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Sampling for Big Data
Big Data

0 “Big” data arises in many forms:
— Physical Measurements: fromscience (physics, astronomy)
— Medicaldata: geneticsequences, detailed time series
— Activity data: GPS location, social network activity
— Businessdata: customer behaviortracking atfine detail

¢ Commonthemes: significance i &
— Datais large, and growing |

DRTA AND

— Thereareimportantpatterns i
and trendsinthe data i)

— Wedon’t fully know whereto look
or how to find them
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Sampling for Big Data
Why Reduce?

¢ Although “big” data is about more than just the volume...
...most big data is big!

¢ Itis notalways possibleto store the data in full
— Many applications (telecoms, ISPs, search engines) can’t keep everything

¢ ltisinconvenientto work with data in full
— Just because we can,doesn’tmean we should

O Itis faster to work with a compact summary
— Better to exploredataona laptop thana cluster

Al




Sampling for Big Data
Why Sample?

¢ Samplinghas an intuitive semantics
— Weobtaina smallerdata set with the same structure

¢ Estimatingon a sampleis often straightforward
— Runthe analysisonthesamplethatyou would onthe full data
— Somerescaling/reweighting may be necessary

¢ Samplingis general and agnosticto the analysisto be done
— Othersummary methods only work for certain computations
— Thoughsamplingcan betunedto optimize some criteria

O Samplingis (usually) easy to understand
— So prevalentthatwe have anintuition aboutsampling
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00000000 O
00000000000000000
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Sampling for Big Data

Alternatives to Sampling

¢ Samplingis not the onlygame in town
— Manyother datareductiontechniquesby many names

¢ Dimensionality reduction methods
— PCA, SVD, eigenvalue/eigenvector decompositions

— Costlyandslow to performon bigdata

¢ “Sketching” techniquesfor streams of data

— Hash based summaries via random projections
— Complextounderstandand limited in function

0 Othertransform/dictionary based summarization methods
— Wavelets, Fourier Transform, DCT, Histograms

— Notincrementally updatable, high overhead
¢ All worthy of study — in other tutorials

Al




Sampling for Big Data

Health Warning: contains probabilities

¢ Willavoid detailed probability calculations, aim to give high level
descriptionsand intuition

¢ But some probability basicsare assumed
— Conceptsof probability, expectation, variance of randomvariables
— Allude to concentration of measure (Exponential/Chernoff bounds)

0 Feel free to ask questionsabouttechnical detailsalong the way

var (ﬁ) = E |var (£ 9)} + var [E (£ 9)]
n i n n
/1 . . ‘
=E (5> g(1—80) ;t.f\f] + var (0| p, M)

1 o n—=1(p(l—p))

u(l—p) [ n—1
= 1 :
n ( T
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Sampling for Big Data

Outline

¢ Motivating application:samplingin large ISP networks
¢ Basics of sampling:conceptsand estimation
¢ Stream sampling:uniformand weighted case

— Variations: Concise sampling, sample and hold, sketch guided
BREAK

0 Advanced stream sampling:sampling as cost optimization
— VarOpt, priority, structure aware, and stablesampling
¢ Hashing and coordination
— Bottom-k, consistentsampling and sketch-based sampling
¢ Graph sampling
— Node, edge and subgraph sampling
¢ Conclusionand future directions

A




Sampling for Big Data

Sampling as a Mediator of Constraints

Data Characteristics
(Heavy Tails, Correlations)

Sampling
< >
Resource Constraints Query Requirements
(Bandwidth, Storage, CPU) (Ad Hoc, Accuracy,

Aggregates, Speed)



Sampling for Big Data

Motivating Application: ISP Data

¢ Will motivate many results with application to ISPs

¢ Many reasons to use such examples:
— Expertise: tutors fromtelecomsworld
— Demand:manysampling methods developedinresponse to ISP needs
— Practice: samplingwidelyused in ISP monitoring, builtinto routers
— Prescience:I1SPs werefirstto hit many “bigdata” problems
— Variety: many different places wheresamplingis needed

O First, a crash-course on ISP networks...

(comcast.

&, \ _—
v\\/ / verizon

AT atat COXK
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Sampling for Big Data

Structure of Large ISP Networks

Peering with other ISPs

City-level
Router Centers
e Access Networks:
I Wireless, DSL, IPTV
Backbone Links
Downstream ISP and
s business customers

Network Management
& Administration Service and
Datacenters



Sampling for Big Data

Measuring the ISP Network: Data
Sources

Protocol Monitoring:

Status Reports: Peering
P Routers, Wireless

Router Centers Device failures and transitions/
&9

Access

N
\

Backbone -
Loss & Latency

Roundtrip to edge

Loss tency

Active probing . .
! Link Traffic Rates

.ggregated per router interface

Business
Traffic Matrices Customer Care Logs
Flow records from routers Reactive indicators of

Management Datacenters network performance



Sampling for Big Data
Why Summarize (ISP) Big Data?

O When transmission bandwidth for measurementsis limited
— Notsucha bigissueinISPs with in-band collection

¢ Typically rawaccumulation isnot feasible (even for nation states)
— Highrate streamingdata
— Maintain historical summaries for baselining, time series analysis
¢ To facilitate fast queries
— Wheninfeasible to run exploratoryqueries over full data
¢ As part of hierarchical queryinfrastructure:
— Maintainfull data over limited durationwindow
— Drilldown into full data through one or more layers of summarization
Samplinghas been proved to be a flexible method to accomplish this

Al




Sampling for Big Data

Data Scale:
Summarization and Sampling



Sampling for Big Data

Traffic Measurement in the ISP
Network

Router Centers

N
S

Access

S

e

Backbone

Business

-

B T Traffic Matrices

7 Flow records from routers

Management Datacenters



Sampling for Big Data

Massive Dataset: Flow Records
=time
B N £ N T | £ N

N N O

flow 1 flow 2 flow 3 flow 4

O IP Flow: set of packets with common key observed close in time
O Flow Key: IP src/dst address, TCP/UDP ports, ToS,... [64 to 104+ bits]

¢ Flow Records:

— Protocol level summaries of flows, compiled and exported by routers
— Flow key, packet and byte counts, first/last packet time, some router state

— Realizations: Cisco Netflow, IETF Standards

¢ Scale:100’s TeraBytesof flow records daily are generatedin a large ISP
¢ Used to manage network over range of timescales:
— Capacity planning (months),...., detecting network attacks (seconds)

¢ Analysis tasks
— Easy: timeseries of predetermined aggregates (e.g. address prefixes)

