed by a GPS server. However,
there are service disciplines that can distribute the bandwidth in a more elegant
manner. Panwar et.al. [16] showed, that the shortest time toextinction policy is
actually optimal for scheduling customers with deadlines.Furthermore, a pol-
icy that simply serves the longest queue has been shown to require less buffer
space to prevent buffer losses than FIFO or other per-flow disciplines [6], [13].
Similarly, policies that serve the queue that is more likelyto violate a bound are
proved to provide optimal buffer utilization [9]. However,such disciplines by
themselves cannot provide any bandwidth guarantees. Actually, low bandwidth
constant bit rate connections are likely to starve for long intervals of time, un-
til their queue becomes at least as large as the queues of heavily bursty, high
bandwidth connections. Similarly, users that can accept a significant loss rate,
using some form of Forward Error Correction, can increase their throughput by
simply sending more packets. There is no method to control the bandwidth of
individual users.

We propose three modified fair queueing schemes that adaptively redistribute
excess bandwidth while, like fair queueing, guaranteeing each flow its specified
share of the link bandwidth. This preserves fair queueing'sability to provide
worst case end to end delay bounds and the schemes work like fair queueing
when there is no excess bandwidth. In addition, the schemes provide worst-
case fairness, bounding the time that a connection may not see any service. The
excess bandwidth, however, is redistributed as follows:

1. Longest delay first (LDF) that serves the flow with current longest delay.
2. Least time to overflow (LTO) that serves the flow with minimum differ-

ence between maximum allowed delay and current delay.
3. Least time to overflow with leaky buckets (LTOLB) that serves the flow

which would cause buffer overflow first if worst case arrivalshappen.

We compare the performance of these policies to PGPS using both trace driven
simulations as well as simulations with traffic models for various types of
sources.

The LDF policy uses excess bandwidth to reduce the variance of the delay
distribution. This has the benefit of reducing the playout buffer for voice and
video sources. Simulations with video traces and with voicetraffic show that in-
deed this policy performs better than PGPS without any sacrifice of worst case
guarantees. Since the deviation from the maximum allowed delay is not taken
into account, flows with small delay bounds (like voice) get almost no excess
bandwidth in the presence of flows with large delay bounds. Long term conges-
tion or small errors in assigning weights can result in theseflows experiencing
losses much more than flows with large delay bounds. The LTO policy tries
to minimize packet losses by assigning excess bandwidth under the assumption
that the flow which is likely to overflow the quickest has the most instantaneous
bandwidth need. In doing so, it takes into account the current deviation of each
flow from its maximum allowed delay. Simulations with a mix ofCBR, voice,
and video sources with very different delay bounds show thatthis policy reduces
losses for all classes as well as reduces the variance of delay for each class. The
LTO LB policy goes one step further by determining the connection that is most
likely to overflow its buffer under the assumption that arrivals are leaky-bucket
shaped.

A scheduling and buffer sharing scheme that tries to guaranteespecific delays
while ensuring loss-free behavior is presented in [7]. Our proposal is fundamen-
tally different from the scheme presented in [7]. We assume that our system does
not have enough buffers to guarantee zero losses. So our goalis not to define a
system that will guarantee some specific delays and at the same time zero losses.
Instead, we investigate the effect of state-dependent scheduling mechanisms in
minimizing the tails of the delay distributions while providing isolation, and also
investigate the effect of such mechanisms on the number of buffers that need to
be reserved if limited losses are acceptable.

II. A RCHITECTURE

Fair Queueing systems attempt to offer the samenormalized serviceto any
two connections that are continuously backlogged during aninterval of time
(t

1

; t

2

], where by normalized service we mean the ratio of the offeredservice
and the allocated rate. The basic feature of such a system is that it treats con-
nections in the same way, irrespective of their burstiness characteristics. Our
claim is that end-users are not necessarily interested in a fair distribution of free
bandwidth. Instead, for many applications, end-users are merely interested in
minimizing their packet losses or seeing low tails in their delay distributions. Of
course, the queueing scheme must be able to provide some guarantees regard-
ing worst-case service offered to a connection when the system is fully loaded.
Isolation and protection requirements such as these were defined in [1] as nec-
essary to protect the system from misbehaving users that will try to monopolize
resources.

A. Preliminaries

The definition of our state-dependent queueing system uses the methodology
presented in [20] for designing fair queueing systems. The method is based on
the class of servers called Rate Proportional Servers (RPS). The key concept is a
virtual time functionv

i

(t) or system potentialassociated with each connection
in the system that represents the total normalized service offered to a connection
during its backlogged periods. The virtual time of a connection is defined as
a non-decreasing function of time during a system-busy period. When connec-
tion i is backlogged, its virtual time increases exactly by the normalized service
it receives. That is, for any interval of time(�; t] that connectioni is continu-
ously backlogged,

v

i

(t)� v

i

(�) =

W

i

(�; t)

g

i

:

where,W
i

(�; t) denotes the amount of service received by sessioni during the
interval(�; t] andg

i

is the scheduling weight allocated to connectioni. When
the connection is idle, however, the virtual time of the connection is updated
through thesystem virtual time. The system virtual time is a non-decreasing
function of time that keeps track of the progress of the totalwork done by the
scheduler. When an idle sessioni becomes backlogged at timet, its virtual time
v

i

(t) is set tov(t) to account for the service it missed. Schedulers use different
functions to maintain the system virtual time, giving rise to widely different
delay and fairness-behaviors. Exactly this flexibility of the rate-proportional
servers allows a simple implementation of the system without the requirement
of simulating in parallel a fluid system.

