
Graham	Cormode,	University	of	Warwick
G.Cormode@warwick.ac.uk

Nick	Duffield,	Texas	A&M	University
duffieldng@tamu.edu

Sampling for
Big Data

x9
x8
x7
x6
x5
x4
x3
x2
x1

x10

x’9
x’8

x’10

x’6
x’5
x’4
x’3
x’2
x’1

Æ

0 1

00 01 10

000 001 010 011 100 101 110 111

11

Sampling for Big Data

Big Data

◊ “Big”	data	arises	in	many	forms:
– Physical	Measurements:	from	science	(physics,	astronomy)

– Medical	data:	genetic	sequences,	detailed	time	series

– Activity	data:	GPS	location,	social	network	activity

– Business	data:	customer	behavior	tracking	at	fine	detail

◊ Common	themes:	
– Data	is	large,	and	growing

– There	are	important	patterns	
and	trends	in	the	data

– We	don’t	fully	know	where	to	look
or	how	to	find	them

Sampling for Big Data

Why Reduce?

◊ Although	“big”	data	is	about	more	than	just	the	volume…
…most	big	data	is	big!

◊ It	is	not	always	possible	to	store	the	data	in	full
– Many	applications	(telecoms,	ISPs,	search	engines)	can’t	keep	everything

◊ It	is	inconvenient	to	work	with	data	in	full
– Just	because	we	can,	doesn’t	mean	we	should

◊ It	is	faster	to	work	with	a	compact	summary
– Better	to	explore	data	on	a	laptop	than	a	cluster

Sampling for Big Data

Why Sample?

◊ Sampling	has	an	intuitive	semantics
– We	obtain	a	smaller	data	set	with	the	same	structure

◊ Estimating	on	a		sample	is	often	straightforward
– Run	the	analysis	on	the	sample	that	you	would	on	the	full	data

– Some	rescaling/reweighting	may	be	necessary

◊ Sampling	is	general	and	agnostic	to	the	analysis	to	be	done
– Other	summary	methods	only	work	for	certain	computations
– Though	sampling	can	be	tuned	to	optimize	some	criteria

◊ Sampling	is	(usually)	easy	to	understand
– So	prevalent	that	we	have	an	intuition	about	sampling

Sampling for Big Data

Alternatives to Sampling

◊ Sampling	is	not	the	only	game	in	town
– Many	other	data	reduction	techniques	by	many	names

◊ Dimensionality	reduction	methods
– PCA,	SVD,	eigenvalue/eigenvector	decompositions

– Costly	and	slow	to	perform	on	big	data

◊ “Sketching”	techniques	for	streams	of	data
– Hash	based	summaries	via	random	projections
– Complex	to	understand	and	limited	in	function

◊ Other	transform/dictionary	based	summarization	methods
– Wavelets,	Fourier	Transform,	DCT,	Histograms

– Not	incrementally	updatable,	high	overhead

◊ All	worthy	of	study	– in	other	tutorials

Sampling for Big Data

Health Warning: contains probabilities

◊ Will	avoid	detailed	probability	calculations,	aim	to	give	high	level	
descriptions	and	intuition

◊ But	some	probability	basics	are	assumed
– Concepts	of	probability,	expectation,	variance	of	random	variables
– Allude	to	concentration	of	measure	(Exponential/Chernoff bounds)

◊ Feel	free	to	ask	questions	about	technical	details	along	the	way

Sampling for Big Data

Outline

◊ Motivating	application:	sampling	in	large	ISP	networks

◊ Basics	of	sampling:	concepts	and	estimation

◊ Stream	sampling:	uniform	and	weighted	case
– Variations:	Concise	sampling,	sample	and	hold,	sketch	guided

BREAK
◊ Advanced	stream	sampling:	sampling	as	cost	optimization
– VarOpt,	priority,	structure	aware,	and	stable	sampling

◊ Hashing	and	coordination
– Bottom-k,	consistent	sampling	and	sketch-based	sampling

◊ Graph	sampling
– Node,	edge	and	subgraphsampling

◊ Conclusion	and	future	directions

Sampling for Big Data

Sampling as a Mediator of Constraints

Data Characteristics
(Heavy Tails, Correlations)

Query Requirements
(Ad Hoc, Accuracy,
Aggregates, Speed)

Resource Constraints
(Bandwidth, Storage, CPU)

Sampling

Sampling for Big Data

Motivating Application: ISP Data

◊ Will	motivate	many	results	with	application	to	ISPs

◊ Many	reasons	to	use	such	examples:
– Expertise:	tutors	from	telecoms	world

– Demand:	many	sampling	methods	developed	in	response	to	ISP	needs

– Practice:	sampling	widely	used	in	ISP	monitoring,	built	into	routers

– Prescience:	ISPs	were	first	to	hit	many	“big	data”	problems
– Variety:	many	different	places	where	sampling	is	needed

◊ First,	a	crash-course	on	ISP	networks…

Sampling for Big Data

Structure of Large ISP Networks

Peering	with	other	ISPs

Access	Networks:	
Wireless,	DSL,	IPTV

City-level
Router	Centers

Backbone		Links

Downstream	ISP	and	
business	customers

Service	and	
Datacenters

Network	Management	
&	Administration

Sampling for Big Data

Measuring the ISP Network: Data
Sources

Peering

Access
Router	Centers

Backbone

Business

DatacentersManagement

Link	Traffic	Rates
Aggregated	per	router	interface

Traffic	Matrices
Flow	records	from	routers

Loss&	Latency
Active	probing

Loss	&	Latency	
Roundtrip to	edge

Protocol	Monitoring:
Routers,	Wireless

Status	Reports:
Device	failures	and	transitions

Customer	Care	Logs
Reactive	indicators	of	
network	performance	

Sampling for Big Data

Why Summarize (ISP) Big Data?

◊ When	transmission	bandwidth	for	measurements	is	limited
– Not	such	a	big	issue	in	ISPs	with	in-band	collection

◊ Typically	raw	accumulation	is	not	feasible	(even	for	nation	states)
– High	rate	streaming	data

– Maintain	historical	summaries	for	baselining,	time	series	analysis

◊ To	facilitate	fast	queries
– When	infeasible	to	run	exploratory	queries	over	full	data

◊ As	part	of	hierarchical	query	infrastructure:
– Maintain	full	data	over	limited	duration	window

– Drill	down	into	full	data	through	one	or	more	layers	of	summarization

Sampling	has	been	proved	to	be	a	flexible	method	to	accomplish	this

Sampling for Big Data

Data Scale:
Summarization and Sampling

Sampling for Big Data

Traffic Measurement in the ISP
Network

Access
Router Centers

Backbone

Business

DatacentersManagement

Traffic Matrices
Flow records from routers

Sampling for Big Data

Massive Dataset: Flow Records

◊ IP	Flow:	set	of	packets	with	common	key	observed	close	in	time

◊ Flow	Key:	IP	src/dst address,	TCP/UDP	ports,	ToS,…	[64	to	104+	bits]

◊ Flow	Records:	
– Protocol	level	summaries	of	flows,	compiled	and	exported	by	routers

– Flow	key,	packet	and	byte	counts,	first/last	packet	time,	some	router	state

– Realizations:	Cisco	Netflow,	IETF	Standards

◊ Scale:	100’s	TeraBytesof	flow	records	daily	are	generated	in	a	large	ISP
◊ Used	to	manage	network	over	range	of	timescales:	

– Capacity	planning	(months),….,	detecting	network	attacks	(seconds)

◊ Analysis	tasks
– Easy:	timeseries of	predetermined	aggregates	(e.g.	address	prefixes)

– Hard:	fast	queries	over	exploratory	selectors,	history,	communications	subgraphs

flow	1 flow	2 flow	3 flow	4

time

Sampling for Big Data

Flows, Flow Records and Sampling

◊ Two	types	of	sampling	used	in	practice	for	internet	traffic:
1. Sampling	packet	stream	in	router	prior	to	forming	flow	records

