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Sampling for Big Data

Big Data

◊ “Big”	data	arises	in	many	forms:
– Physical	Measurements:	from	science	(physics,	astronomy)

– Medical	data:	genetic	sequences,	detailed	time	series

– Activity	data:	GPS	location,	social	network	activity

– Business	data:	customer	behavior	tracking	at	fine	detail

◊ Common	themes:	
– Data	is	large,	and	growing

– There	are	important	patterns	
and	trends	in	the	data

– We	don’t	fully	know	where	to	look
or	how	to	find	them



Sampling for Big Data

Why Reduce?

◊ Although	“big”	data	is	about	more	than	just	the	volume…
…most	big	data	is	big!

◊ It	is	not	always	possible	to	store	the	data	in	full
– Many	applications	(telecoms,	ISPs,	search	engines)	can’t	keep	everything

◊ It	is	inconvenient	to	work	with	data	in	full
– Just	because	we	can,	doesn’t	mean	we	should

◊ It	is	faster	to	work	with	a	compact	summary
– Better	to	explore	data	on	a	laptop	than	a	cluster
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Why Sample?

◊ Sampling	has	an	intuitive	semantics
– We	obtain	a	smaller	data	set	with	the	same	structure

◊ Estimating	on	a		sample	is	often	straightforward
– Run	the	analysis	on	the	sample	that	you	would	on	the	full	data

– Some	rescaling/reweighting	may	be	necessary

◊ Sampling	is	general	and	agnostic	to	the	analysis	to	be	done
– Other	summary	methods	only	work	for	certain	computations
– Though	sampling	can	be	tuned	to	optimize	some	criteria

◊ Sampling	is	(usually)	easy	to	understand
– So	prevalent	that	we	have	an	intuition	about	sampling
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Alternatives to Sampling

◊ Sampling	is	not	the	only	game	in	town
– Many	other	data	reduction	techniques	by	many	names

◊ Dimensionality	reduction	methods
– PCA,	SVD,	eigenvalue/eigenvector	decompositions

– Costly	and	slow	to	perform	on	big	data

◊ “Sketching”	techniques	for	streams	of	data
– Hash	based	summaries	via	random	projections
– Complex	to	understand	and	limited	in	function

◊ Other	transform/dictionary	based	summarization	methods
– Wavelets,	Fourier	Transform,	DCT,	Histograms

– Not	incrementally	updatable,	high	overhead

◊ All	worthy	of	study	– in	other	tutorials



Sampling for Big Data

Health Warning: contains probabilities

◊ Will	avoid	detailed	probability	calculations,	aim	to	give	high	level	
descriptions	and	intuition

◊ But	some	probability	basics	are	assumed
– Concepts	of	probability,	expectation,	variance	of	random	variables
– Allude	to	concentration	of	measure	(Exponential/Chernoff bounds)

◊ Feel	free	to	ask	questions	about	technical	details	along	the	way
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Outline

◊ Motivating	application:	sampling	in	large	ISP	networks

◊ Basics	of	sampling:	concepts	and	estimation

◊ Stream	sampling:	uniform	and	weighted	case
– Variations:	Concise	sampling,	sample	and	hold,	sketch	guided

BREAK
◊ Advanced	stream	sampling:	sampling	as	cost	optimization
– VarOpt,	priority,	structure	aware,	and	stable	sampling

◊ Hashing	and	coordination
– Bottom-k,	consistent	sampling	and	sketch-based	sampling

◊ Graph	sampling
– Node,	edge	and	subgraphsampling

◊ Conclusion	and	future	directions
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Sampling as a Mediator of Constraints

Data Characteristics
(Heavy Tails, Correlations)

Query Requirements
(Ad Hoc, Accuracy, 
Aggregates, Speed)

Resource Constraints
(Bandwidth, Storage, CPU)

Sampling



Sampling for Big Data

Motivating Application: ISP Data

◊ Will	motivate	many	results	with	application	to	ISPs

◊ Many	reasons	to	use	such	examples:
– Expertise:	tutors	from	telecoms	world

– Demand:	many	sampling	methods	developed	in	response	to	ISP	needs

– Practice:	sampling	widely	used	in	ISP	monitoring,	built	into	routers

– Prescience:	ISPs	were	first	to	hit	many	“big	data”	problems
– Variety:	many	different	places	where	sampling	is	needed

◊ First,	a	crash-course	on	ISP	networks…
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Structure of Large ISP Networks

Peering	with	other	ISPs

Access	Networks:	
Wireless,	DSL,	IPTV

City-level
Router	Centers

Backbone		Links

Downstream	ISP	and	
business	customers

Service	and	
Datacenters

Network	Management	
&	Administration
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Measuring the ISP Network: Data 
Sources

Peering

Access
Router	Centers

Backbone

Business

DatacentersManagement

Link	Traffic	Rates
Aggregated	per	router	interface

Traffic	Matrices
Flow	records	from	routers

Loss&	Latency
Active	probing

Loss	&	Latency	
Roundtrip to	edge

Protocol	Monitoring:
Routers,	Wireless

Status	Reports:
Device	failures	and	transitions

Customer	Care	Logs
Reactive	indicators	of	
network	performance	
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Why Summarize (ISP) Big Data?