.ATM — Hard: fast queries over exploratory selectors, history, communications subgraphs




Sampling for Big Data

Flows, Flow Records and Sampling

¢ Two types of samplingused in practice for internet traffic:
1. Samplingpacketstreaminrouter priortoformingflow records
O Limitsthe rate of lookups of packetkeyin flow cache
0 Realized as Packet Sampled NetFlow (morelater...)
2. Downstreamsampling of flow records in collection infrastructure
O Limitstransmissionbandwidth, storage requirements
0 Realized in ISP measurement collectioninfrastructure (more later...)
¢  Two cases illustrative of general property
— Differentunderlyingdistributionsrequire different sample designs
—  Statistical optimality sometimes limited by implementation constraints
O Availabilityof router storage, processing cycles

Al




Sampling for Big Data

Abstraction: Keyed Data Streams

¢ Data Model:objectsare keyed weights
— Obijects (x,k): Weightx; key k
0 Example 1: objects = packets, x = bytes, k = key (source/destination)
0 Example 2: objects = flows, x = packets or bytes, k = key
0 Example 3: objects = accountupdates, x = credit/debit, k = account D
¢ Stream of keyed weights, {(x; , k;):i=1,2,...,n}
0 Genericquery: subset sums
— X(S)=Z%,_sx; forSc{1,2,..,n}i.e. total weight of index subsetS
— TypicallyS=S(K) = {i: k; € K} : objects with keys in K
0 Example 1, 2: X(S(K)) = total bytes to given IP dest address/ UDP port
0 Example 3: X(S(K)) = total balance change overset of accounts

¢ Aim:Compute fixed size summary of stream that can be used to
estimate arbitrary subset sums with known error bounds

Al




Sampling for Big Data

Inclusion Sampling and Estimation

¢ Horvitz-Thompson Estimation:

— Objectof size x, sampled with probability p.

— Unbiasedestimate x’.= x,/ p. (if sampled), 0 if notsampled: E[x"] =x;
¢ Linearity:

— Estimate of subsetsum =sum of matchingestimates

— Subsetsum X(S)=2,_sx;is estimated by X'(S) = 2. _s X,
¢ Accuracy:

— Exponential Bounds: Pr[ | X'(S) - X(S)| > 6X(S)] < exp[-g(6)X(S)]

— Confidenceintervals: X(S) € [X:(g), X*(e)] with probability 1 - €
¢ Futureproof:

— Don’tneedto know queries attime of sampling

0 “Where/where did thatsuspicious UDP portfirstbecome so active?”
0 “Whichisthe mostactive IP address within thananomalous subnet?”

AHM — Retrospective estimate:subset sum over relevant keyset




Sampling for Big Data

Independent Stream Sampling

¢ BernoulliSampling
— |ID sampling of objects with some probability p
— Sampled weightx has HT estimate x/p
¢ Poisson Sampling
— Weightx, sampled with probability p;; HT estimate x, / p;
¢ When to use Poissonvs. Bernoulli sampling?
— Elephantsand mice: Poissonallows probability to depend on weight...
0 What is best choice of probabilitiesfor given stream {x} ?




Sampling for Big Data

Bernoulli Sampling

0 The easiest possible case of sampling: all weights are 1
— N objects,and wantto sample kfrom them uniformly
— Each possible subset of k should be equally likely
¢ Uniformlysample an indexfrom N (without replacement) k times
— Somesubtleties: trulyrandomnumbersfrom [1...N] on a computer?
— Assumethatrandomnumbergenerators are good enough
¢ Commontrickin DB: assign arandom numberto each item and sort
— Costlyif N is very big, but sois randomaccess
0 Interestingproblem:take a single linear scan of data to draw sample
— Streaming model of computation: see each elementonce
— Application: IP flow sampling, too many(for us) to store
— (Fora while) commontech interview question

Al




Sampling for Big Data

Reservoir Sampling

“Reservoirsampling” described by [Knuth 69, 81]; enhancements [Vitter 89]

¢ Fixed size k uniform sample from arbitrary size N stream in one pass
— No needto know streamsizein advance
— Includefirstkitemsw.p. 1
— Includeitem n> k with probability p,,=k/n, n >k
O Pick j uniformlyfrom{1,2,...,n}
O Ifj <k, swapitemn intolocationjin reservoir,discardreplaced item
0 Neat proof shows the uniformity of the sampling method:
— Let S, =samplesetaftern arrivals

m (< n) New item: selection probability

L [ T 1T 1 BN
L 1 H ENENEN Prob[n € S,]=p, :=k/n

k=7
Previously sampled item:induction

AHM M e S,1 W.p.Pp1=> MeS,W.p.p,1*(1-p,/k)=p,




Sampling for Big Data

Reservoir Sampling: Skip Counting

O Simpleapproach:check each itemin turn
— O(1) peritem:
— Fineif computationtime< interarrivaltime
— Otherwise build up computation backlog O(N)

0 Better: “skip counting”

— Findrandomindexm(n) of nextselection >n
— Distribution: Prob[m(n)<m]=1-(1-py.1)*(1-ppin) ... 5 (1-p,,)
0 Expected numberof selectionsfrom stream is
K+ Zcmen Pm = K+ Ziemen kK/m = 0O(k ( 1+ In (N/k)))
¢ Vitter'85 provided algorithm with this average runningtime

Al



Sampling for Big Data

Reservoir Sampling via Order Sampling

¢ Ordersamplinga.k.a. bottom-ksample, min-hashing
¢ Uniform sampling of stream into reservoir of size k

¢ Each arrival n: generate one-timerandomvaluer, € U[0,1]
— r,alsoknownashash, rank, tag...