□ Limits	the	rate	of	lookups	of	packet	key	in	flow	cache

□ Realized	as	Packet	Sampled	NetFlow(more	later…)

2. Downstream	sampling	of	flow	records	in	collection	infrastructure

□ Limits	transmission	bandwidth,	storage	requirements
□ Realized	in	ISP	measurement	collection	infrastructure	(more	later…)

◊ Two	cases	illustrative	of	general	property
– Different	underlying	distributions	require	different	sample	designs

– Statistical	optimality	sometimes	limited	by	implementation	constraints	

□ Availability	of	router	storage,	processing	cycles

Sampling for Big Data

Abstraction: Keyed Data Streams

◊ Data	Model:	objects	are	keyed	weights
– Objects	(x,k):	Weight x;	key	k

□ Example	1:	objects	=	packets,	x =	bytes,	k =	key	(source/destination)

□ Example	2:	objects	=	flows,	x =	packets	or	bytes,	k =	key

□ Example	3:	objects	=	account	updates,	x =	credit/debit,	k =	account	ID

◊ Stream	of	keyed	weights,	{(xi , ki):	i =	1,2,…,n}	

◊ Generic	query:	subset	sums
– X(S)	=	ΣiÎS xi for S	Ì {1,2,…,n}	i.e.	total	weight	of	index	subset	S
– Typically	S	=	S(K)	=	{i:	kiÎ K} :	objects	with	keys	in	K

□ Example	1,	2:	X(S(K))	=	total	bytes	to	given	IP	dest address	/	UDP	port

□ Example	3:	X(S(K))	=	total	balance	change	over	set	of	accounts

◊ Aim:	Compute	fixed	size	summary	of	stream	that	can	be	used	to	
estimate	arbitrary	subset	sums	with	known	error	bounds

Sampling for Big Data

Inclusion Sampling and Estimation

◊ Horvitz-Thompson	Estimation:
– Object	of	size	xi sampled	with	probability	pi

– Unbiased	estimate	x’i=	xi /	pi (if	sampled),	0	if	not	sampled:	E[x’i]	=	xi
◊ Linearity:	
– Estimate	of	subset	sum	=	sum	of	matching	estimates

– Subset	sum	X(S)=SiÎS xi is	estimated	byX’(S)	=	SiÎS x’i
◊ Accuracy:
– Exponential	Bounds:	Pr[|X’(S)	- X(S)|	>	δX(S)]	≤	exp[-g(δ)X(S)]

– Confidence	intervals:	X(S)	Î [X-(e)	,	X+(e)]	with	probability	1	- e
◊ Futureproof:
– Don’t	need	to	know	queries	at	time	of	sampling

□ “Where/where	did	that	suspicious	UDP	port	first	become	so	active?”
□ “Which	is	the	most	active	IP	address	within	than	anomalous	subnet?”

– Retrospective	estimate:	subset	sum	over	relevant	keyset

Sampling for Big Data

Independent Stream Sampling

◊ Bernoulli	Sampling
– IID	sampling	of	objects	with	some	probability	p

– Sampled	weight	x has	HT	estimate	x/p

◊ Poisson	Sampling
– Weight	xi sampled	with	probability	pi ;	HT	estimate	xi /	pi

◊ When	to	use	Poisson	vs.	Bernoulli	sampling?
– Elephants	and	mice:	Poisson	allows	probability	to	depend	on	weight…

◊ What	is	best	choice	of	probabilities	for	given	stream	{xi}	?

Sampling for Big Data

Bernoulli Sampling

◊ The	easiest	possible	case	of	sampling:	all	weights	are	1
– N objects,	and	want	to	sample	k from	them	uniformly

– Each	possible	subset	of	k should	be	equally	likely

◊ Uniformly	sample	an	index	from	N (without	replacement)	k times
– Some	subtleties:	truly	random	numbers	from	[1…N]	on	a	computer?

– Assume	that	random	number	generators	are	good	enough

◊ Common	trick	in	DB:	assign	a	random	number	to	each	item	and	sort
– Costly	if	N is	very	big,	but	so	is	random	access

◊ Interesting	problem:	take	a	single	linear	scan	of	data	to	draw	sample
– Streaming	model	of	computation:	see	each	element	once

– Application:	IP	flow	sampling,	too	many	(for	us)	to	store

– (For	a	while)	common	tech	interview	question

Sampling for Big Data

Reservoir Sampling

“Reservoir	sampling”	described	by	[Knuth 69, 81];	enhancements	[Vitter 85]
◊ Fixed	size	k uniform	sample	from	arbitrary	size	N stream	in	one	pass
– No	need	to	know	stream	size	in	advance

– Include	first	k items	w.p.	1

– Include	item	n	>	k	 with	probability	pn=	k/n,	n	>	k

□ Pick	j uniformly	from	{1,2,…,n}
□ If	j	≤	k,	swap	item	n into	location	j in	reservoir,	discard	replaced	item

◊ Neat	proof	shows	the	uniformity	of	the	sampling	method:	
– Let	Sn =	sample	set	after	n arrivals

k=7 n

m (< n)

Previously	sampled	item:	induction

m	Î Sn-1 w.p.	pn-1Þ m	Î Sn w.p.	pn-1 *	(1	– pn /	k)	=	pn

New	item:	selection	probability

Prob[n	Î Sn]	=	pn :=	k/n

Sampling for Big Data

Reservoir Sampling: Skip Counting

◊ Simple	approach:	check	each	item	in	turn
– O(1) per	item:	

– Fine	if	computation	time	<		interarrivaltime

– Otherwise	build	up	computation	backlog	O(N)

◊ Better:	“skip	counting”
– Find	random	index	m(n)of	next	selection	>	n
– Distribution:		Prob[m(n)	≤	m]	=	1	- (1-pn+1)*(1-pn+2)*…*(1-pm)

◊ Expected	number	of	selections	from	stream	is
k	+	Σk<m≤N pm =	k	+	Σk<m≤N k/m	=	O(k	(1	+	ln (N/k)))	

◊ Vitter’85	provided	algorithm	with	this	average	running	time

Sampling for Big Data

Reservoir Sampling via Order Sampling

◊ Order	sampling	a.k.a.	bottom-k	sample,	min-hashing

◊ Uniform	sampling	of	stream	into	reservoir	of	size	k

◊ Each	arrival	n:	generate	one-time	random	value	rn Î U[0,1]
– rn also	known	as	hash,	rank,	tag…

◊ Store	k	items	with	the	smallest	random	tags

0.391 0.908 0.291 0.555 0.619 0.273

n Each	item	has	same	chance	of	least	tag,	so	uniform

n Fast	to	implement	via	priority	queue

n Can	run	on	multiple	input	streams	separately,	then	merge

Sampling for Big Data

Handling Weights

◊ So	far:	uniform	sampling	from	a	stream	using	a	reservoir

◊ Extend	to	non-uniform	sampling	from	weighted	streams
– Easy	case:	k=1

– Sampling	probability	p(n)	=	xn/Wnwhere	Wn=	Si=1
n xi

◊ k>1 is	harder
– Can	have	elements	with	large	weight:	would	be	sampled	with	prob 1?	