At any instantt, the scheduler services only the subset of connections with
the minimum virtual time, and each connection in this subsetreceives service in
proportion to its reserved rateg

i

. Thus, the scheduler can be seen to increase the
virtual times of the connections in this subset at the same rate. A packet server
approximates this behavior by sorting the packets in the order of their finishing
virtual times under the fluid server, and transmitting them in increasing order
of the finishing virtual times. The finishing virtual time of thekth packet of a
sessioni, arriving at the scheduler at timet, is computed as

F

k

i

= min(F

k�1

i

; v(t)) +

L

k

i

g

i

; (1)

whereLk
i

is the length of the packet andg
i

the allocated rate of sessioni. That
is, the finishing virtual time is computed by adding the service time of the packet
at the allocated rate to its starting virtual time. The latter, in turn, is the minimum
of the finishing virtual time of the previous packet receivedfrom sessioni, and
the current system virtual time.

At the time that a connection becomes backlogged, its virtual time is updated
based on the system virtual time function that keeps track ofthe progress of the
total work done by the scheduler. When an idle sessioni becomes backlogged
at timet, its virtual timev

i

(t) is set as

v

i

(t) = max(v

i

(t�); v(t));

to account for the service it missed. Rate-Proportional Servers may use a wide
range of functions to maintain the system virtual time, but the function cho-
sen must satisfy two fundamental properties: First, duringany interval(t

1

; t

2

]

within a system-busy period, the system virtual time function must be increased
with a rate of at least one, that is,

v(t

2

)� v(t

1

) � t

2

� t

1

: (2)

Second, the system virtual time function must never exceed the virtual time of
any backlogged connection. These two conditions are sufficient to achieve a
delay bound equal to that of PGPS.

State Dependent
Scheduler

Rate Proportional
Scheduler

Shaper

Wi(t1,t2)

Zi(t1,t2)

Ri(ti,t2)

+Si(t1,t2)

Di(t1,t2)

Fig. 1. Scheduling System

B. State Dependent Fair Queueing

An illustration of the logical structure of our system is presented in Figure 1.
Initially, all arriving packets enter per-connection queues in a shaper device. A
packet is considered as having arrived to the system only when the last bit of the
packet arrives to the system. Similarly, packet service is considered to be com-
pleted only when the last bit of the packet has been served. The shaper releases
packets to the scheduler with a rate exactly equal to the allocated. We denote
by S

i

(�; t) the service offered by the shaper to connectioni during an interval
of time (�; t]. Packets are transferred from the shaper to the the scheduler with
infinite capacity. LetR

i

(�; t) denote the service offered by the RPS scheduler.
Packets that have not become eligible for service remain in the correspond-

ing connection queue in the shaper, while all the eligible packets wait for ser-
vice in the RPS scheduler queue. Service is always provided from the RPS
scheduler queues, as long as packets are available there. When all scheduler
queues are empty, astate dependent scheduler(SDS) is invoked and selects a
packet from the shaper queues for transmission. The serviceoffered to a con-
nection does not change the state of the shaper. Let us denotewith D

i

(t

1

; t

2

)

andZ
i

(t

1

; t

2

) the amount of traffic that is forwarded and serviced by the SDS
scheduler respectively. If the state dependent scheduler is work-conserving,
then the system is work conserving as well. Note also, that for every timet,
D

i

(t

1

; t

2

) = Z

i

(t

1

; t

2

). We will refer to these systems as simply FQ-SDS.
An argument that can be made against the above adaptive policies, is that

a greedy user will always receive more bandwidth. In such a case, users may
request less bandwidth and try to receive more by sending more bursty traffic.
Limiting such behavior can be explicity done in many ways. The simplest is
policing. In most networks that provide some type of guarantees, it is reason-
able to assume that there is some kind of policing. So misbehaving users will be
easily isolated. If policing is not a viable option, the adaptive policies can them-
selves be tailored to counter greedy behavior. Instead of picking the user with
maximum queue length or the minimum time to overflow, we can, for example,
pick the second such candidate. In this case, users that consistently overflow the
buffers cannot depend on receiving any excess bandwidth; itwill not be in their
best interests to be excessively bursty.

C. Redistributing Excess Bandwidth

This section describes the schemes that we use for the state dependent com-
ponent of our schedulers. Note that this component is used only to redistribute
the excess bandwidth and does not affect the guaranteed rates. The basic idea is
that the scheduler, in picking connections to serve, shoulduse information about
the state of connections so as to minimize packet losses, reduce average delays
for some traffic classes, or shape delay distributions.

Simple Longest Queue First has been shown to minimize the overall packet
losses in a system with finite buffers [16]. Here, the scheduler always picks a
packet from the longest queue for transmission. However, ifthe arrival rates
and guaranteed shares are such that the expected delays are are not the same
for all connections then the longest queue first scheme will always favor high
delay (and generally high bandwidth connections). Also, ifbuffer allocations
are not the same, serving the longest queue first may lead to buffer overflow for
connections with a low buffer or low relative bandwidth guarantee.

To account for these differences in buffer sizes and bandwidth requirements,
we can simply weight the queue size by the allocated bandwidth to make the
scheduler a Longest Delay First scheduler. The scheduler then uses the excess
bandwidth to try and equalize the delays of all connections in the system and
minimize the packet losses if buffer sizes have been allocated proportional to
bandwidth requirements. We will refer to this algorithm asFQ-LDF.

Note that this still does not take into account the maximum allowed delay
for each connection. An enhancement to FQ-LDF is to explicitly take into ac-
count the different delay requirements that applications may have. We would
like to be able to allow low maximum delays to voice sources, somewhat higher
maximum delays to video sources, and much higher maximum delays for data
sources. Also, constant bit rate sources may require extremely low delays, even
when their bandwidth allocation is very low. To account for these differences, a

maximum delay, that is usually a function of the buffer allocated to a connection,
is associated with each connection. The scheduler serves connections that are
most likely to exceed their allocated maximum delay. LetD

i

denote the maxi-
mum delay allocated to connectioni. Let us also denote byd

i

= Q

i

(t)=g

i

the
delay that the last packet of the queue associated with that connection at time
t may see. The connection that should be served is the one that is more likely
to overflow and exceed its delay bound. Thus, connections should be served in
increasing order of the(D

i

� d

i

) values.
The above schemes have not taken into account other characteristics of the

source that may be known during admission control. Characteristics could be the
maximum burst that can be transmitted by a connection or its peak arrival rate.
For example, if sources are leaky bucket shaped, as is the case for sources in
the Controlled Load traffic class, we could use this information to predict future
arrivals from sources and calculate more precisely the connections that are likely
to overflow or see delays higher than the allocated. In systems, where a dual, or
multiple leaky bucket is used to shape the input traffic, a similar approach can
be used. In fact, we do not require that a connection is shapedby a leaky bucket.
All we need is that there is a function specified that providesinformation as to
the maximum burst that can arrive for a connection, as well asthe worst-case
time that this burst may arrive.