◊ When	transmission	bandwidth	for	measurements	is	limited
– Not	such	a	big	issue	in	ISPs	with	in-band	collection

◊ Typically	raw	accumulation	is	not	feasible	(even	for	nation	states)
– High	rate	streaming	data

– Maintain	historical	summaries	for	baselining,	time	series	analysis

◊ To	facilitate	fast	queries
– When	infeasible	to	run	exploratory	queries	over	full	data

◊ As	part	of	hierarchical	query	infrastructure:
– Maintain	full	data	over	limited	duration	window

– Drill	down	into	full	data	through	one	or	more	layers	of	summarization

Sampling	has	been	proved	to	be	a	flexible	method	to	accomplish	this
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Data Scale:
Summarization and Sampling
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Traffic Measurement in the ISP 
Network

Access
Router Centers

Backbone

Business

DatacentersManagement

Traffic Matrices
Flow records from routers
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Massive Dataset: Flow Records

◊ IP	Flow:	set	of	packets	with	common	key	observed	close	in	time

◊ Flow	Key:	IP	src/dst address,	TCP/UDP	ports,	ToS,…	[64	to	104+	bits]

◊ Flow	Records:	
– Protocol	level	summaries	of	flows,	compiled	and	exported	by	routers

– Flow	key,	packet	and	byte	counts,	first/last	packet	time,	some	router	state

– Realizations:	Cisco	Netflow,	IETF	Standards

◊ Scale:	100’s	TeraBytesof	flow	records	daily	are	generated	in	a	large	ISP
◊ Used	to	manage	network	over	range	of	timescales:	

– Capacity	planning	(months),….,	detecting	network	attacks	(seconds)

◊ Analysis	tasks
– Easy:	timeseries of	predetermined	aggregates	(e.g.	address	prefixes)

– Hard:	fast	queries	over	exploratory	selectors,	history,	communications	subgraphs

flow	1 flow	2 flow	3 flow	4

time
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Flows, Flow Records and Sampling

◊ Two	types	of	sampling	used	in	practice	for	internet	traffic:
1. Sampling	packet	stream	in	router	prior	to	forming	flow	records

□ Limits	the	rate	of	lookups	of	packet	key	in	flow	cache

□ Realized	as	Packet	Sampled	NetFlow(more	later…)

2. Downstream	sampling	of	flow	records	in	collection	infrastructure

□ Limits	transmission	bandwidth,	storage	requirements
□ Realized	in	ISP	measurement	collection	infrastructure	(more	later…)

◊ Two	cases	illustrative	of	general	property
– Different	underlying	distributions	require	different	sample	designs

– Statistical	optimality	sometimes	limited	by	implementation	constraints	

□ Availability	of	router	storage,	processing	cycles
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Abstraction: Keyed Data Streams

◊ Data	Model:	objects	are	keyed	weights
– Objects	(x,k):	Weight x;	key	k

□ Example	1:	objects	=	packets,	x =	bytes,	k =	key	(source/destination)

□ Example	2:	objects	=	flows,	x =	packets	or	bytes,	k =	key

□ Example	3:	objects	=	account	updates,	x =	credit/debit,	k =	account	ID

◊ Stream	of	keyed	weights,	{(xi , ki):	i =	1,2,…,n}	

◊ Generic	query:	subset	sums
– X(S)	=	ΣiÎS xi for S	Ì {1,2,…,n}	i.e.	total	weight	of	index	subset	S
– Typically	S	=	S(K)	=	{i:	kiÎ K} :	objects	with	keys	in	K

□ Example	1,	2:	X(S(K))	=	total	bytes	to	given	IP	dest address	/	UDP	port

□ Example	3:	X(S(K))	=	total	balance	change	over	set	of	accounts

◊ Aim:	Compute	fixed	size	summary	of	stream	that	can	be	used	to	
estimate	arbitrary	subset	sums	with	known	error	bounds
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Inclusion Sampling and Estimation

◊ Horvitz-Thompson	Estimation:
– Object	of	size	xi sampled	with	probability	pi

– Unbiased	estimate	x’i=	xi /	pi (if	sampled),	0	if	not	sampled:	E[x’i]	=	xi
◊ Linearity:	
– Estimate	of	subset	sum	=	sum	of	matching	estimates

– Subset	sum	X(S)=SiÎS xi is	estimated	byX’(S)	=	SiÎS x’i
◊ Accuracy:
– Exponential	Bounds:	Pr[	|X’(S)	- X(S)|	>	δX(S)]	≤	exp[-g(δ)X(S)]

– Confidence	intervals:	X(S)	Î [X-(e)	,	X+(e)]	with	probability	1	- e
◊ Futureproof:
– Don’t	need	to	know	queries	at	time	of	sampling

□ “Where/where	did	that	suspicious	UDP	port	first	become	so	active?”
□ “Which	is	the	most	active	IP	address	within	than	anomalous	subnet?”