◊ Number	of	different	weighted	order-sampling	schemes	proposed	to	
realize	desired	distributional	objectives
– Rank	rn=	f(un,		xn)	for	some	function	f	and	unÎ U[0,1]

– k-mins sketches	[Cohen 1997],	Bottom-k	sketches	[Cohen Kaplan 2007]
– [Rosen 1972], Weighted	random	sampling	[Efraimidis Spirakis 2006]
– Order	PPS	Sampling	[Ohlsson 1990, Rosen 1997]
– Priority	Sampling	[Duffield Lund Thorup 2004], [Alon+DLT 2005]

Sampling for Big Data

Weighted random sampling

◊ Weighted	random	sampling	[Efraimidis Spirakis 06] generalizes	min-wise	
– For	each	item	draw	rn uniformly	at	random	in	range	[0,1]

– Compute	the	‘tag’	of	an	item	as	rn (1/xn)

– Keep	the	items	with	the	k smallest	tags

– Can	prove	the	correctness	of	the	exponential	sampling	distribution

◊ Can	also	make	efficient	via	skip	counting	ideas

Sampling for Big Data

Priority Sampling

◊ Each	item	xi	 given	priority	zi =	xi /	ri with	rn uniform	random	in	(0,1]

◊ Maintain	reservoir	of	k+1	items	(xi ,	zi)	of	highest	priority
◊ Estimation	

– Let	z*	=	(k+1)st highest	 priority

– Top-k	priority	items:	weight	estimate	 x’I =	max{	xi ,	z*	}

– All	other	 items:	weight	estimate	 zero

◊ Statistics	and	bounds
– x’I unbiased;	 zero	covariance:	Cov[x’i ,	x’j]	=	0	for	i≠j

– Relative	 variance	for	any	subset	 sum	≤	1/(k-1)	[Szegedy, 2006]

Sampling for Big Data

Priority Sampling in Databases

◊ One	Time	Sample	Preparation
– Compute	priorities	of	all	items,	sort	in	decreasing	priority	order

□ No	discard

◊ Sample	and	Estimate
– Estimate	any	subset	sum	X(S)	= SiÎS xi by	X’(S)	=	SiÎS x’I for	some	S’Ì S

– Method:	select	items	in	decreasing	priority	order

◊ Two	variants:	bounded	variance	or	complexity	
1. S’	=	first	k	items	from	S:	relative	variance	bounded	≤	1/(k-1)

□ x’I=	max{	xi ,	z*	}	where z*	=	(k+1)st highest	priority	in	S

2. S’	=	items	from	S	in	first	k:	execution	time	O(k)

□ x’I=	max{	xi ,	z*	}	where z*	=	(k+1)st highest	priority

[Alon et. al., 2005]

Sampling for Big Data

Making Stream Samples Smarter

◊ Observation:	we	see the	whole	stream,	even	if	we	can’t	store	it
– Can	keep	more	information	about	sampled	items	if	repeated

– Simple	information:	if	item	sampled,	count	all	repeats

◊ Counting	Samples	[Gibbons & Mattias 98]
– Sample	new	items	with	fixed	probability	p,	count	repeats	as	ci
– Unbiased	estimate	of	total	count:		1/p	+	(ci – 1)	

◊ Sample	and	Hold	[Estan & Varghese 02]:	generalize	to	weighted	keys
– New	key	with	weight	b sampled	with	probability	1	- (1-p)b

◊ Lower	variance	compared	with	independent	sampling
– But	sample	size	will	grow	as	pn

◊ Adaptive	sample	and	hold:	reduce	p when	needed
– “Sticky	sampling”:	geometric	decreases	in	p [Manku, Motwani 02]
– Much	subsequent	work	tuning	decrease	in	p	to	maintain	sample	size

Sampling for Big Data

Sketch Guided Sampling

◊ Go	further:	avoid	sampling	the	heavy	keys	as	much
– Uniform	sampling	will	pick	from	the	heavy	keys	again	and	again

◊ Idea:	use	an	oracle	to	tell	when	a	key	is	heavy	[Kumar Xu 06]
– Adjust	sampling	probability	accordingly

◊ Can	use	a	“sketch”	data	structure	to	play	the	role	of	oracle
– Like	a	hash	table	with	collisions,	tracks	approximate	frequencies

– E.g.	(Counting)	Bloom	Filters,	Count-Min	Sketch

◊ Track	probability	with	which	key	is	sampled,	use	HT	estimators
– Set	probability	of	sampling	key	with	(estimated)	weight	was	

1/(1	+	ew)	for	parameter	e : decreases	as	w	increases
– Decreasing	e improves	accuracy,	increases	sample	size

Sampling for Big Data

Challenges for Smart Stream Sampling

◊ Current	router	constraints
– Flow	tables	maintained	in	fast	expensive	SRAM

□ To	support	per	packet	key	lookup	at	line	rate

◊ Implementation	requirements
– Sample	and	Hold:	still	need	per	packet	lookup
– Sampled	NetFlow:	(uniform)	sampling	reduces	lookup	rate

□ Easier	to	implement	 despite	 inferior	statistical	 properties

◊ Long	development	times	to	realize	new	sampling	algorithms

◊ Similar	concerns	affect	sampling	in	other	applications
– Processing	large	amounts	of	data	needs	awareness	of	hardware

– Uniform	sampling	means	no	coordination	needed	in	distributed	setting

Sampling for Big Data

Future for Smarter Stream Sampling

◊ Software	Defined	Networking
– Current:	proprietary	software	running	on	special		vendor	equipment

– Future:	open	software	and	protocols	on	commodity	hardware

◊ Potentially	offers	flexibility	in	traffic	measurement
– Allocate	system	resources	to	measurement	tasks	as	needed
– Dynamic	reconfiguration,	fine	grained	tuning	of	sampling

– Stateful packet	inspection	and	sampling	for	network	security

◊ Technical	challenges:	
– High	rate	packet	processing	in	software

– Transparent	support	from	commodity	hardware

– OpenSketch:	[Yu, Jose, Miao, 2013]
◊ Same	issues	in	other	applications:	use	of	commodity	programmable	HW

Sampling for Big Data

Stream Sampling:
Sampling as Cost Optimization

Sampling for Big Data

Matching Data to Sampling Analysis

◊ Generic	problem	1:	Counting	objects:	weight	xi =	1
Bernoulli	(uniform)	sampling	with	probability	pworks	fine

– Estimated	subset	count	X’(S)	=	#{samples	in	S}	/	p

– Relative	Variance	(X’(S))	=	(1/p	-1)/X(S)

□ given	p,	get	any	desired	accuracy	for	large	enough	S

◊ Generic	problem	2:	xi in	Pareto	distribution,	a.k.a.	80-20	law
– Small	proportion	of	objects	possess	a	large	proportion	of	total	weight	

□ How	to	best	to	sample	objects	to	accurately	estimate	weight?

– Uniform	sampling?

□ likely	to	omit	heavy	objects		Þbig	hit	on	accuracy
□ making	selection	set	S large	doesn’t	help

– Select	m largest	objects	?

□ biased	&	smaller	objects	systematically	ignored

Sampling for Big Data

Heavy Tails in the Internet and
Beyond
◊ Files	sizes	in	storage

◊ Bytes	and	packets	per	network	flow

◊ Degree	distributions	in	web	graph,	social	networks

Sampling for Big Data

Non-Uniform Sampling

◊ Extensive	literature:	see	book	by	[Tille, “Sampling Algorithms”, 2006]
◊ Predates	“Big	Data”
– Focus	on	statistical	properties,	not	so	much	computational

◊ IPPS:	Inclusion	Probability	Proportional	to	Size
– Variance	Optimal	for	HT	Estimation

– Sampling	probabilities	for	multivariate	version:	[Chao 1982, Tille 1996]
– Efficient	stream	sampling	algorithm:	[Cohen et. al. 2009]

Sampling for Big Data

Costs of Non-Uniform Sampling

◊ Independent	sampling	from	n objects	with	weights	{x1,…	,xn}

◊ Goal:	find	the	“best”	sampling	probabilities	{p1,	…	,pn}

◊ Horvitz-Thompson:	unbiased	estimation	of	each	xi by	

◊ Two	costs	to	balance:
1. Estimation	Variance:			Var(x’i)	=	x2i	(1/pi – 1)