The main idea consists of tracking the state of the connection based on its
packet arrivals. This tracking is similar to the policing function that is used
to drop packets from connections when they exceed their traffic specification.
Based on the state of the connection we can estimate the worst-case arrivals for
a given connection. In order to minimize the effect of worst-case arrivals for
connections, we can serve connections in a way that will minimize the proba-
bility that they will be penalized for such an arrival pattern. Note, that since
the system is only distributing the instantaneous available bandwidth in a state
dependent manner and since connections are unlikely to sendtheir worst case
traffic at the same time, such an approach may lead to significant improvements
in maximum delays or packet losses.

Let B
i

(�; t) be the function that describes the maximum amount of traffic
that can arrive for connectioni during the interval(�; t] and letA

i

(�; t) denote
the actual arrivals from sessioni during the same period. That is, for every
interval(�; t]:

A

i

(�; t) � B

i

(�; t) (3)

Then at timet, a maximum burst equal to

�B

i

� B

i

(�; t)� A

i

(�; t) (4)

may arrive with the peak rate. If the queue size of connectioni is equal toQ
i

(t)

and the maximum buffers allocated to that connection are�

i

, then a connection
may overflow if

�

i

�Q

i

(t) � �B (5)

Among the connections that may overflow, we will select to transmit a packet
from the connection that may overflow sooner, if the maximum burst arrives
with the peak rate allocated to that connection. Or,

j = min

k:�

k

�Q

k

(t)��B

k

(

�B

k

P

k

) (6)

whereP
i

is the peak rate allocated to connectioni.

III. A NALYSIS

A. Preliminaries

Definition 1: A system busy periodis a maximal interval of time during
which the server is never idle.
During a system busy period the server is always transmitting packets.

Definition 2: A backlogged period for sessioni is anyperiod of time during
which packets belonging to that session are continuously queued in the system.
Let Q

i

(t) represent the amount of sessioni traffic queued in the server at time
t, that is,

Q

i

(t) = A

i

(0; t)�W

i

(0; t):

A connection is backlogged at timet if Q
i

(t) > 0.
Definition 3: A sessioni busy period is a maximal interval of time(�

1

; �

2

]

such that for any timet 2 (�

1

; �

2

]; packets of connectioni arrive with rate
greater than or equal tog

i

, or,

A

i

(�

1

; t) � g

i

(t� �

1

):

A session busy period is the maximal interval of time during which if the session
were serviced with exactly the guaranteed rate, it would remain continuously
backlogged. It is important to realize the basic distinction between a session
backlogged period and a session busy period. The latter is defined only in terms
of the arrival function and the allocated rate. Thus, the busy period serves as
an invariant for evaluating the worst-case behavior of different scheduling algo-
rithms under the same arrival pattern.

B. Worst-Case Performance

In [19] it was shown that any RPS scheduler has the same worst-case per-
formance as a Weighted Fair Queueing scheduler, and it can thus guarantee the
same worst-case delay bounds. However, the addition of the shaping mechanism
and the state dependent mechanism affects the arrival pattern at the scheduler.
The intuition is that the SDS scheduler is only invoked when there is a free
bandwidth available. Worst-case performance usually assumes a fully utilized
system. We will now show that the worst-case service offeredby the system
as described above is not affected by the method by which freebandwidth is
distributed.

Our main goal is to provide a lower bound for the service offered by the
system to a sessioni during a session busy period. Note, that according to our
definition a session busy period is defined as the maximal interval of time during
which the traffic arriving for that connection is at least equal to the allocated
bandwidth. Notice, however, that the traffic that arrives tothe RPS scheduler
can be lower than the traffic arriving to the system. The reason is, that the
connection receives excess bandwidth from the SDS server. That means, that
the busy periods that the RPS scheduler sees for a connectioni, may be different
than the connection busy periods as seen by the system. It is easy to verify,
however, that a busy period in the RPS system can continue after the end of
a busy period as seen by the whole system. We will first consider the fluid
modeled RPS system. Let us denote withWF

i

(�; t) the service offered by the
fluid RPS server and withWP

i

(�; t) the service offered by the corresponding
packet-by-packet server.

Lemma 1: Let � be the beginning of a busy period for connectioni. The
worst case offered service to connectioni for any timet during the same busy
period is bounded by

W

F

i

(�; t) � g

i

(t� �)

The proof is in the Appendix. The basic idea is that since the shaper is of-
fering service at least equal to that reserved for connection i, the scheduler will
always have enough packets to service connectioni with a rate equal to the
reserved.

Note, that we have made no assumption for the SDS server. We can thus
assume that it is a packet system. In addition, the packet andfluid RPS systems
see exactly the same arrivals, and they are both work conserving systems. Thus,
in both systems, the SDS server is serving packets during thesame intervals of
time. Thus, if the packet server offers different service than the fluid server,
this difference is due to the discrepancy between the packet-by-packet and fluid
RPS server. But we know from [19] that this difference is bounded byL

i

=g

i

+

L

max

=r whereL
i

is the maximum packet size for connectioni, L
max

is the
maximum packet size of any connection in the server andr is the link capacity.
We can thus write:

Corollary 1: The worst case offered service to the packets of thej-th busy
period of connectioni that started at time� is

W

P

i;j

(�; t) � g

i

(t� � �

L

i

g

i

�

L

max

r

):

This Corollary is a sufficient condition to prove that the system offers the same
worst-case end-to-end delays as PGPS under the rate-proportional assignments
[19].