¢ Store k items with the smallest random tags

@ & o0 e e O

0.391 0.908 0.291  0.555 0.619 0.273

U

m Each item has same chance of least tag, so uniform
m Fast to implement via priority queue
m Canrun on multiple input streams separately, then merge

Al




Sampling for Big Data

Handling Weights

¢ So far: uniformsampling from a stream usinga reservoir

¢ Extendto non-uniformsamplingfrom weighted streams
— Easycase: k=1
— Sampling probability p(n)=x,/W,where W = >._;" x;
0 k>1is harder
— Can have elementswith large weight: would be sampled with prob 1?
¢ Number of different weighted order-sampling schemes proposed to
realize desired distributional objectives
— Rankr,=f(u,, x,,)forsomefunctionfandu, € U[0,1]
— k-mins sketches [Cohen 1997], Bottom-k sketches [Cohen Kaplan 2007]
— [Rosen 1972], Weighted random sampling [Efraimidis Spirakis 2006]
— Order PPS Sampling [Ohlsson 1990, Rosen 1997]
— Priority Sampling [Duffield Lund Thorup 2004], [Alon+DLT 2005]

Al




Sampling for Big Data

Weighted random sampling

0 Weighted random sampling[Efraimidis Spirakis 06] generalizes min-wise
— Foreachitemdrawr,uniformlyatrandominrange[0,1]
— Computethe ‘tag’ ofanitem asr, (1/x)
— Keep theitems with the k smallesttags
— Canprovethe correctness of the exponential sampling distribution

¢ Can also make efficientvia skip countingideas

Al




Sampling for Big Data

Priority Sampling

0 Eachitemx; given priorityz =x /r; with r, uniformrandomin (0,1]
¢ Maintainreservoirof k+1 items(x; , z; ) of highest priority
¢ Estimation
— Let z* = (k+1)° highest priority
— Top-k priority items: weight estimate x’, = max{ x;, z* }
— All other items: weight estimate zero
¢ Statistics and bounds
— X’,unbiased; zero covariance: Cov[x’; x; ] = 0 for i#]

— Relative variance for any subset sum < 1/(k-1) [Szegedy, 2000]

Al



Sampling for Big Data

Priority Sampling in Databases

¢ One Time Sample Preparation
— Compute prioritiesof all items, sort in decreasing priority order
0 No discard
¢ Sample and Estimate
— Estimateanysubsetsum X(S) =2, _.c x;by X'(S) = 2. X/, forsomeS’ < S
— Method:selectitemsin decreasing priority order
¢ Two variants: bounded variance or complexity
1. S’ =firstk itemsfrom S:relative variance bounded <1/(k-1)
0 x';=max{x;, z* } wherez* = (k+1)st highestpriorityin S
2. S =itemsfromSin firstk: execution time O(k)
0 x';=max{x;,z* } wherez* = (k+1)st highest priority
[Alon et. al., 2005]

Al




Sampling for Big Data

Making Stream Samples Smarter

O Observation:we see the whole stream, even if we can’t store it
— Can keep moreinformation aboutsampleditems if repeated
— Simpleinformation:ifitem sampled, countallrepeats
0 CountingSamples[Gibbons & Mattias 98]
— Sample new items with fixed probabilityp, countrepeatsasc
— Unbiasedestimate of total count: 1/p + (¢,— 1)
0 Sample and Hold [Estan & Varghese 02]: generalize to weighted keys
— New key with weightb sampled with probability 1- (1-p)®
¢ Lower variance compared with independentsampling
— Butsamplesize willgrow as pn
¢ Adaptive sampleand hold:reduce p when needed
— “Sticky sampling”: geometricdecreasesin p [Manku, Motwani 02]
— Much subsequentworktuning decrease in p to maintainsample size
AlM




Sampling for Big Data

Sketch Guided Sampling

¢ Go further: avoid samplingthe heavy keys as much
— Uniformsampling will pick from the heavy keys again and again
0 Idea: use an oracle to tell when a key is heavy [Kumar Xu 06]
— Adjustsampling probability accordingly
0 Can use a “sketch” data structure to play the role of oracle
— Like a hash table with collisions, tracks approximate frequencies
— E.g. (Counting) BloomFilters, Count-Min Sketch
¢ Track probability with which key is sampled, use HT estimators

— Set probability of sampling key with (estimated) weightw as
1/(1+ ew) for parameterc : decreasesasw increases

— Decreasing eimproves accuracy, increasessample size

Al




Sampling for Big Data

Challenges for Smart Stream Sampling

¢ Currentrouter constraints
— Flowtables maintainedin fastexpensive SRAM
0 Tosupportper packetkeylookupatline rate
¢ Implementationrequirements

— Sampleand Hold: stillneed per packetlookup
— Sampled NetFlow: (uniform) samplingreduceslookup rate

O Easier to implement despite inferior statistical properties

0 Long development timesto realize new sampling algorithms

¢ Similar concerns affect sampling in other applications
— Processinglarge amountsof data needs awareness of hardware
— Uniformsampling means no coordination neededin distributed setting

Al




Sampling for Big Data

Future for Smarter Stream Sampling

¢ Software Defined Networking
— Current: proprietarysoftware runningon special vendorequipment
— Future: open software and protocols on commodity hardware

¢ Potentially offers flexibility in traffic measurement

— Allocate system resources to measurement tasks as needed
— Dynamicreconfiguration, fine grained tuning of sampling
— Stateful packetinspectionand sampling for network security

¢ Technical challenges:
— Highrate packet processingin software
— Transparentsupportfromcommodity hardware
— OpenSketch: [Yu, Jose, Miao, 2013]
¢ Same issuesin other applications: use of commodity programmable HW

Al




Sampling for Big Data

Stream Sampling:
Sampling as Cost Optimization



Sampling for Big Data

Matching Data to Sampling Analysis

0 Genericproblem 1: Countingobjects: weightx, = 1
Bernoulli (uniform) sampling with probability p works fine
— Estimated subset count X'(S) = #{samplesin S}/ p \__/
— Relative Variance (X'(S)) = (1/p-1)/X(S)
O givenp, getanydesired accuracy for large enoughS

0 Genericproblem2: x; in Pareto distribution, a.k.a. 80-20 law
— Small proportion of objects possess a large proportion of total weight
0 Howto bestto sampleobjects to accurately estimateweight?
— Uniformsampling?