2. Expected	Sample	Size:		Sipi

◊ Minimize	Linear	Combination	Cost:	Si (xi2(1/pi	–1)		+		z2 pi)
– z expresses	relative	importance	of	small	sample	vs.	small	variance

otherwise0
selected		i		weightif	px

	
	

x' ii
i =

Sampling for Big Data

Minimal Cost Sampling: IPPS

IPPS:	Inclusion	Probability	Proportional	to	Size

◊ MinimizeCost	Si (xi2 (1/pi	– 1)		+	z2 pi)	subject	to	1	≥	pi ≥	0

◊ Solution:	pi =	pz(xi)	=	min{1,	xi /z}

– small	objects	(xi <	z)	selected	with	probability	proportional	to	size

– large	objects	(xi ≥	z)	selectedwith	probability	1

– Call	z the	“sampling	threshold”

– Unbiased	estimator	xi/pi =max{xi ,	z}

◊ Perhaps	reminiscent	of	importance
sampling,	but	not	the	same:

– make	no	assumptions	concerning
distribution	of	the	x

pz(x)

1

z
x

Sampling for Big Data

Error Estimates and Bounds

◊ Variance	Based:
– HT	sampling	variance	for	single	object	of	weight	xi

□ Var(x’i)	=	x2i	(1/pi – 1)	=	x2i	(1/min{1,xi/z}		– 1)	≤	z	xi
– Subset	sum	X(S)=SiÎS xi is	estimated	byX’(S)	=	SiÎS x’i

□ Var(X’(S))	≤	z	X(S)

◊ Exponential	Bounds
– E.g.	Prob[X’(S)	=	0]	≤	exp(- X(S)	/	z)

◊ Bounds	are	simple	and	powerful
– depend	only	on	subset	sum	X(S),	not	individual	constituents

Sampling for Big Data

Sampled IP Traffic Measurements

◊ Packet	Sampled	NetFlow
– Sample	packet	stream	in	router	to	limit	rate	of	key	lookup:	uniform	1/N

– Aggregate	sampled	packets	into	flow	records	by	key

◊ Model:	packet	stream	of	(key,	bytesize)	pairs	{	(bi,	ki)	}

◊ Packet	sampled	flow	record	(b,k)	where b	=	Σ {bi	:	i sampled	� ki =		k}
– HT	estimate	b*Nof	total	bytes	in	flow

◊ Downstream	sampling	of	flow	records	in	measurement	infrastructure
– IPPS	sampling,	probability	min{1,	b*N/z}

◊ Chained	variance	bound	for	any	subset	sum	X of	flows
– Var(X’)	≤	(z	+	Nbmax)	X	where	bmax=	maximum	packet	byte	size

– Regardless	of	how	packets	are	distributed	amongst	flows

[Duffield, Lund, Thorup, IEEE ToIT, 2004]

Sampling for Big Data

Estimation Accuracy in Practice

◊ Estimate	any	subset	sum	comprising	at	least	some	fraction	f of	weight	

◊ Suppose:	sample	size	m

◊ Analysis:	typical	estimation	error	ε (relative	standard	deviation)	obeys

◊ 2**16	=	storage	needed	for	aggregates	over	16	bit	address	prefixes
□ But	sampling	gives	more	flexibility	to	estimate	traffic	within	aggregates	

kf	
1ε

0.10%

1.00%

10.00%

100.00%

0.0001 0.001 0.01 0.1 1
R

SD
 ε

fraction f

m = 2**16 samples

Estimate	 	fraction	f =	0.1%	
with	typical	relative	error	

12%:

m

Sampling for Big Data

Heavy Hitters:
Exact vs. Aggregate vs. Sampled
◊ Sampling	does	not	tell	you	where	the	interesting	features	are
– But	does	speed	up	the	ability	to	find	them	with	existing	tools

◊ Example:	Heavy	Hitter	Detection
– Setting:	Flow	records	reporting	10GB/s	traffic	stream

– Aim:	find	Heavy	Hitters	=	IP	prefixes	comprising	≥	0.1%	of		traffic

– Response	time	needed:	5	minute

◊ Compare:
– Exact:	10GB/s	x	5	minutes	yields	upwards	of	300M	flow	records

– 64k	aggregates	over	16	bit	prefixes:	no	deeper	drill-down	possible

– Sampled:	64k	flow	records:	anyaggregate	≥	0.1%		accurate	to	10%
Exact Aggregate Sampled

Sampling for Big Data

Cost Optimization for Sampling

Several	different	approaches	optimize	for	different	objectives:

1. Fixed	Sample	Size	IPPS	Sample
– Variance	Optimal	sampling:	minimal	variance	unbiased	estimation

2. Structure	Aware	Sampling
– Improve	estimation	accuracy	for	subnet	queries	using	topological	cost

3. Fair	Sampling
– Adaptively	balance	sampling	budget	over	subpopulations	of	flows	
– Uniform	estimation	accuracy	regardless	of	subpopulation	size

4. Stable	Sampling
– Increase	stability	of	sample	set	by	imposing	cost	on	changes

Sampling for Big Data

IPPS Stream Reservoir Sampling
◊ Each	arriving	item:

– Provisionally	 include	 item	in	reservoir

– If	m+1 items,	 discard	1	item	randomly

□ Calculate	threshold	z to	sample	m items	on	average:	z solves	Si pz(xi)	=	m
□ Discard	item	i with	probability	qi =1	– pz(xi)

□ Adjust	m surviving	xiwith	Horvitz-Thompson	x’i =	xi /	pi =	max{xi,z}
◊ Efficient	 Implementation:

– Computational	cost	O(log	m)	per	item,	amortized	cost	O(log	log	m)

[Cohen, Duffield, Lund, Kaplan, Thorup; SODA 2009, SIAM J. Comput. 2011]

x9
x8
x7
x6
x5
x4
x3
x2
x1

Example:
m=9

x10

Recalculate
threshold z:

=

=
10

1i
i 9z}xmin{1,

z

0

1

Recalculate
Discard probs:

z}xmin{1,	-	1q i	i =

x7
x6
x5
x4
x3
x2
x1

x9
x8

x10

Adjust weights:
z},max{xx' i	i =

x’9
x’8

x’10

x’6
x’5
x’4
x’3
x’2
x’1

Sampling for Big Data

Structure (Un)Aware Sampling

◊ Sampling	is	oblivious	to	structure	in	keys	(IP	address	hierarchy)
– Estimation	disperses	the	weight	of	discarded	items	to	surviving	samples

◊ Queries	structure	aware:	subset	sums	over	related	keys	(IP	subnets)
– Accuracy	on	LHS	is	decreased	by	discarding	weight	on	RHS	

Æ

0 1

00 01 10

000 001 010 011 100 101 110 111

11

Sampling for Big Data

Localizing Weight Redistribution

◊ Initial	weight	set	{xi :	iÎS}	for	some	S	ÌΩ
– E.g. Ω =	possible	 IP	addresses,	 S =observed	IP	addresses	

◊ Attribute	“range	cost”	C({xi :	iÎR})	for	each	weight	subset	RÍS
– Possible	 factors	for	Range	Cost:	

□ Sampling	variance

□ Topology	e.g.	height	 of	lowest	common	ancestor

– Heuristics:	 R* =	Nearest	 Neighbor	{xi	,	xj}	of	minimal	xixj
◊ Sample	k	items	from	S:

– Progressively	remove	one	item	 from		
subset	with	minimal	 range	cost:

– While(|S|	>	k)	

□ Find	R*ÍS of	minimal	 range	cost.