C. Worst-Case Fairness

Worst-case fairness was initially defined by Parekh in [17] and later expanded
by Bennett and Zhang [24]. The measure is based on the worst-case delay for
clearing the backlog of a session's queue. According to this, for every sessioni
that is continuously backlogged during the interval(t

1

; t

2

],

W

i

(t

1

; t

2

) � (t

2

� t

1

)g

i

� C

i

; (7)

whereW
i

(t

1

; t

2

) represents the service offered to sessioni during the interval
(t

1

; t

2

], andC
i

is a constant. We will call the smallest value ofC
i

satisfying
this inequality as theworst-case fairness index(WFI). Bennett and Zhang [24]
defined a fairness parameter based on the smallest value ofC

i

satisfying the
inequality, and normalizing it to the allocated rate of the session.

The worst-case fairness index measures the deviation between the service
received by a session in the packet-level scheduler and the service received by
the same session in a corresponding fluid server, where the session is serviced
at a rate ofg

i

at each instant. Minimizing this parameter improves the traffic
mix at the output of the scheduler [24]. However, it should benoted that this
parameter does not specify how the free bandwidth left over by idle sessions
is distributed across the active ones. Specifically, even for the algorithms that
distribute the free bandwidth in a state dependent manner, we can show that they
offer the same worst-case fairness as Worst-Case Weighted Fair Queueing [24].
The proof is in the Appendix.

IV. PERFORMANCESTUDIES

We simulated the system shown in Figure 1 using a variety of sources to gen-
erate traffic and using the different schedulers (FQ-LDF, FQ-LTO, and PGPS)
that were described in the previous section. In the simulated system, each source
is connected to a leaky bucket shaper. The shaper is connected via an access line
to the multiplexing system. For each connection, the scheduler in the multi-
plexer maintains a separate buffer whose drain time at the guaranteed rate is
equal to the connection's maximum allowed delayD

i

. The sources used are:
1. Two-state exponential On-Off sources: We used these to emulate com-

pressed voice sources and so used small maximum allowed delays for
these sources. The mean load generated per connection is 1/32 of the link
capacity.

2. Video teleconference sources: We used the DAR(1) model which is a
Markov chain determined by three parameters: the mean, variance, and
one frame-lag correlation�. The transition matrix is computed as:

P = �I + (1� �)Q (8)

where I is the identity matrix, and each row of Q consists of the nega-
tive binomial (or gamma) probabilities(f

0

; :::; f

K

; F

K

) whereF
K

=

P

k>K

f

k

andK is the peak rate. The DAR(1) model matches the au-
tocorrelation of the data over approximately hundred framelags and has
been shown to be a model of video teleconferences accurate enough for
traffic studies [5]. We used video sources with a mean rate of 1.5 Mbps, a
peak-to-mean ratio of 5, and� = :98.

3. CBR sources.
4. Data sources. These were modeled as On-Off sources where the on-time

is Pareto distributed, and the off-time is exponential. Thedensity of the
Pareto distribution is given by

f(x) = a

k�1

(k � 1)=x

k

; x >= a; a = (k � 2)=(k � 1)� (9)

We setk = 5=2, resulting in infinite variance of the on-times and long-
range dependence in the aggregate traffic [12], [22]. The mean on-time
was set to 6 packet transmission times and the mean off-time to 200.

The leaky bucket shapers were turned off by setting their token rates equal to the
access line rate.

We first compared the performance of FQ-LDF with PGPS (which is simu-
lated exactly) using only one type of source. Table I shows packet loss rates for
different small buffer sizes from a simulation with 32 voicesources. All con-
nections were served with equal weight and the utilization is about .98. At this
high load, PGPS typically has twice the losses of FQ-LDF and redistribution of
excess bandwidth to the longest delay queue reduces the aggregate loss rate. We
find similar results of lower loss rates for FQ-LDF with videosources as well.
With Pareto sources, the loss rates are mostly similar for FQ-LDF and PGPS.
This can be accounted for by the heavy-tailed distributionsof the on periods.
From this property it follows that the most likely manner in which a large burst
in the aggregate over all such sources occurs, is that the burst of one source is far
larger than the rest. (Such consequences of underlying infinite variance models
have been termed the Joseph and Noah effects; see [14], [15]). Most of the other
sources have non-backloggedqueues and both schedulers give most of the avail-
able bandwidth to the one very long queue. Hence, PGPS and FQ-LDF tend to
behave almost identically.

Apart from packet losses, we also compared the delay distribution resulting
from FQ-LDF to that of PGPS. For the 32 voice source simulation with large
enough buffers to avoid packet losses, Figure 2 shows the tail frequencies (the
number of times a given delay is exceeded) on a log scale. The plots show
that FQ-LDF needs significantly smaller playout buffers than PGPS. We see the
same effect for video sources from the boxplots in Figure 3. The utilization is
.88 and the buffers are large enough so that there are no losses. The distribution
of mean delays experiencedby different connections with FQ-LDF and PGPS is
shown in the boxplots by showing the median (the line in the middle of the box)
of the means, the quartiles (the upper and lower edges of the box enclosing the
median), and by showing the range of values outside the quartiles by the lines
extending out from the box. The curtailment of the tail of thedelay distribution
due to the use of FQ-LDF is evident. Thus, for similar loads FQ-LDF has a
lower playout buffer requirement than PGPS.

Next, we compare the performance of FQ-LTO with PGPS. FQ-LDFuses
the excess bandwidth to equalize delays and it works very well when all sources
have the same allowed delays. When different sources have different maximum
allowed delays, the FQ-LTO scheduler which takes delays into account is ex-
pected to perform better than FQ-LDF and PGPS. We use 32 sources with 8
sources from each of the types described before. CBR sourcesare guaranteed
their mean rate. They generate at most 2 back-to-back packets and have a small

buffer allocation of 5 packets. Voice sources are also guaranteed their mean rate
and have a maximum buffer allocation of 1200 packets (about 10 ms delay at
their guaranteed rates). Video sources are guaranteed two times their mean rates
and have a buffer of 12000 packets. Data sources are given a large buffer of
40000 packets. Since they are not delay sensitive, they are guaranteed a rate be-
low their mean rate. Data sources are expected to use some theexcess bandwidth
from the other classes to make up for their allocation below their means.