– Retrospective	estimate:	subset	sum	over	relevant	keyset
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Independent Stream Sampling 

◊ Bernoulli	Sampling
– IID	sampling	of	objects	with	some	probability	p

– Sampled	weight	x has	HT	estimate	x/p

◊ Poisson	Sampling
– Weight	xi sampled	with	probability	pi ;	HT	estimate	xi /	pi

◊ When	to	use	Poisson	vs.	Bernoulli	sampling?
– Elephants	and	mice:	Poisson	allows	probability	to	depend	on	weight…

◊ What	is	best	choice	of	probabilities	for	given	stream	{xi}	?
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Bernoulli Sampling

◊ The	easiest	possible	case	of	sampling:	all	weights	are	1
– N objects,	and	want	to	sample	k from	them	uniformly

– Each	possible	subset	of	k should	be	equally	likely

◊ Uniformly	sample	an	index	from	N (without	replacement)	k times
– Some	subtleties:	truly	random	numbers	from	[1…N]	on	a	computer?

– Assume	that	random	number	generators	are	good	enough

◊ Common	trick	in	DB:	assign	a	random	number	to	each	item	and	sort
– Costly	if	N is	very	big,	but	so	is	random	access

◊ Interesting	problem:	take	a	single	linear	scan	of	data	to	draw	sample
– Streaming	model	of	computation:	see	each	element	once

– Application:	IP	flow	sampling,	too	many	(for	us)	to	store

– (For	a	while)	common	tech	interview	question



Sampling for Big Data

Reservoir Sampling

“Reservoir	sampling”	described	by	[Knuth 69, 81];	enhancements	[Vitter 85]
◊ Fixed	size	k uniform	sample	from	arbitrary	size	N stream	in	one	pass
– No	need	to	know	stream	size	in	advance

– Include	first	k items	w.p.	1

– Include	item	n	>	k	 with	probability	pn=	k/n,	n	>	k

□ Pick	j uniformly	from	{1,2,…,n}
□ If	j	≤	k,	swap	item	n into	location	j in	reservoir,	discard	replaced	item

◊ Neat	proof	shows	the	uniformity	of	the	sampling	method:	
– Let	Sn =	sample	set	after	n arrivals

k=7 n

m (< n)

Previously	sampled	item:	induction

m	Î Sn-1 w.p.	pn-1Þ m	Î Sn w.p.	pn-1 *	(1	– pn /	k)	=	pn

New	item:	selection	probability

Prob[n	Î Sn ]	=	pn :=	k/n
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Reservoir Sampling: Skip Counting

◊ Simple	approach:	check	each	item	in	turn
– O(1) per	item:	

– Fine	if	computation	time	<		interarrivaltime

– Otherwise	build	up	computation	backlog	O(N)

◊ Better:	“skip	counting”
– Find	random	index	m(n)of	next	selection	>	n
– Distribution:		Prob[m(n)	≤	m]	=	1	- (1-pn+1)*(1-pn+2)*…*(1-pm)

◊ Expected	number	of	selections	from	stream	is
k	+	Σk<m≤N pm =	k	+	Σk<m≤N k/m	=	O(k	(	1	+	ln (N/k)	))	

◊ Vitter’85	provided	algorithm	with	this	average	running	time
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Reservoir Sampling via Order Sampling

◊ Order	sampling	a.k.a.	bottom-k	sample,	min-hashing

◊ Uniform	sampling	of	stream	into	reservoir	of	size	k

◊ Each	arrival	n:	generate	one-time	random	value	rn Î U[0,1]
– rn also	known	as	hash,	rank,	tag…

◊ Store	k	items	with	the	smallest	random	tags

0.391 0.908 0.291 0.555 0.619 0.273

n Each	item	has	same	chance	of	least	tag,	so	uniform

n Fast	to	implement	via	priority	queue

n Can	run	on	multiple	input	streams	separately,	then	merge
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Handling Weights

◊ So	far:	uniform	sampling	from	a	stream	using	a	reservoir

◊ Extend	to	non-uniform	sampling	from	weighted	streams
– Easy	case:	k=1

– Sampling	probability	p(n)	=	xn/Wnwhere	Wn=	Si=1
n xi

◊ k>1 is	harder
– Can	have	elements	with	large	weight:	would	be	sampled	with	prob 1?	

◊ Number	of	different	weighted	order-sampling	schemes	proposed	to	
realize	desired	distributional	objectives
– Rank	rn=	f(un,		xn )	for	some	function	f	and	unÎ U[0,1]

– k-mins sketches	[Cohen 1997],	Bottom-k	sketches	[Cohen Kaplan 2007]
– [Rosen 1972], Weighted	random	sampling	[Efraimidis Spirakis 2006]
– Order	PPS	Sampling	[Ohlsson 1990, Rosen 1997] 
– Priority	Sampling	[Duffield Lund Thorup 2004], [Alon+DLT 2005]
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Weighted random sampling

◊ Weighted	random	sampling	[Efraimidis Spirakis 06] generalizes	min-wise	
– For	each	item	draw	rn uniformly	at	random	in	range	[0,1]

– Compute	the	‘tag’	of	an	item	as	rn (1/xn)

– Keep	the	items	with	the	k smallest	tags

– Can	prove	the	correctness	of	the	exponential	sampling	distribution

◊ Can	also	make	efficient	via	skip	counting	ideas
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Priority Sampling

◊ Each	item	xi	 given	priority	zi =	xi /	ri with	rn uniform	random	in	(0,1]