□ Remove	a	weight	from	R* w/	VarOpt

[Cohen, Cormode, Duffield; PVLDB 2011]

Æ

0 1

00 01 10

000 001 010 011 100 101 110 111

11

No	change	outside	
subtree below
closest	ancestor

Order	of	magnitude	 reduction	 in	
average	subnet	error	vs.	VarOpt

Sampling for Big Data

Fair Sampling Across Subpopulations

◊ Analysis	queries	often	focus	on	specific	subpopulations
– E.g.	networking:	different	customers,	user	applications,	network	paths

◊ Wide	variation	in	subpopulation	size
– 5	orders	of	magnitude	variation	in	traffic	on	interfaces	of	access	router

◊ If	uniform	sampling	across	subpopulations:
– Poor	estimation	accuracy	on	subset	sums	within	small	subpopulations

Sample

Color	=	subpopulation

,						=	interesting	 items

– occurrence	proportional	to	subpopulation	 size

Uniform	Sampling	across subpopulations:

– Difficult	to	track	proportion	of	interesting	
items	within	small	 subpopulations:

Sampling for Big Data

Fair Sampling Across Subpopulations

◊ Minimize	relativevariance	by	sharing	budget	m	over	subpopulations
– Total	n objects in	subpopulations	 n1,…,ndwith	Sini=n
– Allocate	 budget	mi to	each	subpopulation	 ni with	Simi=m

◊ Minimize	average	population	relative	variance	R	=	const.	Si1/mi

◊ Theorem:
– R minimized	when	{mi}	are	Max-Min	Fair	share	of	m under	demands	 {ni}

◊ Streaming
– Problem:	don’t	know	subpopulation	 sizes	{ni}	in	advance

◊ Solution:	progressive	fair	sharing	as	reservoir	sample
– Provisionally	 include	 each	arrival

– Discard	1	item	as	VarOpt sample	from	any	maximal	 subpopulation

◊ Theorem	[Duffield; Sigmetrics2012]:
– Max-Min	Fair	at	all	times;	 equality	 in	distribution	with	VarOpt samples	 {mi from	ni}

Sampling for Big Data

Stable Sampling

◊ Setting:	Sampling	a	population	over	successive	periods

◊ Sample	independently	at	each	time	period?
– Cost	associated	with	sample	churn

– Time	series	analysis	of	set	of	relatively	stable	keys

◊ Find	sampling	probabilities	through	cost	minimization
– Minimize	Cost	=	Estimation	Variance	+	z	*	E[#Churn]

◊ Size	m	sample	with	maximal	expected	churn	D
– weights	{xi},	previous	sampling	probabilities	{pi}

– find	new	sampling	probabilities	{qi}	to	minimize	cost	of	taking	m	
samples

– Minimize	Six2i	/	qi subject	to	1	≥	qi ≥	0,	SI	qi =	m	and	SI	|	pi – qi |	≤ D	

[Cohen, Cormode, Duffield, Lund 13]

Sampling for Big Data

Summary of Part 1

◊ Sampling	as	a	powerful,	general	summarization	technique

◊ Unbiased	estimation	via	Horvitz-Thompson	estimators

◊ Sampling	from	streams	of	data
– Uniform	sampling:	reservoir	sampling

– Weighted	generalizations:	sample	and	hold,	counting	samples

◊ Advances	in	stream	sampling
– The	cost	principle	for	sample	design,	and	IPPS	methods
– Threshold,	priority	and	VarOptsampling

– Extending	the	cost	principle:	

□ structure	aware,	fair	sampling,	stable	sampling,	sketch	guided

Sampling for Big Data

Outline

◊ Motivating	application:	sampling	in	large	ISP	networks

◊ Basics	of	sampling:	concepts	and	estimation

◊ Stream	sampling:	uniform	and	weighted	case
– Variations:	Concise	sampling,	sample	and	hold,	sketch	guided

BREAK
◊ Advanced	stream	sampling:	sampling	as	cost	optimization
– VarOpt,	priority,	structure	aware,	and	stable	sampling

◊ Hashing	and	coordination
– Bottom-k,	consistent	sampling	and	sketch-based	sampling

◊ Graph	sampling
– Node,	edge	and	subgraphsampling

◊ Conclusion	and	future	directions

Sampling for Big Data

Data Scale:
Hashing and Coordination

Sampling for Big Data

Sampling from the set of items

◊ Sometimes	need	to	sample	from	the	distinct	set	of	objects
– Not	influenced	by	the	weight	or	number	of	occurrences

– E.g.	sample	from	the	distinct	set	of	flows,	regardless	of	weight

◊ Need	sampling	method	that	is	invariant	to	duplicates

◊ Basic	idea:	build	a	function	to	determine	what	to	sample
– A	“random”	function	f(k)	àR

– Use	f(k) to	make	a	sampling	decision:	consistent	decision	for	same	key

Sampling for Big Data

Permanent Random Numbers

◊ Often	convenient	to	think	of	f as	giving	“permanent	random	numbers”
– Permanent:	assigned	once	and	for	all

– Random:	treat	as	if	fully	randomly	chosen

◊ The	permanent	random	number	is	used	in	multiple	sampling	steps
– Same	“random”	number	each	time,	so	consistent (correlated)	decisions

◊ Example:	use	PRNs	to	draw	a	sample	of	s from	N via	order	sampling
– If	s	<<	N,	small	chance	of	seeing	same	element	in	different	samples
– Via	PRN,	stronger	chance	of	seeing	same	element

□ Can	track	properties	over	time,	gives	a	form	of	stability

◊ Easiest	way	to	generate	PRNs:	apply	a	hash function to	the	element	id
– Ensures	PRN	can	be	generated	with	minimal	coordination	

– Explicitly	storing	a	random	number	for	all	observed	keys	does	not	scale

Sampling for Big Data

Hash Functions

Many	possible	choices	of	hashing	functions:

◊ Cryptographic	hash	functions:	SHA-1,	MD5,	etc.
– Results	appear	“random”	for	most	tests	(using	seed/salt)

– Can	be	slow	for	high	speed/high	volume	applications

– Full	power	of	cryptographic	security	not	needed	for	most	statistical	purposes

□ Although	possible	some	trade-offs	in	robustness	to	subversion	if	not	used

◊ Heuristic	hash	functions:	srand(),	mod
– Usually	pretty	fast

– May	not	be	random	enough:	structure	in	keys	may	cause	collisions

◊ Mathematical	hash	functions:	universal	hashing,	k-wise	hashing
– Have	precise	mathematical	properties	on	probabilities

– Can	be	implemented	to	be	very	fast

Sampling for Big Data

Mathematical Hashing

◊ K-wise	independence:	Pr[h(x1)	=	y1 Ù h(x2)	=	y2Ù …	Ù h(xt)	=	yt]	=	1/Rt

– Simple function:	ctxt +	ct-1xt-1 +	…	c1x	+	c0 mod	P

– For	fixed	prime	P,	randomly	chosen	c0 …	ct
– Can	be	made	very	fast	(choose	P to	be	Mersenneprime	to	simplify	mods)

◊ (Twisted)	tabulation	hashing	[Thorup Patrascu 13]
– Interpret	each	key	as	a	sequence	of	short	characters,	e.g.	8	*	8bits
– Use	a	“truly	random”	look-up	table	for	each	character	(so	8	*	256	entries)

– Take	the	exclusive-OR	of	the	relevant	table	values

– Fast,	and	fairly	compact

– Strong	enough	for	many	applications	of	hashing	(hash	tables	etc.)

Sampling for Big Data

Bottom-k sampling

◊ Sample	from	the	set	of	distinct	keys
– Hash	each	key	using	appropriate	hash	function

– Keep	information	on	the	keys	with	the	s smallest	hash	values

– Think	of	as	order	sampling	with	PRNs…

◊ Useful	for	estimating	properties	of	the	support	set	of	keys
– Evaluate	any	predicate	on	the	sampled	set	of	keys

◊ Same	concept,	several	different	names:	
– Bottom-k	sampling,	Min-wise	hashing,	K-minimum	values

0.391 0.908 0.291 0.391 0.391 0.273

Sampling for Big Data

Subset Size Estimation from Bottom-k

◊ Want	to	estimate	the	fraction	t	=	|A|/|D|
– D is	the	observed	set	of	data

– A is	an	arbitrary	subset	given	later

– E.g.	fraction	of	customers	who	are	sports	fans	from	midwestaged	18-35

◊ Simple	algorithm:	
– Run	bottom-k	to	get	sample	set	S,	estimate	t’	=	|A	∩	S|/s
– Error	decreases	as	1/√s

– Analysis	due	to	[Thorup 13]: simple	hash	functions	suffice	for	big	enough	s

Sampling for Big Data

Similarity Estimation

◊ How	similar	are	two	sets,	A and	B?