Figure 4 shows the box plots for mean delays and99

th percentile delays for
the voice (exponential on-off), video, CBR and data classes. The PGPS sched-
uler gives excess bandwidths to the data class in proportionto the weights. Since
the data class has a very large delay allowance, the FQ-LTO scheduler gives pri-
ority to the low delay classes in the distribution of excess bandwidth. Conse-
quently, the lower delay classes have very compact delay distributions whereas
the very high delay data class (which also has underallocated guaranteed band-
width) has better tail behavior with PGPS. The FQ-LTO scheduler achieves what
one would want in this mixed scenario. Worst case delay bounds are always met
even for data (if it is given appropriate guaranteedrates).The lower delay classes
have very small tails and hence need drastically lower playout buffers than when
using PGPS.

Finally, we study the situation where we have the same mix of sources as
before but their guaranteed rates are different even withina source class. We
deliberately setD

i

s to be below what they would be if allocation was strictly
based on deterministic bounds, i.e, we assume that some statistical multiplexing
will happen. The question then is how well LTO, which tries toprevent buffer
overflows and minimize delays, compares with PGPS. The results are shown in
Figure 5. We get very low average delays for real-time sources, in comparison
to the delays experienced under PGPS, even when their bandwidth allocations
are very low. This is because theD

i

s are set low for real-time sources, and
some of the excess bandwidth which would have gone to data sources under
the PGPS scheme is now used to further reduce the delays of real time sources.
The differences in delays between LTO and PGPS can be very high as is seen
by comparing delays for the voice class. Note that if data traffic losses must be
prevented, this can be done by giving those connections an appropriate weight.

V. D ISCUSSION ANDCONCLUDING REMARKS

The main contribution of this paper is the modified fair queueing proposal
that redistributes excess bandwidth in a state dependent manner. The drawback
of GPS that all fair queueing systems inherit in their close emulation of GPS is
that GPS severely restricts state-dependent bandwidth sharing. The only state-
dependency in GPS is in the number of backlogged connections. There is no
further latitude and sharing is determined by the guaranteed rates which are set
based on long term needs of the connections. This restriction on bandwidth
sharing is more stringent than that necessary to preserve a key property of fair
queueing, the ability to guarantee delay bounds for leaky bucket controlled traf-
fic sources. Consequently, for many applications, there is no need for fair queue-
ing systems to emulate the potentially suboptimal excess bandwidth sharing of
GPS.

With this in mind, we propose modified fair queueing schemes that emu-
late fair queueing only in that they provide rate guaranteesand behave like fair
queueing when all connections are backlogged. This is sufficient to guaran-
tee worst case delay bounds using our scheme. Furthermore, the schemes we
propose are worst case fair. Our schemes do not emulate GPS'smethod for ex-
cess bandwidth redistribution. Instead, we proposed threemethods (the longest
delay first, longest time to overflow, and longest time to overflow taking into
account leaky bucket states) for redistributing the excessbandwidth. Simula-
tions show that the FQ-LDF and FQ-LTO policies perform very well in compar-
ison to PGPS. The adaptive bandwidth redistribution reduces packet losses and
makes the delay distributions less skewed. The control of delays, in compari-
son to PGPS, is very significant when very delay sensitive traffic, such as CBR,
is mixed with traffic with more laxity in delays. The low delayclass has very
short tails in comparison to PGPS and hence would need much lower playout
buffers. Analytical explanation of our simulation resultsremains a challenging
problem. Unless the fairness requirement of GPS is requiredfor policy reasons,
fair queueing systems can improve their performance by adaptive redistribution
of excess bandwidth without losing their worst case fairness property or their
ability to guarantee worst case delay bounds.

Similar extensions of our scheme can be easily applied to other types of
schedulers based either on Earliest Deadline First [8], or on Service Curves [2].
Note, that both of these approaches define how packets must beserved in the
worst-case so as not to violate some specific delay bounds. However, there is
no requirement as to how packets can be served if there is available free band-
width in order to minimize the tails of the delay distributions. Actually, for
both of the above approaches there is no harm if packets are transmitted earlier
than expected. Our adaptive bandwidth redistribution techniques only define the
method for selecting packets when excess bandwidth is available.

Buffer size in pkts/conn Cell Loss Ratio:PGPS Cell Loss Ratio:FQ-LDF
75 13.18e-3 8.3e-3
100 8.198e-3 4.938e-3
125 5.61e-3 3.61e-3
150 4.245e-3 2.849e-3
250 2.061e-3 1.025e-3
350 9.614e-4 1.054e-4
425 4.876e-4 < 10

�6

500 2.8478e-4 < 10

�6

TABLE I

CELL LOSSRATIOS FOR32 EXPONENTIAL ON-OFF SOURCES WITHSHORT BUFFERS

d

lo
g

fr
eq

(d
el

ay
>

d)

0 2000 4000 6000 8000 10000

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

Log tail freq. for 32 exponential On-Off sources, LDF

d

lo
g

fr
eq

(d
el

ay
>

d)

0 5000 10000 15000

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

Log tail freq. for 32 exponential On-Off sources, PGPS

Fig. 2. Log tail frequencies for 32 exponential On-Off sources, according to service discipline (FQ-LDF or PGPS).

10
00

20
00

30
00

40
00

50
00

60
00

LDF PGPS

28 simulated video sources: mean

Queueing Discipline

de
la

y

10
00

20
00

30
00

40
00

LDF PGPS

28 simulated video sources: 99%

Queueing Discipline

de
la

y

Fig. 3. Boxplots of mean delay (left plot) and 99th percentile delay (right plot) according to excess service discipline (in each plot: FQ-LDF on left, PGPS on
right) for 28 simulated video sources. Key: shaded between first and third quartiles; clear bar is median; boundaries at minimum and maximum.