◊ Maintain	reservoir	of	k+1	items	(xi ,	zi )	of	highest	priority
◊ Estimation	

– Let	z*	=	(k+1)st highest	 priority

– Top-k	priority	items:	weight	estimate	 x’I =	max{	xi ,	z*	}

– All	other	 items:	weight	estimate	 zero

◊ Statistics	and	bounds
– x’I unbiased;	 zero	covariance:	Cov[x’i ,	x’j ]	=	0	for	i≠j

– Relative	 variance	for	any	subset	 sum	≤	1/(k-1)	[Szegedy, 2006]
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Priority Sampling in Databases

◊ One	Time	Sample	Preparation
– Compute	priorities	of	all	items,	sort	in	decreasing	priority	order

□ No	discard

◊ Sample	and	Estimate
– Estimate	any	subset	sum	X(S)	= SiÎS xi by	X’(S)	=	SiÎS x’I for	some	S’Ì S

– Method:	select	items	in	decreasing	priority	order

◊ Two	variants:	bounded	variance	or	complexity	
1. S’	=	first	k	items	from	S:	relative	variance	bounded	≤	1/(k-1)

□ x’I=	max{	xi ,	z*	}	where z*	=	(k+1)st highest	priority	in	S

2. S’	=	items	from	S	in	first	k:	execution	time	O(k)

□ x’I=	max{	xi ,	z*	}	where z*	=	(k+1)st highest	priority

[Alon et. al., 2005]
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Making Stream Samples Smarter

◊ Observation:	we	see the	whole	stream,	even	if	we	can’t	store	it
– Can	keep	more	information	about	sampled	items	if	repeated

– Simple	information:	if	item	sampled,	count	all	repeats

◊ Counting	Samples	[Gibbons & Mattias 98]
– Sample	new	items	with	fixed	probability	p,	count	repeats	as	ci
– Unbiased	estimate	of	total	count:		1/p	+	(ci – 1)	

◊ Sample	and	Hold	[Estan & Varghese 02]:	generalize	to	weighted	keys
– New	key	with	weight	b sampled	with	probability	1	- (1-p)b

◊ Lower	variance	compared	with	independent	sampling
– But	sample	size	will	grow	as	pn

◊ Adaptive	sample	and	hold:	reduce	p when	needed
– “Sticky	sampling”:	geometric	decreases	in	p [Manku, Motwani 02]
– Much	subsequent	work	tuning	decrease	in	p	to	maintain	sample	size
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Sketch Guided Sampling

◊ Go	further:	avoid	sampling	the	heavy	keys	as	much
– Uniform	sampling	will	pick	from	the	heavy	keys	again	and	again

◊ Idea:	use	an	oracle	to	tell	when	a	key	is	heavy	[Kumar Xu 06] 
– Adjust	sampling	probability	accordingly

◊ Can	use	a	“sketch”	data	structure	to	play	the	role	of	oracle
– Like	a	hash	table	with	collisions,	tracks	approximate	frequencies

– E.g.	(Counting)	Bloom	Filters,	Count-Min	Sketch

◊ Track	probability	with	which	key	is	sampled,	use	HT	estimators
– Set	probability	of	sampling	key	with	(estimated)	weight	was	

1/(1	+	ew)	for	parameter	e : decreases	as	w	increases
– Decreasing	e improves	accuracy,	increases	sample	size
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Challenges for Smart Stream Sampling

◊ Current	router	constraints
– Flow	tables	maintained	in	fast	expensive	SRAM

□ To	support	per	packet	key	lookup	at	line	rate

◊ Implementation	requirements
– Sample	and	Hold:	still	need	per	packet	lookup
– Sampled	NetFlow:	(uniform)	sampling	reduces	lookup	rate

□ Easier	to	implement	 despite	 inferior	statistical	 properties

◊ Long	development	times	to	realize	new	sampling	algorithms

◊ Similar	concerns	affect	sampling	in	other	applications
– Processing	large	amounts	of	data	needs	awareness	of	hardware

– Uniform	sampling	means	no	coordination	needed	in	distributed	setting
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Future for Smarter Stream Sampling

◊ Software	Defined	Networking
– Current:	proprietary	software	running	on	special		vendor	equipment

– Future:	open	software	and	protocols	on	commodity	hardware

◊ Potentially	offers	flexibility	in	traffic	measurement
– Allocate	system	resources	to	measurement	tasks	as	needed
– Dynamic	reconfiguration,	fine	grained	tuning	of	sampling

– Stateful packet	inspection	and	sampling	for	network	security

◊ Technical	challenges:	
– High	rate	packet	processing	in	software

– Transparent	support	from	commodity	hardware

– OpenSketch:	[Yu, Jose, Miao, 2013]
◊ Same	issues	in	other	applications:	use	of	commodity	programmable	HW
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Stream Sampling:
Sampling as Cost Optimization
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Matching Data to Sampling Analysis

◊ Generic	problem	1:	Counting	objects:	weight	xi =	1
Bernoulli	(uniform)	sampling	with	probability	pworks	fine

– Estimated	subset	count	X’(S)	=	#{samples	in	S}	/	p

– Relative	Variance	(X’(S))	=	(1/p	-1)/X(S)

□ given	p,	get	any	desired	accuracy	for	large	enough	S

◊ Generic	problem	2:	xi in	Pareto	distribution,	a.k.a.	80-20	law
– Small	proportion	of	objects	possess	a	large	proportion	of	total	weight	

□ How	to	best	to	sample	objects	to	accurately	estimate	weight?