: , . I o4
O likely to omitheavy objects = big hit on accuracy s‘é s
0 makingselection setS large doesn’thelp % L
— Select m largestobjects ? a B

AHM 0 biased & smaller objects systematicallyignored




Sampling for Big Data

Heavy Tails in the Internet and
Beyond

0 Filessizes in storage
0 Bytes and packets per network flow
0 Degree distributionsin web graph, social networks

4 3 2 1 0
/

log tail probabability

-5

-6

10 100 1000 10000 100000
flow packets




Sampling for Big Data

Non-Uniform Sampling

0 Extensive literature:see book by [Tille, “Sampling Algorithms”, 2006]

0 Predates “Big Data”
— Focus on statistical properties, not so much computational

¢ IPPS: Inclusion Probability Proportional to Size
— Variance Optimal for HT Estimation

— Sampling probabilities for multivariate version:[Chao 1982, Tille 1996]
— Efficientstream samplingalgorithm: [Cohen et. al. 2009]

Al




Sampling for Big Data

Costs of Non-Uniform Sampling

0 Independentsamplingfrom n objectswith weights {x,... ,x.}
0 Goal:find the “best” sampling probabilities{p;, ... ,p,}
0 Horvitz-Thompson:unbiased estimation of each x; by

x./p, if weight i selected

| 0 otherwise

¢ Two costs to balance:
1. EstimationVariance: Var(x’))=x2%(1/p; —1)
2. Expected Sample Size: 2.p.
0 Minimize Linear Combination Cost: 2. (x.?(1/p,—1) + 2% p))
— zexpressesrelative importance of small sample vs. smallvariance
AlM




Sampling for Big Data

Minimal Cost Sampling: IPPS

IPPS: Inclusion Probability Proportional to Size
0 Minimize Cost 2 (x2 (1/p,— 1) + z%2p;) subjectto1>p, >0
¢ Solution: p,=p,(x) = min{1, x, /z}
— smallobjects (x;< z) selected with probability proportional to size
— large objects (x; > z) selected with probability 1
— Callz the “samplingthreshold”
— Unbiasedestimatorx,/p,=max{x;, z}

¢ Perhapsreminiscentofimportance A
sampling, butnotthe same:

— make no assumptions concerning 1
distribution of the x

m 2



Sampling for Big Data

Error Estimates and Bounds

¢ Variance Based:
— HT samplingvariance for single object of weight x;
0 Var(x,)=x2(1/p; —1) =x%(1/min{l,x/z} —1) <z x;
— Subsetsum X(S)=2,_sx;is estimated by X'(S) = 2. _s X,
o Var(X'(S)) <z X(S)
¢ Exponential Bounds
— E.g. Prob[X'(S)=0] < exp(-X(S)/ z)
¢ Boundsare simpleand powerful
— dependonlyonsubsetsum X(S), not individual constituents

Al



Sampling for Big Data

Sampled IP Traffic Measurements

¢ Packet Sampled NetFlow

— Sample packetstreamin router to limit rate of key lookup: uniform 1/N
— Aggregate sampled packetsinto flow records by key

0 Model: packet stream of (key, bytesize) pairs { (b, k;) }

0 Packet sampled flow record (b,k) whereb =3 {b;:isampled A k; = k}
— HT estimate b*N of total bytesin flow

¢ Downstreamsampling of flow records in measurementinfrastructure
— IPPS sampling, probability min{1, b*N/z}

¢ Chainedvariance bound for any subset sum X of flows
— Var(X')< (z+ Nb,.,) Xwhere b= maximum packet byte size

— Regardless of how packetsare distributed amongst flows
[Duffield, Lund, Thorup, IEEE TolT, 2004]
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Sampling for Big Data

Estimation Accuracy in Practice

¢ Estimateanysubsetsum comprisingatleastsome fractionf of weight
¢ Suppose:samplesizem

0 Analysis: typical estimationerror € (relative standard deviation) obeys

m = 2**16 samples
100.00%

E 1 W 10.00% T~
\ f m 2 100% \\\
0.10%
Estimate fraction f=0.1% 0.0001 0.001  0.01 0.1 1
with typical relative error fraction f

12%:

0 2**16 = storage needed for aggregates over 16 bit address prefixes
0 Butsamplinggives more flexibility to estimate traffic within aggregates
AHM




Sampling for Big Data

Heavy Hitters:
Exact vs. Aggregate vs. Sampled

¢ Samplingdoes not tell you where the interesting features are
— Butdoesspeed up the ability to find them with existing tools

0 Example: Heavy Hitter Detection
— Setting: Flow records reporting 10GB/s traffic stream
— Aim:find Heavy Hitters = IP prefixescomprising>0.1% of traffic
— Responsetimeneeded: 5 minute

¢ Compare:
— Exact: 10GB/s x 5 minutes yields upwards of 300M flow records
— 64k aggregates over 16 bit prefixes: no deeper drill-down possible
— Sampled: 64k flow records:anyaggregate>0.1% accurateto 10%

Exact Aggregate Sampled

Al



Sampling for Big Data

Cost Optimization for Sampling

Several differentapproachesoptimize for different objectives:
1. Fixed SampleSize IPPS Sample
— Variance Optimal sampling: minimal variance unbiased estimation
2. Structure Aware Sampling
— Improve estimationaccuracy for subnet queriesusing topological cost

3. Fair Sampling
— Adaptivelybalance sampling budget over subpopulations of flows
— Uniformestimationaccuracyregardless of subpopulationsize

4. Stable Sampling
— Increasestability of sample setby imposing coston changes

Al




Sampling for Big Data

IPPS Stream Reservoir Sampling

¢ Each arriving item:
— Provisionally include item in reservoir
— If m+1 items, discard 1 item randomly

0 Calculatethreshold zto sample mitemsonaverage: zsolves 2. p,(x;) =m
0 Discard item i with probability g,=1 — p,(x))
0 Adjust m surviving x, with Horvitz-Thompson x’, = x. / p. = max{x; z}

¢ Efficient Implementation:

— Computational cost O(logm ) peritem, amortized cost O(loglogm)

e <o T |
= X9 ____Recalcutate """ I Xx1’0
X ———————
| xj :_::TW_E_S:I:}?!(_ZI:Z_ ______ -ecalcw’;te
. 10 . ) _
Example: -_ iz --- Adjughwsights s == -lscard{,[zrobs.
m=9 - X4 ::::_ijgi.:m_ax{xl_rz _______ -—J- Mv;l4]:J.X/Z}
- X3 - z
- X2 __::::::::::::I:::::==--
- X1




Sampling for Big Data

Structure (Un)Aware Sampling

¢ Samplingis obliviousto structure in keys (IP address hierarchy)
— Estimationdispersesthe weight of discarded items to survivingsamples

0 Queries structure aware: subset sums over related keys (IP subnets)
— Accuracyon LHS is decreased by discarding weight on RHS

Al




Sampling for Big Data

Localizing Weight Redistribution

0 Initial weightset {x;: ieS}forsomeScQ
— E.g. Q = possible IP addresses, S =observed IP addresses

0 Attribute “range cost” C({x,: ieR}) for each weightsubset RcS
— Possible factors for Range Cost:

O Sampling variance

. No change outside
O Topology e.g. height of lowest common ancestor %  boren balou
— Heuristics: R* = Nearest Neighbor {x;, x;} of minimal x;x; closest ancestor

¢ SamplekitemsfromS: 01

q:digest S
varopt

— Progressively remove one item from oot | Stfsum |
- % Hin —&=—
subset with minimal range cost: (s ThiN-prod
0.001 ¢ S, ]
— While(|S| > k) : \
0.0001 1
0 Find R*<S of minimal range cost. 4 \
0 Remove a weight from R* w/ VarOpt [ N
1e-06 M N

[Cohen, Cormode, Duffield; PVLDB 2011] o w0 o om

sample size

Alm Order of magnitude reduction in
average subnet error vs. VarOpt

1e-05




Sampling for Big Data

Fair Sampling Across Subpopulations

¢ Analysis queries often focus on specificsubpopulations
— E.g.networking: different customers, user applications, network paths

¢ Wide variation in subpopulation size

— 5 ordersof magnitude variation in trafficon interfaces of access router
¢ If uniformsamplingacross subpopulations:

— Poor estimationaccuracy on subset sumswithin small subpopulations

: A Color = subpopulation

- - . . .