REFERENCES

[1] D. Clark, S. Shenker, L. Zhang, “Supporting Real-Time Applications in
an Integrated Services Packet Network: Architecture and Mechanism”,
Proceedings of ACM SIGCOMM 1992, pp. 14-23.

[2] R. Cruz, “Quality of service guarantees in virtual circuit switched net-
works,” IEEE Journal on Selected Areas In Communications, vol. 13,
pp. 1048–1056, August 1995.

[3] A. Demers, S. Keshav, S. Shenker, “Analysis and Simulation of a Fair
Queueing Algorithm”Internetworking: Research and Experience, pp, 3-

26, vol. 1, 1990.
[4] N. Duffield, T.V. Lakshman, D. Stiliadis “On Adaptive Bandwidth Shar-

ing with Rate Guarantees,” Bell Laboratories Technical Memorandum
113470-971215-07TM.

[5] A. Elwalid, D. Heyman, T. V. Lakshman, D. Mitra, A. Weiss,“Fundamen-
tal Bounds and Approximations for ATM Multiplexers with Applications
to Video Teleconferencing”,IEEE Journal on Selected Areas in Commu-
nications: Special Issue on Fundamental Advances in Networking, pp.
1004-1016, August 1995.

[6] H. Gail, G. Grover, R. Guerin, S. Hantler, Z. Rosberg, M. Sidi, “Buffer

40
60

80
10

0
12

0
14

0
16

0

LTO PGPS

8 Exp. On-Off in 32 mixed sources: mean

Queueing discipline

de
la

y

40
60

80
10

0
12

0
14

0

LTO PGPS

8 Exponential On-Off
in 32 mixed sources: 99%

Queueing discipline

de
la

y

0
20

00
40

00
60

00
80

00

LTO PGPS

8 Sim. video in 32 mixed sources: mean

Queueing discipline

de
la

y

0
20

00
40

00
60

00

LTO PGPS

8 Sim. video in 32 mixed sources: 99%

Queueing discipline

de
la

y

4
6

8

LTO PGPS

8 CBR in 32 mixed sources: mean

Queueing discipline

de
la

y

4
6

8
10

LTO PGPS

8 CBR in 32 mixed sources: 99%

Queueing discipline

de
la

y

50
00

10
00

0
15

00
0

LTO PGPS

8 Pareto OnOff in 32 mixed sources: mean

Queueing discipline

de
la

y

20
00

40
00

60
00

80
00

10
00

0

LTO PGPS

8 Pareto On-Off in 32 mixed sources: 99%

Queueing discipline

de
la

y

Fig. 4. Boxplots of mean delay (left column) and 99th percentile delay (right column) according to excess service discipline (in each plot: FQ-LTO on left, PGPS
on right), displayed by row for each of following 2 classes ofsources out of 4 classes being multiplexed: (top to bottom) Exponential On-Off, Simulated Video,
CBR, Pareto On-Off. 32 sources total. Key: shaded between first and third quartiles; clear bar is median; boundaries at minimum and maximum.

50
10

0
15

0

LTO PGPS

8 Exp. On-Off in 32 mixed sources: mean

Queueing discipline

de
la

y

20
00

30
00

40
00

50
00

60
00

LTO PGPS

8 Exponential On-Off
in 32 mixed sources: maximum

Queueing discipline

de
la

y

0
50

00
10

00
0

15
00

0

LTO PGPS

8 Sim. video in 32 mixed sources: mean

Queueing discipline

de
la

y

0
50

00
0

10
00

00
15

00
00

20
00

00

LTO PGPS

8 Sim. video in 32 mixed sources: max.

Queueing discipline

de
la

y

4
6

8
10

LTO PGPS

8 CBR in 32 mixed sources: mean

Queueing discipline

de
la

y

25
30

35
40

LTO PGPS

8 CBR in 32 mixed sources: max.

Queueing discipline

de
la

y

20
00

40
00

60
00

80
00

10
00

0

LTO PGPS

8 Pareto OnOff in 32 mixed sources: mean

Queueing discipline

de
la

y

50
00

0
10

00
00

15
00

00
20

00
00

25
00

00

LTO PGPS

8 Pareto OnOff in 32 mixed sources: max.

Queueing discipline

de
la

y

Fig. 5. Boxplots of mean delay (left column) and maximum delay (right column) according to excess service discipline (ineach plot: LTO on left, PGPS on right),
displayed by row for each of 4 classes of sources: (top to bottom) Exponential On-Off, Simulated Video, CBR, Pareto On-Off. 32 sources total. Key: shaded
between first and third quartiles; clear bar is median; boundaries at minimum and maximum.

size requirements under longest queue first”,Proceedings IFIP'92, 1992
[7] L. Georgiadis, R. Guerin and A. Parekh “Optimal multiplexing on a sin-

gle link: Delay and buffer requirements”, inProcessdings of IEEE INFO-
COM'94, pp.524-532.

[8] L. Georgiadis, R. Guerin, V. Peris and K.N Sivarajan “Efficient network
QOS provisioning based on per-node traffic shaping,” inProceedings of
IEEE INFOCOM'96, pp.102-110.

[9] A. Birman, H.R. Gail, S.L. Hantler and Z. Rosberg, “An optimal service
policy for buffer systems,”Journal of the Association for Computing Ma-
chinery,pp. 641-57. vol. 42, no. 3, May 1995.

[10] S. J. Golestani, ”A Self-Clocked Fair Queueing Scheme for Broadband
Applications”,Proceedings of INFOCOM'94, pp. 636-646., 1994.

[11] P. Goyal, H.M. Vin and H. Chen, “Start-time Fair Queing:A Scheduling
Algorithm for Integrated Services Packet Switching Networks”, Proceed-
ings ACM SIGCOMM'96, pp. 157-169.