– Uniform	sampling?

□ likely	to	omit	heavy	objects		Þbig	hit	on	accuracy
□ making	selection	set	S large	doesn’t	help

– Select	m largest	objects	?

□ biased	&	smaller	objects	systematically	ignored
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Heavy Tails in the Internet and 
Beyond
◊ Files	sizes	in	storage

◊ Bytes	and	packets	per	network	flow

◊ Degree	distributions	in	web	graph,	social	networks
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Non-Uniform Sampling

◊ Extensive	literature:	see	book	by	[Tille, “Sampling Algorithms”, 2006]
◊ Predates	“Big	Data”
– Focus	on	statistical	properties,	not	so	much	computational

◊ IPPS:	Inclusion	Probability	Proportional	to	Size
– Variance	Optimal	for	HT	Estimation

– Sampling	probabilities	for	multivariate	version:	[Chao 1982, Tille 1996]
– Efficient	stream	sampling	algorithm:	[Cohen et. al. 2009]  
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Costs of Non-Uniform Sampling 

◊ Independent	sampling	from	n objects	with	weights	{x1,…	,xn}

◊ Goal:	find	the	“best”	sampling	probabilities	{p1,	…	,pn}

◊ Horvitz-Thompson:	unbiased	estimation	of	each	xi by	

◊ Two	costs	to	balance:
1. Estimation	Variance:			Var(x’i)	=	x2i	(1/pi – 1)

2. Expected	Sample	Size:		Sipi

◊ Minimize	Linear	Combination	Cost:	Si (xi2(1/pi	–1)		+		z2 pi)
– z expresses	relative	importance	of	small	sample	vs.	small	variance

otherwise0
selected		i		weightif	px

	
	

x' ii
i =



Sampling for Big Data

Minimal Cost Sampling: IPPS

IPPS:	Inclusion	Probability	Proportional	to	Size

◊ MinimizeCost	Si (xi2 (1/pi	– 1)		+	z2 pi)	subject	to	1	≥	pi ≥	0

◊ Solution:	pi =	pz(xi)	=	min{1,	xi /z}

– small	objects	(xi <	z)	selected	with	probability	proportional	to	size

– large	objects	(xi ≥	z)	selectedwith	probability	1

– Call	z the	“sampling	threshold”

– Unbiased	estimator	xi/pi =max{xi ,	z}

◊ Perhaps	reminiscent	of	importance
sampling,	but	not	the	same:

– make	no	assumptions	concerning
distribution	of	the	x

pz(x) 

1

z
x
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Error Estimates and Bounds

◊ Variance	Based:
– HT	sampling	variance	for	single	object	of	weight	xi

□ Var(x’i)	=	x2i	(1/pi – 1)	=	x2i	(1/min{1,xi/z}		– 1)	≤	z	xi
– Subset	sum	X(S)=SiÎS xi is	estimated	byX’(S)	=	SiÎS x’i

□ Var(X’(S))	≤	z	X(S)

◊ Exponential	Bounds
– E.g.	Prob[X’(S)	=	0]	≤	exp(- X(S)	/	z	)

◊ Bounds	are	simple	and	powerful
– depend	only	on	subset	sum	X(S),	not	individual	constituents
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Sampled IP Traffic Measurements

◊ Packet	Sampled	NetFlow
– Sample	packet	stream	in	router	to	limit	rate	of	key	lookup:	uniform	1/N

– Aggregate	sampled	packets	into	flow	records	by	key

◊ Model:	packet	stream	of	(key,	bytesize)	pairs	{	(bi,	ki)	}

◊ Packet	sampled	flow	record	(b,k)	where b	=	Σ {bi	:	i sampled	� ki =		k}
– HT	estimate	b*Nof	total	bytes	in	flow

◊ Downstream	sampling	of	flow	records	in	measurement	infrastructure
– IPPS	sampling,	probability	min{1,	b*N/z}

◊ Chained	variance	bound	for	any	subset	sum	X of	flows
– Var(X’)	≤	(z	+	Nbmax)	X	where	bmax=	maximum	packet	byte	size

– Regardless	of	how	packets	are	distributed	amongst	flows

[Duffield, Lund, Thorup, IEEE ToIT, 2004]
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Estimation Accuracy in Practice

◊ Estimate	any	subset	sum	comprising	at	least	some	fraction	f of	weight	

◊ Suppose:	sample	size	m

◊ Analysis:	typical	estimation	error	ε (relative	standard	deviation)	obeys

◊ 2**16	=	storage	needed	for	aggregates	over	16	bit	address	prefixes
□ But	sampling	gives	more	flexibility	to	estimate	traffic	within	aggregates	
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Heavy Hitters: 
Exact vs. Aggregate vs. Sampled
◊ Sampling	does	not	tell	you	where	the	interesting	features	are
– But	does	speed	up	the	ability	to	find	them	with	existing	tools