A A , A = interesting items

|

) ) — occurrence proportional to subpopulation size
m Sample

A Uniform Sampling across subpopulations:

|

: - — Difficult to track proportion of interesting

) items within small subpopulations: A

Al




Sampling for Big Data

Fair Sampling Across Subpopulations

¢ Minimize relative variance by sharingbudget m over subpopulations
— Total n objects in subpopulations ng,...,ngwith Xn;=n
— Allocate budget m, to each subpopulation n; with 2:m:=m
0 Minimize average populationrelative varianceR = const. ~.1/m,
¢ Theorem:
— R minimized when {m;} are Max-Min Fair share of m under demands {n;}
¢ Streaming
— Problem: don’t know subpopulation sizes {n;} in advance
¢ Solution: progressive fair sharingas reservoir sample
— Provisionally include each arrival
— Discard 1 item as VarOpt sample from any maximal subpopulation
0 Theorem [Duffield; Sigmetrics 2012]:
— Max-Min Fair at all times; equality in distribution with VarOpt samples {m; from n;}
AlM




Sampling for Big Data

Stable Sampling

¢ Setting: Samplinga populationoversuccessive periods
¢ Sample independently at each time period?
— Costassociated with sample churn
— Timeseries analysis of set of relatively stable keys
¢ Find sampling probabilitiesthrough cost minimization
— Minimize Cost= EstimationVariance+z * E[#Churn]
¢ Size m sample with maximal expected churnD
— weights {x;}, previoussampling probabilities {p}

— find new sampling probabilities {g;} to minimize cost of taking m
samples

— Minimize 2 x%/q;subjectto1>q,>20,%,g,=mand,| p,—q;| £ D
[Cohen, Cormode, Duffield, Lund 13]
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Sampling for Big Data
Summary of Part 1

¢ Samplingas a powerful, general summarization technique
¢ Unbiased estimation via Horvitz-Thompson estimators
¢ Samplingfrom streams of data

— Uniformsampling: reservoir sampling

— Weighted generalizations: sample and hold, counting samples
¢ Advancesin stream sampling

— Thecost principle for sampledesign,and IPPS methods
— Threshold, priority and VarOpt sampling
— Extendingthe cost principle:

O structure aware, fair sampling, stable sampling, sketch guided

Al




Sampling for Big Data

Outline

¢ Motivating application:samplingin large ISP networks
¢ Basics of sampling:conceptsand estimation
¢ Stream sampling:uniformand weighted case

— Variations: Concise sampling, sample and hold, sketch guided
BREAK

0 Advanced stream sampling:sampling as cost optimization
— VarOpt, priority, structure aware, and stablesampling
¢ Hashing and coordination
— Bottom-k, consistentsampling and sketch-based sampling
¢ Graph sampling
— Node, edge and subgraph sampling
¢ Conclusionand future directions
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Sampling for Big Data

Data Scale:
Hashing and Coordination



Sampling for Big Data

Sampling from the set of items

0 Sometimesneed to sample from the distinct set of objects
— Notinfluenced by the weightor number of occurrences
— E.g.samplefromthedistinctset of flows, regardless of weight
¢ Need samplingmethodthat is invariantto duplicates

¢ Basic idea: build a function to determine whatto sample
— A“random” functionf(k) 2 R
— Use f(k) to make a sampling decision: consistent decision for same key
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Permanent Random Numbers

¢ Often convenientto thinkof f as giving “permanentrandom numbers”
— Permanent: assignedonceandforall
— Random:treatas if fullyrandomly chosen
0 The permanentrandomnumberis used in multiple sampling steps
— Same “random” numbereach time, so consistent (correlated) decisions
¢ Example:use PRNs to draw a sample of s from N via order sampling
— If s << N, smallchance of seeingsame elementin differentsamples
— Via PRN, stronger chance of seeingsame element
0 Cantrackpropertiesovertime, gives a form of stability
0 Easiest way to generate PRNs: apply a hash functionto the elementid
— Ensures PRN can be generated with minimal coordination
— Explicitly storingarandomnumberforall observed keys doesnotscale
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Hash Functions "le]c]o]:
(R
. : . , F -t
Many possible choices of hashingfunctions: Eae—e ¢ h
0 Cryptographichash functions:SHA-1, MD5, etc. Few
— Results appear “random” for most tests (using seed/salt) M}Kt
— Canbeslow for high speed/high volume applications A|B|C|D]E

— Full power of cryptographic security not needed for most statistical purposes
0 Although possiblesome trade-offs in robustnessto subversionif notused
0 Heuristichash functions:srand(), mod

— Usually pretty fast
— Maynotberandomenough: structure in keys may cause collisions

¢ Mathematical hash functions:universal hashing, k-wise hashing
— Have precise mathematical properties on probabilities
— Canbeimplemented to be very fast
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Mathematical Hashing

¢ K-wise independence:Pr[h(x;) =y; A h(x,) =y, A ... A h(x) =y, = 1/Rt
— Simplefunction: c.xt+ ¢ x*1 + ... c;x + ¢ mod P

For fixed prime P, randomly chosenc, ... ¢,
Can bemadeveryfast(choose Pto be Mersenne primeto simplify mods)

0 (Twisted)tabulation hashing[Thorup Patrascu 13]

Al

Interpreteach key as a sequenceof shortcharacters, e.g. 8 * 8bits
Use a “trulyrandom” look-up table for each character (so 8 * 256 entries)

Take the exclusive-ORof the relevanttable values

Fast, and fairly compact
Strongenough for many applications of hashing (hashtables etc.)
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Bottom-k sampling
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¢ Sample from the set of distinct keys
— Hash each key usingappropriate hash function
— Keep informationon the keys with the s smallesthashvalues
— Think of as order sampling with PRNs...