[12] K. R. Krishnan, “The Hurst Parameter of Non-Markovian On-Off Traffic
Sources”, Internal Bellcore Report, 1995.

[13] D. S. Lee, “Weighted Longest Queue First: An Adaptive Scheduling Dis-
cipline for ATM Networks”,Proceedings INFOCOM'97, 1997.

[14] B.B. Mandelbrot and J.W. Van Ness (1968). “Fractional Brownian Mo-
tions, Fractional Noises and Applications”.SIAM Review, 10422–437

[15] B.B. Mandelbrot and J.R. Wallis (1968). “Noah, Joseph,and Operational
Hydrology”.Water Resour. Res.,4 909–918

[16] S. Panwar, D. Towsley, J. Wolf, “Optimal scheduling policies for a class
of queues with customer deadlines to the beginning of services”,Journal
of ACM, vol. 35, no. 4, pp. 832—844, 1988.

[17] A. K. Parekh R. G. Gallager, “A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Networks: The Multiple Node
Case”,Proceedings of INFOCOM'93, pp. 521-530, 1993.

[18] J.L. Rexford, A.G. Greenberg, F.G Bonomi, “Hardware Efficient Fair
Queueing Architectures for High-Speed Networks”,Proceedings of IN-
FOCOM'96, pp. 120-128, 1996.

[19] D. Stiliadis, A. Varma, ”Latency-Rate Servers: A General Model for Anal-
ysis of Traffic Scheduling Algorithms”,Proceedingsof INFOCOM'96, pp.
111-119, 1996.

[20] D. Stiliadis and A. Varma, “Design and analysis of Frame-based Fair
Queueing: A New Traffic Scheduling Algorithm for Packet-Switched Net-
works”,Proceedings of ACM SIGMETRICS '96, pp. 104-115, May 1996.

[21] S. Suri, G. Varghese and G. Chandramenon, “Leap ForwardVirtual Clock:
A New Fair Queuing Scheme with Guaranteed Delays and Throughput
Fairness”Proceedings INFOCOM'97, 1997.

[22] W. Willinger, M.S. Taqqu, R. Sherman, D.V. Wilson, “Self-Similarity
Through High-Variability: Statistical Analysis of Ethernet LAN Traffic
at the Source Level”,Proceedings of ACM SIGCOMM 1995.

[23] D. Yates, J. Kurose, D. Towsley, M.G. Hluchyj, “On per-session end-to-
end delay distributions and the call admission problem for real-time appli-
cations with QoS requirements”,Proceedings of ACM SIGCOMM 1993,
pp.2-12, September 1993.

[24] J.C.R. Bennett, H. Zhang, “WF2Q: Worst-case Fair Weighted Fair Queue-
ing”, Proceedings of INFOCOM'96, pp. 120-128, 1996.

APPENDIX

WORST-CASEFAIRNESS OFFQ-SDS

Let us denote byt
k

, the times that a packet is released by the shaper to the
RPS scheduler. In order to be able to calculate an exact boundfor the worst-
case fairness we need to account for the fluid server that the RPS system is
simulating. Let us assume thatWF

i

(�; t) is the service offered by this fluid to
server to connectioni during an interval(�; t]. We will first prove the following
lemma:

Lemma 2: Let WF

i

(�; t) be the service received by sessioni in the fluid
RPS system during an interval(�; t] in which it is continuously backlogged. If
at time� a packet was released from the shaper then,

W

F

i

(�; t) � g

i

(t� �):

Proof: We know that since the beginning of the system busy period theshaper
releases packets with rate equal tog

i

. We also know that the connection virtual
time is increasing by the normalized service offered to the connection, when the
connection is not idle. Otherwise, it increases based on thesystem virtual time.
Let us denote witht0 < � , the last time that connection virtual time was updated
by the use of the system virtual time. Thus, for timet0,

v(t

0

) = v

i

(t

0

) (10)

Obviously, this happened after an idle period of connection, where the connec-
tion virtual time has remained behind the system virtual time. This update was

initiated by a packet arrival. That means that at timet

0 a packet was released
from the shaper. We know that the total arrivals to the RPS scheduler since time
t

0 are bounded by
S

i

(t

0

; �) � g

i

(� � t

0

) (11)

We also know that since timet0 the connection virtual time has only increased
by the normalized service offered to it. Thus,

v

i

(�)� v

i

(t

0

) =

W

F

i

(t

0

; �)

g

i

(12)

�

S

i

(t

0

; �)

g

i

From Eq.11 (13)

� (� � t

0

) (14)

We also know that the system virtual time is increasing with arate at least linear
to the real time, or

v(�) � v(t

0

) + (� � t

0

): (15)

From Eq. (10),(14) and (15) we can conclude that

v

i

(�) � v(�) (16)

Thus when a packet is released from the shaper at time� , the connection virtual
time v

i

(�) will be updated to a value no larger to that of the system virtual
time. During the interval(�; t], the connection virtual time is increasing by the
normalized service offered to that connection. Thus,

v

i

(t)� v

i

(�) =

W

F

i

(�; t)

g

i

: (17)

Therefore,
W

F

i

(�; t) = g

i

(v

i

(t)� v

i

(�)): (18)

Sincev
i

(t) � v(t) andv
i

(�) � v(�), we can re-write this as

W

F

i

(�; t) � g

i

(v(t)� v(�)): (19)

During the interval(�; t], the system potential is increasing with a rate at least
equal to that of real time. That is,

v(t)� v(�) � t� �: (20)

From equations (19) and (20), we haveWF

i

(�; t) � g

i

(t� �): 2 We can now
evaluate the worst-case fairness index of the packet-basedsystem.