◊ Jaccard coefficient:	|A	Ç B|/|A	È B|
– 1	if	A,	B identical,	0	if	they	are	disjoint

– Widely	used,	e.g.	to	measure	document	similarity

◊ Simple	approach:	sample	an	item	uniformly	from	A and	B
– Probability	of	seeing	same	item	from	both:	|A	Ç B|/(|A| ´ |B|)
– Chance	of	seeing	same	item	too	low	to	be	informative

◊ Coordinated	sampling:	use	same	hash	function	to	sample	from	A,	B
– Probability	that	same	item	sampled:	|A	Ç B|/|A	È B|
– Repeat:	the	average	number	of	agreements	gives	Jaccard coefficient

– Concentration:	(additive)	error	scales	as	1/√s

Sampling for Big Data

Technical Issue: Min-wise hashing

◊ For	analysis	to	work,	the	hash	function	must	be	fully	random
– All	possibly	permutations	of	the	input	are	equally	likely

– Unrealistic	in	practice:	description	of	such	a	function	is	huge

◊ “Simple”	hash	functions	don’t	work	well
– Universal	hash	functions	are	too	skewed

◊ Need	hash	functions	that	are	“approximately	min-wise”
– Probability	of	sampling	a	subset	is	almostuniform
– Tabulation	hashing	a	simple	way	to	achieve	this

Sampling for Big Data

Bottom-k hashing for F0 Estimation

◊ F0 is	the	number	of	distinct	items	in	the	stream	
– a	fundamental	quantity	with	many	applications

– E.g.	number	of	distinct	flows	seen	on	a	backbone	link

◊ Let	m be	the	domain	of	stream	elements:	each	data	item	is	[1…m]

◊ Pick	a	random	(pairwise)	hash	function	h:	[m]	® [R]

◊ Apply	bottom-k	sampling	under	hash	function	h
– Let	vs =	s’th smallest	(distinct)	value	of	h(i) seen

◊ If	n	=	F0 <	s,	give	exact	answer,	else	estimate	F’0 =	sR/vs
– vs/R » fraction	of	hash	domain	occupied	by	s smallest

R0R vs

Sampling for Big Data

Analysis of F0 algorithm

◊ Can	show	that	it	is	unlikely	to	have	an	overestimate
– Too	many	items	hashed	below	a	fixed	value

– Can	treat	each	event	of	an	item	hashing	too	low	as	independent

◊ Similar	outline	to	show	unlikely	to	have	an	overestimate

◊ (Relative)	error	scales	as	1/√s

◊ Space	cost:	
– Store	s hash	values,	so	O(s	log	m)	bits
– Can	improve	to	O(s	+	log	m)	with	additional	hashing	tricks

– See	also	“Streamed	Approximate	Counting	of	Distinct	Elements”,	KDD’14

RsR/(1+e)n0R vs

Sampling for Big Data

Consistent Weighted Sampling

◊ Want	to	extend	bottom-k	results	when	data	has	weights

◊ Specifically,	two	data	sets	A and	B where	each	element	has	weight
– Weights	are	aggregated:	we	see	whole	weight	of	element	together

◊ Weighted	Jaccard:	want	probability	that	same	key	is	chosen	by	both	to	
beåi min(A(i),	B(i))/åi max(A(i),	B(i))

◊ Sampling	method	should	obey	uniformity	and	consistency
– Uniformity:	element	i picked	from	Awith	probability	proportional	to	A(i)

– Consistency:	if	i is	picked	from	A,	and	B(i)	>	A(i),	then	i also	picked	for	B

◊ Simple	solution:	assuming	integer	weights,	treat	weight	A(i)	
as	A(i)	unique	(different)	copies	of	element	i,	apply	bottom-k
– Limitations:	slow,	unscalablewhen	weights	can	be	large

– Need	to	rescale	fractional	weights	to	integral	multiples	

Sampling for Big Data

Consistent Weighted Sampling

◊ Efficient	sampling	distributions	exist	achieving	uniformity	and	
consistency

◊ Basic	idea:	consider	a	weight	w as	w/D different	elements
– Compute	the	probability	that	any	of	these	achieves	the	minimum	value

– Study	the	limiting	distribution	as	D® 0

◊ Consistent	Weighted	Sampling	[Manasse, McSherry, Talway 07], [Ioffe 10]
– Use	hash	of	item	to	determine	which	points	sampled	via	careful	transform

– Many	details	needed	to	contain	bit-precision,	allow	fast	computation

◊ Other	combinations	of	key	weights	are	possible	[Cohen Kaplan Sen 09]
– Min	of	weights,	max	of	weights,	sum	of	(absolute)	differences

Sampling for Big Data

Trajectory Sampling

◊ Aims	[Duffield Grossglauser 01]:	
– Probe	packets	at	each	router	they	traverse

– Collate	reports	to	infer	link	loss	and	latency

– Need	to	sample;	independent	sampling	no	use

◊ Hash-based	sampling:
– All	routers/packets:	compute	hash	h of	invariant	packet	fields

– Sample	if	h	Î some	H and	report	to	collector;	tune	sample	rate	with	|H|
– Use	high	entropy	packet	fields	as	hash	input,	e.g.	IP	addresses,	ID	field

– Hash	function	choice	trade-off	between	speed,	uniformity	&	security

◊ Standardized	in	Internet	Engineering	Task	Force	(IETF)
– Service	providers	need	consistency	across	different	vendors

– Several	hash	functions	standardized,	extensible
– Same	issues	arise	in	other	big	data	ecosystems	(apps	and	APIs)

Sampling for Big Data

Hash Sampling in Network
Management
◊ Many	different	network	subsystems	used	to	provide	service
– Monitored	through	event	logs,	passive	measurement	of	traffic	&	protocols

– Need	cross-system	sample	that	captures	full	interaction	between	network	
and	a	representative	set	of	users

◊ Ideal:	hash-based	selection	based	on	common	identifier

◊ Administrative	challenges!	Organizational	diversity

◊ Timeliness	challenge:	
– Selection	identifier	may	not	be	present	at	a	measurement	location

– Example:	common	identifier	=	anonymized customer	id	

□ Passive	traffic	measurement	based	on	IP	address

□ Mapping	of	IP	address	to	customer	ID	not	available	remotely
□ Attribution	of	traffic	IP	address	to	a	user	difficult	to	compute	at	line	speed	

Sampling for Big Data

Advanced Sampling from Sketches

◊ Difficult	case:	inputs	with	positive and	negative	weights

◊ Want	to	sample	based	on	the	overall	frequency	distribution
– Sample	from	support	set	of	n possible	items

– Sample	proportional	to	(absolute)	total	weights

– Sample	proportional	to	some	function	of	weights

◊ How	to	do	this	sampling	effectively?
– Challenge:	may	be	many	elements	with	positive	and	negative	weights
– Aggregate	weights	may	end	up	zero:	how	to	find	the	non-zero	weights?