0 Useful for estimating properties of the supportset of keys
— Evaluate any predicate on the sampledset of keys

¢ Same concept, several different names:
— Bottom-k sampling, Min-wise hashing, K-minimumvalues
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Subset Size Estimation from Bottom-k

0 Want to estimate the fractiont = |A|/|D|

— Disthe observed setof data

— Alisan arbitrary subset given later

— E.g.fraction of customerswho are sports fansfrommidwestaged 18-35
¢ Simplealgorithm:

— Runbottom-kto get samplesetS, estimatet’ = [AN S| /s

— Errordecreasesas1/Vs

— Analysisdueto[Thorup 13]: simple hashfunctions suffice for bigenough s
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P ] ] VENN DIAGRAM
Similarity Estimation

¢ How similar are two sets, A and B?
¢ Jaccard coefficient:|A N B|/|A U B|
— 1if A, Bidentical,0if theyare disjoint
— Widely used, e.g. to measuredocument similarity beth AR D
O Simpleapproach:sample an item uniformlyfrom A and B
— Probability of seeingsame item from both:|A ™ B|/(|A| x |B|)
— Chanceofseeingsameitemtoo lowto be informative
¢ Coordinated sampling:use same hash function tosample from A, B
— Probability thatsame item sampled: |A ™ B|/|A U B]
— Repeat:the average numberof agreementsgives Jaccard coefficient
— Concentration: (additive) errorscales as 1/Vs
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Technical Issue: Min-wise hashing

¢ For analysisto work, the hash function must be fully random
— All possiblypermutations of the inputare equally likely
— Unrealisticin practice: description of such a functionis huge

¢ “Simple” hash functionsdon’twork well
— Universalhashfunctionsaretoo skewed

¢ Need hash functionsthat are “approximately min-wise”

— Probability of samplinga subsetis almost uniform
— Tabulation hashinga simple way to achieve this
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Bottom-k hashing for F, Estimation

0 Fyisthe numberof distinctitemsin the stream
— afundamental quantity with manyapplications
— E.g.number of distinctflows seen on a backbone link

O Let m be the domain of stream elements: each data itemis [1...m]
0 Pick a random (pairwise) hash function h:[m] — [R]

0 0% o @ o

OR Vs R
O Applybottom-ksamplingunderhash functionh

— Let v, =s’th smallest(distinct) value of h(i) seen

0 If n =F,<s, give exact answer, else estimate F'; = sR/v,
— V/R = fraction of hashdomain occupied by s smallest
AI‘M




Sampling for Big Data

Analysis of F, algorithm

¢ Canshow thatitis unlikelyto have an overestimate
— Toomanyitems hashedbelowa fixed value
— Cantreateach eventofan item hashingtoolow asindependent
¢ Similaroutlineto show unlikely to have an overestimate
0 (Relative)error scales as 1/Vs
¢ Space cost:

— Stores hashvalues,so O(s logm) bits
— Canimproveto O(s + log m) with additional hashingtricks
— See also “Streamed Approximate Counting of Distinct Elements”, KDD’14

O o |'o O @ © o0 @90
OR |vs sR/(1+¢)n =
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Consistent Weighted Sampling

¢ Want to extend bottom-kresults when data has weights

¢ Specifically, two data sets A and B where each element has weight
— Weights are aggregated: we see whole weight of elementtogether

0 Weighted Jaccard: want probability that same key is chosen by both to
be 2, min(A(i), B(i))/2; max(A(i), B(i))

¢ Samplingmethod should obey uniformity and consistency
— Uniformity: elementi picked from A with probability proportional to A(i)
— Consistency:ifiis picked from A, and B(i) > A(i), theni also picked for B

0 Simplesolution:assuming integer weights, treat weight A(i)
as A(i) unique (different) copies of elementi, apply bottom-k

— Limitations:slow, unscalablewhen weightscan be large
— Needto rescale fractional weights to integral multiples
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Consistent Weighted Sampling

O Efficientsamplingdistributionsexist achieving uniformity and
consistency

0 Basic idea: considera weight w as w/A differentelements
— Computethe probability thatany of these achieves the minimumvalue
— Studythe limiting distributionas A — 0

0 Consistent Weighted Sampling[Manasse, McSherry, Talway 07], [loffe 10]
— Use hash of item to determine which pointssampledvia careful transform
— Manydetails needed to contain bit-precision, allow fast computation

0 Other combinations of key weights are possible [CohenKaplan Sen 09]
— Min of weights, max of weights, sum of (absolute) differences
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Trajectory Sampling

label src  dest length
g(x1) abec.d w.x.yz 1500

¢ Aims [Duffield Grossglauser 01]:

Ingress nodes
1 (ervallicast packet)

— Probe packets ateach router they traverse

— Collatereportstoinferlink lossand latency /
— Needto sample; independentsamplingno us\é\\
0 Hash-based sampling:
— All routers/packets: compute hash h of invariant packet fields
— Sampleifh € someH andreportto collector; tune samplerate with |H |
— Use high entropy packetfieldsas hashinput, e.g. IP addresses, ID field
— Hash function choice trade-off between speed, uniformity & security
¢ StandardizedinInternet Engineering Task Force (IETF)
— Service providers need consistencyacrossdifferentvendors

— Several hash functions standardized, extensible
— Sameissuesarisein other bigdata ecosystems (appsand APlIs)
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Hash Sampling in Network
Management

¢ Many different network subsystems used to provide service
— Monitored through eventlogs, passive measurement of traffic & protocols

— Need cross-systemsamplethatcaptures full interaction between network
and a representative set of users

¢ ldeal: hash-based selection based on common identifier
¢ Administrative challenges! Organizational diversity
¢ Timelinesschallenge:
— Selectionidentifier may notbe presentat a measurementlocation
— Example:commonidentifier=anonymized customerid
O Passive trafficmeasurementbasedon IPaddress

0 MappingofIP address to customerID notavailable remotely
O Attributionof trafficlP address to a user difficultto compute atline speed
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Advanced Sampling from Sketches