◊ Example:	Heavy	Hitter	Detection
– Setting:	Flow	records	reporting	10GB/s	traffic	stream

– Aim:	find	Heavy	Hitters	=	IP	prefixes	comprising	≥	0.1%	of		traffic

– Response	time	needed:	5	minute

◊ Compare:
– Exact:	10GB/s	x	5	minutes	yields	upwards	of	300M	flow	records

– 64k	aggregates	over	16	bit	prefixes:	no	deeper	drill-down	possible

– Sampled:	64k	flow	records:	anyaggregate	≥	0.1%		accurate	to	10%
Exact Aggregate Sampled



Sampling for Big Data

Cost Optimization for Sampling

Several	different	approaches	optimize	for	different	objectives:

1. Fixed	Sample	Size	IPPS	Sample
– Variance	Optimal	sampling:	minimal	variance	unbiased	estimation

2. Structure	Aware	Sampling
– Improve	estimation	accuracy	for	subnet	queries	using	topological	cost

3. Fair	Sampling
– Adaptively	balance	sampling	budget	over	subpopulations	of	flows	
– Uniform	estimation	accuracy	regardless	of	subpopulation	size

4. Stable	Sampling
– Increase	stability	of	sample	set	by	imposing	cost	on	changes
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IPPS Stream Reservoir Sampling
◊ Each	arriving	item:

– Provisionally	 include	 item	in	reservoir

– If	m+1 items,	 discard	1	item	randomly

□ Calculate	threshold	z to	sample	m items	on	average:	z solves	Si pz(xi)	=	m
□ Discard	item	i with	probability	qi =1	– pz(xi)

□ Adjust	m surviving	xiwith	Horvitz-Thompson	x’i =	xi /	pi =	max{xi,z}
◊ Efficient	 Implementation:

– Computational	cost	O(log	m	)	per	item,	amortized	cost	O(log	log	m)

[Cohen, Duffield, Lund, Kaplan, Thorup;  SODA 2009,  SIAM J. Comput. 2011]
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Structure (Un)Aware Sampling

◊ Sampling	is	oblivious	to	structure	in	keys	(IP	address	hierarchy)
– Estimation	disperses	the	weight	of	discarded	items	to	surviving	samples

◊ Queries	structure	aware:	subset	sums	over	related	keys	(IP	subnets)
– Accuracy	on	LHS	is	decreased	by	discarding	weight	on	RHS	

Æ
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Localizing Weight Redistribution

◊ Initial	weight	set	{xi :	iÎS}	for	some	S	ÌΩ
– E.g. Ω =	possible	 IP	addresses,	 S =observed	IP	addresses	

◊ Attribute	“range	cost”	C({xi :	iÎR})	for	each	weight	subset	RÍS
– Possible	 factors	for	Range	Cost:	

□ Sampling	variance

□ Topology	e.g.	height	 of	lowest	common	ancestor

– Heuristics:	 R* =	Nearest	 Neighbor	{xi	,	xj}	of	minimal	xixj
◊ Sample	k	items	from	S:

– Progressively	remove	one	item	 from		
subset	with	minimal	 range	cost:

– While(|S|	>	k)	

□ Find	R*ÍS of	minimal	 range	cost.

□ Remove	a	weight	from	R* w/	VarOpt

[Cohen, Cormode, Duffield; PVLDB 2011]
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Fair Sampling Across Subpopulations

◊ Analysis	queries	often	focus	on	specific	subpopulations
– E.g.	networking:	different	customers,	user	applications,	network	paths

◊ Wide	variation	in	subpopulation	size
– 5	orders	of	magnitude	variation	in	traffic	on	interfaces	of	access	router

◊ If	uniform	sampling	across	subpopulations:
– Poor	estimation	accuracy	on	subset	sums	within	small	subpopulations

Sample

Color	=	subpopulation

,						=	interesting	 items

– occurrence	proportional	to	subpopulation	 size

Uniform	Sampling	across subpopulations:

– Difficult	to	track	proportion	of	interesting	
items	within	small	 subpopulations:
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Fair Sampling Across Subpopulations

◊ Minimize	relativevariance	by	sharing	budget	m	over	subpopulations
– Total	n objects in	subpopulations	 n1,…,ndwith	Sini=n
– Allocate	 budget	mi to	each	subpopulation	 ni with	Simi=m

◊ Minimize	average	population	relative	variance	R	=	const.	Si1/mi

◊ Theorem:
– R minimized	when	{mi}	are	Max-Min	Fair	share	of	m under	demands	 {ni}

◊ Streaming
– Problem:	don’t	know	subpopulation	 sizes	{ni}	in	advance

◊ Solution:	progressive	fair	sharing	as	reservoir	sample
– Provisionally	 include	 each	arrival

– Discard	1	item	as	VarOpt sample	from	any	maximal	 subpopulation

◊ Theorem	[Duffield; Sigmetrics2012]: 
– Max-Min	Fair	at	all	times;	 equality	 in	distribution	with	VarOpt samples	 {mi from	ni}
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Stable Sampling