Theorem 1: The queueing delay of a session-i packet arriving at time� in a
packet FQ-SDS system is upper-bounded by

d

P

i

(�)�

Q

P

i

(�)

g

i

+

L

max

r

+ L

i

(

1

g

i

�

1

r

); (21)

whereQP

i

(�) is the backlog of sessioni at time� ,L
i

the maximum packet size
of sessioni, andL

max

the maximum packet size across all sessions.
Proof: Let us denote witht

k

the time at which thek-th packet of sessioni
is released from the shaper to the scheduler. Note that this time is identical in
both the fluid and packet versions considered. We will prove the theorem for
each instantt in the interval(t

k

; t

k+1

]. Let,QF

i

(t) be the backlog in the fluid
server at timet andQP

i

(t) that in the packet-by-packet server. By Lemma 2,
the service offered to sessioni after timet

k

is with a rate at least equal tog
i

,
and without any latency.

Let us assume that the backlog of connectioni is cleared at some timet� in
the fluid server. Then we can write

Q

F

i

(t) = W

F

i

(t; t

�

)

= W

F

i

(t; t

k+1

) +W

F

i

(t

k+1

; t

�

)

� W

F

i

(t; t

k+1

) + max(g

i

(t

�

� t

k+1

);0) (22)

We assume that ift� < t

k+1

, thenWF

i

(t

k+1

; t

�

) = 0. We can re-write
Eq. (22) as

t

�

� t

k+1

+

Q

F

i

(t)�W

F

i

(t; t

k+1

)

g

i

� (t

k+1

� t) + t+

Q

F

i

(t)�W

F

i

(t; t

k+1

)

g

i

: (23)

The above equation holds for the fluid sever. The time to clearthe backlog at
time t in the fluid server is thus given bydF

i

(t) = t

�

� t. The packet sever
may lag the fluid server at most by the transmission time of onepacket [19].
Therefore, the timedv

i

(t) needed to clear the backlog of connectioni in the
packet-by-packet server after timet is bounded by

d

v

i

(t) � d

F

i

(t) +

L

max

r

�

Q

F

i

(t)�W

F

i

(t; t

k+1

)

g

i

+ (t

k+1

� t) +

L

max

r

(24)

To evaluate the above expression, we will consider two separate cases.
Case 1:Qv

i

(t) � Q

F

i

(t). LetLk
i

denote the size of thekth packet of sessioni.
Then,

W

F

i

(t; t

k+1

) =

L

k

i

g

i

�W

F

i

(t

k

; t)

�

L

k

i

g

i

�min(L

k

i

; r(t� t

k

)): (25)

From Eq. (24) and (25) we can write

d

v

i

(t) � (t

k+1

� t)+

Q

F

i

(t)

g

i

�

L

k

i

g

i

+min(L

k

i

; r(t� t

k

))+

L

max

r

: (26)

By using the hypothesis thatQP

i

(t) � Q

F

i

(t), this becomes

d

P

i

(t) � (t

k+1

� t)+

Q

P

i

(t)

g

i

�

L

k

i

g

i

+

min(L

k

i

; r(t� t

k

))

g

i

+

L

max

r

: (27)

The right-hand side of the above equation is maximized whenL

k

i

= r(t� t

k

).
Thus,

d

P

i

(t) � (t

k+1

� t

k

�

L

k

i

r

) +

Q

P

i

(t)

g

i

�

L

k

i

g

i

+

L

k

i

g

i

+

L

max

r

�

Q

P

i

(t)

g

i

+ L

k

i

(

1

g

i

�

1

r

) +

L

max

r

�

Q

P

i

(t)

g

i

+ L

i

(

1

g

i

�

1

r

) +

L

max

r

: (28)

Case 2:QF

i

(t) > Q

P

i

(t). In this case, let�Q = Q

F

i

(t)� Q

P

i

(t). We can
re-write Eq.(24) as

d

P

i

(t) � (t

k+1

� t) +

Q

P

i

(t) + �Q

g

i

�

W

F

i

(t; t

k+1

)

g

i

+

L

max

r

: (29)

At time t, the packet-by-packet server has offered more service to connectioni
than the fluid server. However, packetk + 1 has not yet been released by the
shaper. Thus, the additional service that fluid server has tooffer until timet

k+1

is equal to the additional service that the packet-by-packet server has offered
until time t, plus the service it will offer until timet

k+1

. That is,

W

F

i

(t; t

k+1

) = �Q+W

P

i

(t; t

k+1

): (30)

From Eq. (29) and (30),

d

P

i

(t) � (t

k+1

� t) +

Q

P

i

(t)

g

i

�

W

P

i

(t; t

k+1

)

g

i

+

L

max

r

: (31)

Notice that at timet
k

, the packet-by-packet server can only be behind the fluid
server. Let us assume without loss of generality, that

W

F

i

(0; t

k

) = W

P

i

(0; t

k

) + �W: (32)

For the service offered to connectioni by the packet-by-packet server after time
t, we can write

W

P

i

(t; t

k+1

) = W

P

i

(t

k

; t

k+1

)�W

P

i

(t

k

; t)

� L

k

i

+�W �W

P

i

(t

k

; t)

� L

k

i

+�W �min(L

i

+ �W; r(t� t

k

)):

(33)

Thus, Eq. (31) becomes

d

P

i

(t) � (t

k+1

� t) +

Q

P

i

(t)

g

i

�(L

i

+�W) + min(L

k

i

+�W; r(t� t

k

)) +

L

max

r

:

(34)

The right-hand side of the above equation is maximized whenL

i

+ �W =

r(t� t

k

). Therefore,

d

P

i

(t) � t

k+1

� t

k

�

L

k

i

+�W

r

+

Q

P

i

(t)

g

i

+

L

max

r

�

L

k

i

g

i

�

L

k

i

+�W

r

+

Q

P

i

(t)

g

i

+

L

max

r

�

Q

P

i

(t)

g

i

+

L

max

r

+ L

k

i

(

1

g

i

�

1

r

)

�

Q

P

i

(t)

g

i

+

L

max

r

+ L

i

(

1

g

i

�

1

r

): (35)

This concludes the proof of Theorem 1. Note that the worst-case fairness
index of(L

max

=r) + L

i

=g

i

� L

i

=r given by the theorem is identical to that
of WF2Q [24].