¢ Difficultcase: inputswith positive and negative weights
0 Want to sample based on the overall frequency distribution
— Samplefromsupportsetof n possibleitems
— Sample proportional to (absolute) total weights
— Sample proportional to some function of weights
¢ How to do this samplingeffectively?
— Challenge: may be many elements with positiveand negative weights
— Aggregate weights mayend up zero: howto find the non-zeroweights?
0 Recentapproach:L,sampling
— L, samplingenables novel “graph sketching” techniques
— Sketches for connectivity, sparsifiers[Ahn, Guha, McGregor 12]

Al




Sampling for Big Data

L, Sampling

0 Lo sampling:sample with prob = f°/F,

i.e., sample (near) uniformly fromitems with non-zero frequency

0 General approach:[Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 093]

Al

Sub-sample allitems (present or not) with probability p
Generate a sub-sampledvector of frequencies f,

Feedf, to a k-sparserecovery data structure

0 Allows reconstructionof f, if Fy < k

If f, is k-sparse, samplefrom reconstructed vector
Repeatin parallel for exponentially shrinking values of p
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Sampling Process

o
k-sparse recovery [ o0~ O

0 Exponential set of probabilities, p=1, %, %, 1/8, 1/16... 1/U
— LetN=F,=|{i:f#0}|
— Wantthereto be a level where k-sparse recovery will succeed
— Atlevel p, expected numberofitems selected S is Np
— Pick levelp sothatk/3 < Np <2k/3

¢ Chernoffbound:with probability exponentialink, 1 <S <k

— Pick k=0(log1/0) to get 1-0 probability
AHM
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Hash-based sampling summary

¢ Use hash functionsfor samplingwhere some consistencyis needed
— Consistencyover repeated keys
— Consistencyover distributed observations
¢ Hash functions have duality of random and fixed
— Treatasrandomfor statistical analysis
— Treatasfixed for giving consistency properties
¢ Can become quite complexand subtle
— Complexsamplingdistributionsfor consistent weighted sampling
— Tricky combinationof algorithmsfor L, sampling
0 Plenty of scope for new hashing-based sampling methods
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Data Scale:
Massive Graph Sampling
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Massive Graph Sampling

0 “Graph Service Providers” GO ()8[6 blﬂg |

— Search providers: web graphs (billions of pages indexed

) g o
— Onlinesocial networks Llnkedm

0 Facebook:~10%users(nodes),~1012 links , facebook

— ISPs: communications graphs
0 From flowrecords: node=srcor dstIP, edgeif trafficflows betweenthem
O Graph service provider perspective
— Alreadyhaveallthe data,but howto useit?
— Wanta general purposesample thatcan:

0 Quickly provideanswers to exploratory queries
0 Compactly archivesnapshots for retrospective queries & baselining
¢ Graph consumer perspective

— Wantto obtain arealisticsubgraphdirectly or via crawling/API
AHM
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Retrospective analysis of ISP graphs

¢ Node =IP address
0 Directed edge = flow from source node to destination node

&——> compromise
&———> control

&——> flooding

e Hard to detectagainst background
e Known attacks can be detected:

— Signature matching based on partial graphs,
flow features, timing

e Unknown attacks are harder to spot:
— exploratory & retrospective analysis

— preserve accuracy if sampling?

T BOTNET
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Goals for Graph Sampling

Crudelydivideinto three classes of goal:

1. Studylocal (hodeor edge) properties

— Averageageofusers (nodes), average length of conversation (edges)
2. Estimate global propertiesor parameters of the network

— Averagedegree,shortest path distribution
3. Samplea “representative” subgraph

— Testnewalgorithmsand learning more quickly thanon full graph

¢ Challenges:what propertiesshould the sample preserve?
— Thenotion of “representative”is very subjective

— Canlist properties thatshould be preserved
(e.g.degreedbn, path length dbn), butthere are alwaysmore...
AHM




Sampling for Big Data

Models for Graph Sampling

Many possible models, butreduce to two for simplicity
(see tutorial by Hasan, Ahmed, Neville, Kompellain KDD 13)

¢ Static model: full access to the graph to draw the sample

— The(massive) graphis accessible in full to make the small sample
¢ Streaming model:edges arrive in some arbitrary order

— Mustmake samplingdecisions on the fly

¢ Othergraph modelscapture differentaccess scenarios
— Crawlingmodel:e.g. exploringthe (deep) web, APl gives node neighbours
— Adjacency liststreaming: see all neighboursof a node together

Al
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Node and Edge Properties

¢ Gross over-generalization:
node and edge propertiescan be solved using previoustechniques

— Sample nodes/edge (in a stream)
— Handle duplicates (same edge manytimes) via hash-based sampling
— Track properties of sampled elements

0 E.g.countthe degree of samplednodes

¢ Some challenges. E.g. how to sample a node proportional toits degree?

— If degreeis known (precomputed), then use these as weights
— Else, sampleedges uniformly, then sampleeach end with probability

Al
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Induced subgraph sampling

— Pass 2: collect all edgesincidenton sampled nodes
— Cancollapseinto asingle streaming pass
— Can’tknowin advance how manyedgeswill be sampled

¢ Node-inducedsubgraph —
— Pass1:Samplea set of nodes (e.g. uniformly) ‘\‘

¢ Edge-inducedsubgraph
— Sampleaset of edges (e.g. uniformlyin one pass) ‘\‘\‘
— Resultinggraphtendsto be sparse, disconnected _—
0 Edge-inducedvariant[Ahmed Neville Kompella 13]: |/‘\|
— Takesecond passtofillin edges on samplednodes A

— Hack:combine passes tofill in edges on currentsample
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HT Estimators for Graphs

¢ Can construct HT estimators from uniform vertex samples [Frank 78]
— Evaluatethedesiredfunctiononthesampled graph (e.g. averagedegree)
0 For functions of edges (e.g. number of edges satisfying a property):
— Scale up accordingly, by N(N-1)/(k(k-1)) for sample size k on graph size N
— Variance of estimates can alsobe boundedinterms of Nandk
¢ Similarfor functions of three edges (triangles) and higher:

— Scaleup by NC3/kC3 = 1/p3 to get unbiased estimator
— Highvariance, so other samplingschemeshave been developed

Al
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Graph Sampling Heuristics

“Heuristics”, since few formal statistical propertiesare known ~ |<|

0 Breadth first sampling:sample a node, then its neighbours... —
— Biased towards high-degree nodes (morechancesto reach them) lélkl

0 Snowball sampling: generalize BF by pickingmany initial nodes iil\_\l

— Respondent-driven sampling: weightthe snowball sampleto give IZN
statistically sound estimates [Salganik Heckathom 04] —

0 Forest-fire sampling: generalize BF by picking only a fraction of |:|<|
neighboursto explore [Leskovec Kleinberg Faloutsos 05] N

— With probability p, move to a new node and “kill” current node IABI

No “one true graph sampling method”

— Experiments show different preferences, dependingon graphand metric
[Leskovec, Faloutsos06; Hasan, Ahmed, Neville, Kompella 13]

— Noneofthese methods are “streamingfriendly”: require staticgraph
AHM 0 Hack:applythem to the stream of edges as-is




Sampling for Big Data

Random Walks Sampling

¢ Random walks have proven very effective for many graph computations
— PageRankfor nodeimportance,and many variations

0 Random walk a natural model for samplinga node ——
— Perform “longenough” randomwalk to pick a node ‘\‘ \l
— Howlongis “longenough” (for mixing of RW)?