◊ Recent	approach:	L0	sampling
– L0 sampling	enables	novel	“graph	sketching”	techniques

– Sketches	for	connectivity,	sparsifiers [Ahn, Guha, McGregor 12]

Sampling for Big Data

L0 Sampling

◊ L0 sampling:	sample	with	prob ≈	fi0/F0
– i.e.,	sample	(near)	uniformly	from	items	with	non-zero	frequency

◊ General	approach:	[Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum05]
– Sub-sample	all	items	(present	or	not)	with	probability	p

– Generate	a	sub-sampled	vector	of	frequencies	fp
– Feed	fp to	a	k-sparse	recovery	data	structure	

□ Allows	reconstruction	of	fp if	F0 <	k	

– If	fp is	k-sparse,	sample	from	reconstructed	vector

– Repeat	in	parallel	for	exponentially	shrinking	values	of	p

Sampling for Big Data

Sampling Process

◊ Exponential	set	of	probabilities,	p=1,	½,	¼,	1/8,	1/16…	1/U
– Let	N	=	F0 =	|{	i :	fi ¹ 0}|
– Want	there	to	be	a	level	where	k-sparse	recovery	will	succeed

– At	level	p,	expected	number	of	items	selected	S is	Np

– Pick	level	p so	that	k/3	<	Np £ 2k/3
◊ Chernoffbound:	with	probability	exponential	in	k,	1	£ S	£ k
– Pick	k	=	O(log	1/d)	to	get	1-dprobability

p=1

p=1/U

k-sparse	recovery	

Sampling for Big Data

Hash-based sampling summary

◊ Use	hash	functions	for	sampling	where	some	consistency	is	needed
– Consistency	over	repeated	keys

– Consistency	over	distributed	observations

◊ Hash	functions	have	duality	of	random	and	fixed
– Treat	as	random	for	statistical	analysis

– Treat	as	fixed	for	giving	consistency	properties

◊ Can	become	quite	complex	and	subtle
– Complex	sampling	distributions	for	consistent	weighted	sampling

– Tricky	combination	of	algorithms	for	L0 sampling

◊ Plenty	of	scope	for	new	hashing-based	sampling	methods

Sampling for Big Data

Data Scale:
Massive Graph Sampling

Sampling for Big Data

Massive Graph Sampling

◊ “Graph	Service	Providers”
– Search	providers:	web	graphs	(billions	of	pages	indexed)

– Online	social	networks

□ Facebook:	~109users	(nodes),	~1012 links

– ISPs:	communications	graphs

□ From	flow	records:	node	=	src or	dst IP,	edge	if	traffic	flows	between	them	

◊ Graph	service	provider	perspective	
– Already	have	all	the	data,	but	how	to	use	it?

– Want	a	general	purpose	sample	that	can:

□ Quickly	provide	answers	to	exploratory	queries

□ Compactly	archive	snapshots	for	retrospective	queries	&	baselining

◊ Graph	consumer	perspective
– Want	to	obtain	a	realistic	subgraphdirectly	or	via	crawling/API

Sampling for Big Data

Retrospective analysis of ISP graphs

◊ Node	=	IP	address		

◊ Directed	edge	=	flow	from	source	node	to	destination	node

compromise

control

flooding

• Hard	to	detect	against	background

• Known	attacks	can	be	detected:	
– Signature	matching	based	on	partial	graphs,	

flow	features,	timing

• Unknown	attacks	are	harder	to	spot:	
– exploratory	&	retrospective	 analysis

– preserve	accuracy	if	sampling?BOTNET

Sampling for Big Data

Goals for Graph Sampling

Crudely	divide	into	three	classes	of	goal:

1. Study	local	(node	or	edge)	properties
– Average	age	of	users	(nodes),	average	length	of	conversation	(edges)

2. Estimate	global	properties	or	parameters	of	the	network
– Average	degree,	shortest	path	distribution

3. Sample	a	“representative”	subgraph
– Test	new	algorithms	and	learning	more	quickly	than	on	full	graph

◊ Challenges:	what	properties	should	the	sample	preserve?
– The	notion	of	“representative”	is	very	subjective

– Can	list	properties	that	should	be	preserved	
(e.g.	degree	dbn,	path	length	dbn),	but	there	are	always	more…

Sampling for Big Data

Models for Graph Sampling

Many	possible	models,	but	reduce	to	two	for	simplicity

(see	tutorial	by	Hasan,	Ahmed,	Neville,	Kompella in	KDD	13)

◊ Static	model:	full	access	to	the	graph	to	draw	the	sample
– The	(massive)	graph	is	accessible	in	full	to	make	the	small	sample

◊ Streaming	model:	edges	arrive	in	some	arbitrary	order
– Must	make	sampling	decisions	on	the	fly

◊ Other	graph	models	capture	different	access	scenarios
– Crawling	model:	e.g.	exploring	the	(deep)	web,	API	gives	node	neighbours

– Adjacency	list	streaming:	see	all	neighboursof	a	node	together

Sampling for Big Data

Node and Edge Properties

◊ Gross	over-generalization:	
node	and	edge	properties	can	be	solved	using	previous	techniques
– Sample	nodes/edge	(in	a	stream)
– Handle	duplicates	(same	edge	many	times)	via	hash-based	sampling

– Track	properties	of	sampled	elements

□ E.g.	count	the	degree	of	sampled	nodes

◊ Some	challenges.		E.g.	how	to	sample	a	node	proportional	to	its	degree?
– If	degree	is	known	(precomputed),	then	use	these	as	weights
– Else,	sample	edges	uniformly,	then	sample	each	end	with	probability	½	

Sampling for Big Data

Induced subgraph sampling

◊ Node-induced	subgraph
– Pass	1:	Sample	a	set	of	nodes	(e.g.	uniformly)

– Pass	2:	collect	all	edges	incident	on	sampled	nodes

– Can	collapse	into	a	single	streaming	pass

– Can’t	know	in	advance	how	many	edges	will	be	sampled

◊ Edge-induced	subgraph
– Sample	a	set	of	edges	(e.g.	uniformly	in	one	pass)

– Resulting	graph	tends	to	be	sparse,	disconnected

◊ Edge-induced	variant	[Ahmed Neville Kompella 13]:	
– Take	second	pass	to	fill	in	edges	on	sampled	nodes

– Hack:	combine	passes	to	fill	in	edges	on	current	sample

Sampling for Big Data

HT Estimators for Graphs

◊ Can	construct	HT	estimators	from	uniform	vertex	samples	[Frank 78]
– Evaluate	the	desired	function	on	the	sampled	graph	(e.g.	average	degree)

◊ For	functions	of	edges (e.g.	number	of	edges	satisfying	a	property):
– Scale	up	accordingly,	by	N(N-1)/(k(k-1))	for	sample	size	k on	graph	size	N

– Variance	of	estimates	can	also	be	bounded	in	terms	of	N and	k

◊ Similar	for	functions	of	three	edges	(triangles)	and	higher:
– Scale	up	by	NC3/kC3	≈	1/p3 to	get	unbiased	estimator
– High	variance,	so	other	sampling	schemes	have	been	developed

Sampling for Big Data

Graph Sampling Heuristics

“Heuristics”,	since	few	formal	statistical	properties	are	known

◊ Breadth	first	sampling:	sample	a	node,	then	its	neighbours…
– Biased	towards	high-degree	nodes	(more	chances	to	reach	them)

◊ Snowball	sampling:	generalize	BF	by	picking	many	initial	nodes
– Respondent-driven	sampling:	weight	the	snowball	sample	to	give	

statistically	sound	estimates	[Salganik Heckathorn 04]
◊ Forest-fire	sampling:	generalize	BF	by	picking	only	a	fraction	of	
neighboursto	explore	[Leskovec Kleinberg Faloutsos 05]
– With	probability	p,	move	to	a	new	node	and	“kill”	current	node

No	“one	true	graph	sampling	method”
– Experiments	show	different	preferences,	depending	on	graph	and	metric

[Leskovec,	Faloutsos06;	Hasan,	Ahmed,	Neville,	Kompella13]

– None	of	these	methods	are	“streaming	friendly”:	require	static	graph
□ Hack:	apply	them	to	the	stream	of	edges	as-is

Sampling for Big Data

Random Walks Sampling

◊ Random	walks	have	proven	very	effective	for	many	graph	computations
– PageRank for	node	importance,	and	many	variations

◊ Random	walk	a	natural	model	for	sampling	a	node
– Perform	“long	enough”	random	walk	to	pick	a	node

– How	long	is	“long	enough”	(for	mixing	of	RW)?		