◊ Setting:	Sampling	a	population	over	successive	periods

◊ Sample	independently	at	each	time	period?
– Cost	associated	with	sample	churn

– Time	series	analysis	of	set	of	relatively	stable	keys

◊ Find	sampling	probabilities	through	cost	minimization
– Minimize	Cost	=	Estimation	Variance	+	z	*	E[#Churn]

◊ Size	m	sample	with	maximal	expected	churn	D
– weights	{xi},	previous	sampling	probabilities	{pi}

– find	new	sampling	probabilities	{qi}	to	minimize	cost	of	taking	m	
samples

– Minimize	Six2i	/	qi subject	to	1	≥	qi ≥	0,	SI	qi =	m	and	SI	|	pi – qi |	≤ D	

[Cohen, Cormode, Duffield, Lund 13]
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Summary of Part 1

◊ Sampling	as	a	powerful,	general	summarization	technique

◊ Unbiased	estimation	via	Horvitz-Thompson	estimators

◊ Sampling	from	streams	of	data
– Uniform	sampling:	reservoir	sampling

– Weighted	generalizations:	sample	and	hold,	counting	samples

◊ Advances	in	stream	sampling
– The	cost	principle	for	sample	design,	and	IPPS	methods
– Threshold,	priority	and	VarOptsampling

– Extending	the	cost	principle:	

□ structure	aware,	fair	sampling,	stable	sampling,	sketch	guided
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Outline

◊ Motivating	application:	sampling	in	large	ISP	networks

◊ Basics	of	sampling:	concepts	and	estimation

◊ Stream	sampling:	uniform	and	weighted	case
– Variations:	Concise	sampling,	sample	and	hold,	sketch	guided

BREAK
◊ Advanced	stream	sampling:	sampling	as	cost	optimization
– VarOpt,	priority,	structure	aware,	and	stable	sampling

◊ Hashing	and	coordination
– Bottom-k,	consistent	sampling	and	sketch-based	sampling

◊ Graph	sampling
– Node,	edge	and	subgraphsampling

◊ Conclusion	and	future	directions
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Data Scale:
Hashing and Coordination
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Sampling from the set of items

◊ Sometimes	need	to	sample	from	the	distinct	set	of	objects
– Not	influenced	by	the	weight	or	number	of	occurrences

– E.g.	sample	from	the	distinct	set	of	flows,	regardless	of	weight

◊ Need	sampling	method	that	is	invariant	to	duplicates

◊ Basic	idea:	build	a	function	to	determine	what	to	sample
– A	“random”	function	f(k)	àR

– Use	f(k) to	make	a	sampling	decision:	consistent	decision	for	same	key
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Permanent Random Numbers

◊ Often	convenient	to	think	of	f as	giving	“permanent	random	numbers”
– Permanent:	assigned	once	and	for	all

– Random:	treat	as	if	fully	randomly	chosen

◊ The	permanent	random	number	is	used	in	multiple	sampling	steps
– Same	“random”	number	each	time,	so	consistent (correlated)	decisions

◊ Example:	use	PRNs	to	draw	a	sample	of	s from	N via	order	sampling
– If	s	<<	N,	small	chance	of	seeing	same	element	in	different	samples
– Via	PRN,	stronger	chance	of	seeing	same	element

□ Can	track	properties	over	time,	gives	a	form	of	stability

◊ Easiest	way	to	generate	PRNs:	apply	a	hash function to	the	element	id
– Ensures	PRN	can	be	generated	with	minimal	coordination	

– Explicitly	storing	a	random	number	for	all	observed	keys	does	not	scale
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Hash Functions

Many	possible	choices	of	hashing	functions:

◊ Cryptographic	hash	functions:	SHA-1,	MD5,	etc.
– Results	appear	“random”	for	most	tests	(using	seed/salt)

– Can	be	slow	for	high	speed/high	volume	applications

– Full	power	of	cryptographic	security	not	needed	for	most	statistical	purposes

□ Although	possible	some	trade-offs	in	robustness	to	subversion	if	not	used

◊ Heuristic	hash	functions:	srand(),	mod
– Usually	pretty	fast

– May	not	be	random	enough:	structure	in	keys	may	cause	collisions

◊ Mathematical	hash	functions:	universal	hashing,	k-wise	hashing
– Have	precise	mathematical	properties	on	probabilities

– Can	be	implemented	to	be	very	fast
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Mathematical Hashing

◊ K-wise	independence:	Pr[h(x1)	=	y1 Ù h(x2)	=	y2Ù …	Ù h(xt)	=	yt]	=	1/Rt

– Simple function:	ctxt +	ct-1xt-1 +	…	c1x	+	c0 mod	P

– For	fixed	prime	P,	randomly	chosen	c0 …	ct
– Can	be	made	very	fast	(choose	P to	be	Mersenneprime	to	simplify	mods)

◊ (Twisted)	tabulation	hashing	[Thorup Patrascu 13]
– Interpret	each	key	as	a	sequence	of	short	characters,	e.g.	8	*	8bits
– Use	a	“truly	random”	look-up	table	for	each	character	(so	8	*	256	entries)

– Take	the	exclusive-OR	of	the	relevant	table	values

– Fast,	and	fairly	compact

– Strong	enough	for	many	applications	of	hashing	(hash	tables	etc.)
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Bottom-k sampling