— Canget “stuck” in a subgraphif graph not well-connected

— Costlyto perform multiple randomwalks
— Highly non-streamingfriendly, but suits graph crawling

0 Multidimensional Random Walks [Ribeiro, Towsley 10]
— Pick krandomnodesto initializethe sample
— Pick arandomedge from the union of edgesincidenton the sample
— Canbeviewed as a walkon a high-dimensional extension of the graph
— Outperforms running kindependentrandom walks

A




Sampling for Big Data

Subgraph estimation: counting triangles

¢ Hottopic: sample-based triangle counting
— Triangles: simplest non-trivial representation of node clustering
0 Regard as prototype for morecomplex subgraphsofinterest
— Measure of “clustering coefficient” in graph, parameter in graph models...
¢ Uniform sampling performs poorly:
— Chancethatrandomly sampled edges happento form subgraphis= 0
¢ Bias the samplingso that desired subgraphis preferentially sampled

Al
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Subgraph Sampling in Streams

Want to sample one of the T trianglesin a graph

O [Buriol et al 06]: sample an edge uniformly, then picka node
— Scanforthe edgesthat complete the triangle
— Probability of samplingatriangleis T/(|E| (| V]-2))

0 [Pavanet al 13]: sample an edge, then sample an incidentedge
— Scanforthe edge that completesthe triangle
— (After bias correction) probability of samplinga triangleis T/(|E| A)

0 A =maxdegree,considerably smallerthan |V]| in mostgraphs

0 [Jha etal. KDD 2013]: sample edges, the sample pairs of incident edges
— Scanforedgesthat complete “wedges” (edge pairsincident on a vertex)

¢ Advert: Graph Sample and Hold [Ahmed, Duffield, Neville, Kompella, KDD 2014]
— Generalframework for subgraph counting; e.g. triangle counting
— Similaraccuracyto previous state of art, but usingsmaller storage

AlM
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Graph Sampling Summary

¢ Samplinga representative graph from a massive graph is difficult!
¢ Currentstate of the art:
— Sample nodes/edgesuniformlyfroma stream
— Heuristicsampling from static/streaming graph
0 Sampling enablessubgraph sampling/counting
— Much effortdevotedto triangles (smallest non-trivial subgraph)
¢ “Real” graphs are richer
— Differentnode andedge types, attributes on both
— Just scratchingsurface of samplingrealisticgraphs
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Current Directions in Sampling
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Outline

¢ Motivating application:samplingin large ISP networks
¢ Basics of sampling:conceptsand estimation
¢ Stream sampling:uniformand weighted case

— Variations: Concise sampling, sample and hold, sketch guided
BREAK

0 Advanced stream sampling:sampling as cost optimization
— VarOpt, priority, structure aware, and stablesampling
¢ Hashing and coordination
— Bottom-k, consistentsampling and sketch-based sampling
¢ Graph sampling
— Node, edge and subgraph sampling
¢ Conclusionand future directions
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Role and Challenges for Sampling

¢ Matching
— Sampling mediatesbetween data characteristicsand analysis needs
— Example:sample from power-lawdistribution of bytes per flow...
0 butalsomake accurate estimatesfromsamples
O simple uniformsampling misses the large flows
¢ Balance

— Weighted sampling across key-functions: e.g. customers, network paths,
geolocations

0 cover small customers, notjust large
0 cover all network elements, not just highly utilized
¢ Consistency
— Sampleallviews of same event, flow, customer, network element
O across differentdatasets, atdifferenttimes

ATM 0 independentsampling=>smallintersection of views
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Sampling and Big Data Systems

¢ Samplingis still a useful tool in cluster computing
— Reducethelatency of experimental analysis and algorithm design

¢ Samplingas an operatoris easy to implementin MapReduce
— Foruniformor weighted sampling of tuples

¢ Graph computationsare a core motivatorof big data
— PageRankas acanonical bigcomputation
— Graph-specificsystemsemerging (Pregel, LFgraph, Graphlab, Giraph...)
— But... sampling primitives notyet prevalentin evolving graph systems
¢ When to do the sampling?
— Option 1:Sampleasaninitial step in the computation
0 Foldsampleintotheinitial “Map” step
— Option 2:Sampleto create a stored sample graph beforecomputation
0 Allows more complexsampling, e.g. randomwalk sampling
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Sampling + KDD

¢ Theinterplay between samplingand data miningis not well understood
— Need an understanding of how ML/DM algorithms are affected by sampling
— E.g. howbiga sampleis needed to build an accurate classifier?
— E.g.whatsampling strategy optimizes cluster quality

O Expect results to be method specific
— l.e. “IPPS + k-means” ratherthan “sample + cluster”
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Sampling and Privacy

¢ Currentfocus on privacy-preservingdata mining
— Deliver promiseof big data without sacrificing privacy?

— Opportunity for samplingto be part of the solution
¢ Naive sampling provides “privacy in expectation”
— Yourdataremainsprivateifyouaren’tincludedin the sample...
¢ Intuition:uncertainty introduced by sampling contributes to privacy
— Thisintuition can be formalized with different privacy models
¢ Samplingcan be analyzedin the context of differential privacy
— Samplingalone doesnot provide differential privacy

— Butapplyinga DP method to sampleddata doesguaranteeprivacy
— Atradeoffbetweensamplingrate and privacy parameters

Al

0 Sometimes, lower samplingrateimprovesoverall accuracy
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Advert: Now Hiring...

¢ Nick Duffield, Texas A&M |
— Phdsin big data, graph sampling A M

¢ Graham Cormode, University of Warwick UK

— Phdsin big data summarization
(graphsand matrices, funded by MSR)

THE UNIVERSITY OF

WARWICK

— Postdocsin privacy and datamodeling
(funded by EC, AT&T)
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