– Can	get	“stuck”	in	a	subgraph if	graph	not	well-connected
– Costly	to	perform	multiple	random	walks

– Highly	non-streaming	friendly,	but	suits	graph	crawling

◊ Multidimensional	Random	Walks	[Ribeiro, Towsley 10]
– Pick	k random	nodes	to	initialize	the	sample

– Pick	a	random	edge	from	the	union	of	edges	incident	on	the	sample

– Can	be	viewed	as	a	walk	on	a	high-dimensional	extension	of	the	graph
– Outperforms	running	k independent	random	walks

Sampling for Big Data

Subgraph estimation: counting triangles

◊ Hot	topic:	sample-based	triangle	counting
– Triangles:	simplest	non-trivial	representation	of	node	clustering

□ Regard	as	prototype	for	more	complex	subgraphs	of	interest

– Measure	of	“clustering	coefficient”	in	graph,	parameter	in	graph	models…

◊ Uniform	sampling	performs	poorly:
– Chance	that	randomly	sampled	edges	happen	to	form	subgraph is	≈	0

◊ Bias the	sampling	so	that	desired	subgraph is	preferentially	sampled

Sampling for Big Data

Subgraph Sampling in Streams

Want	to	sample	one	of	the	T triangles	in	a	graph

◊ [Buriol et al 06]:	sample	an	edge	uniformly,	then	pick	a	node
– Scan	for	the	edges	that	complete	the	triangle

– Probability	of	sampling	a	triangle	is	T/(|E|	(|V|-2))

◊ [Pavan et al 13]:	sample	an	edge,	then	sample	an	incident	edge
– Scan	for	the	edge	that	completes	the	triangle

– (After	bias	correction)	probability	of	sampling	a	triangle	is	T/(|E|	D)
□ D = max	degree,	considerably	smaller	than	|V| in	most	graphs

◊ [Jha et.al. KDD 2013]: sample	edges,	the	sample	pairs	of	incident	edges
– Scan	for	edges	that	complete	“wedges”	(edge	pairs	incident	on	a	vertex)

◊ Advert:	Graph	Sample	and	Hold	[Ahmed, Duffield, Neville, Kompella, KDD 2014]
– General	framework	for	subgraph counting;	e.g.	triangle	counting

– Similar	accuracy	to	previous	state	of	art,	but	using	smaller	storage

Sampling for Big Data

Graph Sampling Summary

◊ Sampling	a	representative	graph	from	a	massive	graph	is	difficult!

◊ Current	state	of	the	art:
– Sample	nodes/edges	uniformly	from	a	stream

– Heuristic	sampling	from	static/streaming	graph

◊ Sampling	enables	subgraph sampling/counting
– Much	effort	devoted	to	triangles	(smallest	non-trivial	subgraph)

◊ “Real”	graphs	are	richer
– Different	node	and	edge	types,	attributes	on	both

– Just	scratching	surface	of	sampling	realistic	graphs

Sampling for Big Data

Current Directions in Sampling

Sampling for Big Data

Outline

◊ Motivating	application:	sampling	in	large	ISP	networks

◊ Basics	of	sampling:	concepts	and	estimation

◊ Stream	sampling:	uniform	and	weighted	case
– Variations:	Concise	sampling,	sample	and	hold,	sketch	guided

BREAK
◊ Advanced	stream	sampling:	sampling	as	cost	optimization
– VarOpt,	priority,	structure	aware,	and	stable	sampling

◊ Hashing	and	coordination
– Bottom-k,	consistent	sampling	and	sketch-based	sampling

◊ Graph	sampling
– Node,	edge	and	subgraphsampling

◊ Conclusion	and	future	directions

Sampling for Big Data

Role and Challenges for Sampling

◊ Matching

– Sampling	mediates	between	data	characteristics	and	analysis	needs

– Example:	sample	from	power-law	distribution	of	bytes	per	flow…
□ but	also	make	accurate	estimates	from	samples

□ simple	uniform	sampling	misses	the	large	flows

◊ Balance

– Weighted	sampling	across	key-functions:	e.g.	customers,	network	paths,	
geolocations

□ cover	small	customers,	not	just	large

□ cover	all	network	elements,	not	just	highly	utilized

◊ Consistency

– Sample	all	views	of	same	event,	flow,	customer,	network	element
□ across	different	datasets,	at	different	times

□ independent	sampling	Þ small	intersection	of	views

Sampling for Big Data

Sampling and Big Data Systems

◊ Sampling	is	still	a	useful	tool	in	cluster	computing
– Reduce	the	latency	of	experimental	analysis	and	algorithm	design

◊ Sampling	as	an	operator	is	easy	to	implement	in	MapReduce
– For	uniform	or	weighted	sampling	of	tuples

◊ Graph	computations	are	a	core	motivator	of	big	data
– PageRankas	a	canonical	big	computation

– Graph-specific	systems	emerging	(Pregel,	LFgraph,	Graphlab,	Giraph…)
– But… sampling	primitives	not	yet	prevalent	in	evolving	graph	systems

◊ When	to	do	the	sampling?
– Option	1:	Sample	as	an	initial	step	in	the	computation	

□ Fold	sample	into	the	initial	“Map”	step

– Option	2:	Sample	to	create	a	stored	sample	graph	before	computation
□ Allows	more	complex	sampling,	e.g.	random	walk	sampling

Sampling for Big Data

Sampling + KDD

◊ The	interplay	between	sampling	and	data	mining	is	not	well	understood
– Need	an	understanding	of	how	ML/DM	algorithms	are	affected	by	sampling

– E.g.	how	big	a	sample	is	needed	to	build	an	accurate	classifier?

– E.g.	what	sampling	strategy	optimizes	cluster	quality

◊ Expect	results	to	be	method	specific
– I.e.	“IPPS	+	k-means”	rather	than	“sample	+	cluster”

Sampling for Big Data

Sampling and Privacy

◊ Current	focus	on	privacy-preserving	data	mining	
– Deliver	promise	of	big	data	without	sacrificing	privacy?

– Opportunity	for	sampling	to	be	part	of	the	solution

◊ Naïve	sampling	provides	“privacy	in	expectation”
– Your	data	remains	private	if	you	aren’t	included	in	the	sample…

◊ Intuition:	uncertainty	introduced	by	sampling	contributes to	privacy
– This	intuition	can	be	formalized	with	different	privacy	models

◊ Sampling	can	be	analyzed	in	the	context	of	differential	privacy
– Sampling	alone	does	notprovide	differential	privacy
– But	applying	a	DP	method	to	sampled	data	does	guarantee	privacy

– A	tradeoff	between	sampling	rate	and	privacy	parameters

□ Sometimes,	lower	sampling	rate	improves	overall	accuracy

Sampling for Big Data

Advert: Now Hiring…

◊ Nick	Duffield,	Texas	A&M
– Phds in	big	data,	graph	sampling

◊ Graham	Cormode,	University	of	Warwick	UK
– Phds in	big	data	summarization	

(graphs	and	matrices,	funded	by	MSR)
– Postdocs in	privacy	and	data	modeling	

(funded	by	EC,	AT&T)

Graham	Cormode,	University	of	Warwick
G.Cormode@warwick.ac.uk

Nick	Duffield,	Texas	A&M	University
duffieldng@tamu.edu

Sampling for
Big Data

x9
x8
x7
x6
x5
x4
x3
x2
x1

x10

x’9
x’8

x’10

x’6
x’5
x’4
x’3
x’2
x’1

Æ

0 1

00 01 10

000 001 010 011 100 101 110 111

11