◊ Sample	from	the	set	of	distinct	keys
– Hash	each	key	using	appropriate	hash	function

– Keep	information	on	the	keys	with	the	s smallest	hash	values

– Think	of	as	order	sampling	with	PRNs…

◊ Useful	for	estimating	properties	of	the	support	set	of	keys
– Evaluate	any	predicate	on	the	sampled	set	of	keys

◊ Same	concept,	several	different	names:	
– Bottom-k	sampling,	Min-wise	hashing,	K-minimum	values

0.391 0.908 0.291 0.391 0.391 0.273
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Subset Size Estimation from Bottom-k

◊ Want	to	estimate	the	fraction	t	=	|A|/|D|
– D is	the	observed	set	of	data

– A is	an	arbitrary	subset	given	later

– E.g.	fraction	of	customers	who	are	sports	fans	from	midwestaged	18-35

◊ Simple	algorithm:	
– Run	bottom-k	to	get	sample	set	S,	estimate	t’	=	|A	∩	S|/s
– Error	decreases	as	1/√s

– Analysis	due	to	[Thorup 13]: simple	hash	functions	suffice	for	big	enough	s
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Similarity Estimation

◊ How	similar	are	two	sets,	A and	B?

◊ Jaccard coefficient:	|A	Ç B|/|A	È B|
– 1	if	A,	B identical,	0	if	they	are	disjoint

– Widely	used,	e.g.	to	measure	document	similarity

◊ Simple	approach:	sample	an	item	uniformly	from	A and	B
– Probability	of	seeing	same	item	from	both:	|A	Ç B|/(|A| ´ |B|)
– Chance	of	seeing	same	item	too	low	to	be	informative

◊ Coordinated	sampling:	use	same	hash	function	to	sample	from	A,	B
– Probability	that	same	item	sampled:	|A	Ç B|/|A	È B|
– Repeat:	the	average	number	of	agreements	gives	Jaccard coefficient

– Concentration:	(additive)	error	scales	as	1/√s
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Technical Issue: Min-wise hashing

◊ For	analysis	to	work,	the	hash	function	must	be	fully	random
– All	possibly	permutations	of	the	input	are	equally	likely

– Unrealistic	in	practice:	description	of	such	a	function	is	huge

◊ “Simple”	hash	functions	don’t	work	well
– Universal	hash	functions	are	too	skewed

◊ Need	hash	functions	that	are	“approximately	min-wise”
– Probability	of	sampling	a	subset	is	almostuniform
– Tabulation	hashing	a	simple	way	to	achieve	this
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Bottom-k hashing for F0 Estimation

◊ F0 is	the	number	of	distinct	items	in	the	stream	
– a	fundamental	quantity	with	many	applications

– E.g.	number	of	distinct	flows	seen	on	a	backbone	link

◊ Let	m be	the	domain	of	stream	elements:	each	data	item	is	[1…m]

◊ Pick	a	random	(pairwise)	hash	function	h:	[m]	® [R]

◊ Apply	bottom-k	sampling	under	hash	function	h
– Let	vs =	s’th smallest	(distinct)	value	of	h(i) seen

◊ If	n	=	F0 <	s,	give	exact	answer,	else	estimate	F’0 =	sR/vs
– vs/R » fraction	of	hash	domain	occupied	by	s smallest

R0R vs
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Analysis of F0 algorithm

◊ Can	show	that	it	is	unlikely	to	have	an	overestimate
– Too	many	items	hashed	below	a	fixed	value

– Can	treat	each	event	of	an	item	hashing	too	low	as	independent

◊ Similar	outline	to	show	unlikely	to	have	an	overestimate

◊ (Relative)	error	scales	as	1/√s

◊ Space	cost:	
– Store	s hash	values,	so	O(s	log	m)	bits
– Can	improve	to	O(s	+	log	m)	with	additional	hashing	tricks

– See	also	“Streamed	Approximate	Counting	of	Distinct	Elements”,	KDD’14

RsR/(1+e)n0R vs
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Consistent Weighted Sampling

◊ Want	to	extend	bottom-k	results	when	data	has	weights

◊ Specifically,	two	data	sets	A and	B where	each	element	has	weight
– Weights	are	aggregated:	we	see	whole	weight	of	element	together

◊ Weighted	Jaccard:	want	probability	that	same	key	is	chosen	by	both	to	
beåi min(A(i),	B(i))/åi max(A(i),	B(i))

◊ Sampling	method	should	obey	uniformity	and	consistency
– Uniformity:	element	i picked	from	Awith	probability	proportional	to	A(i)

– Consistency:	if	i is	picked	from	A,	and	B(i)	>	A(i),	then	i also	picked	for	B

◊ Simple	solution:	assuming	integer	weights,	treat	weight	A(i)	
as	A(i)	unique	(different)	copies	of	element	i,	apply	bottom-k
– Limitations:	slow,	unscalablewhen	weights	can	be	large

– Need	to	rescale	fractional	weights	to	integral	multiples	
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Consistent Weighted Sampling

◊ Efficient	sampling	distributions	exist	achieving	uniformity	and	
consistency

◊ Basic	idea:	consider	a	weight	w as	w/D different	elements
– Compute	the	probability	that	any	of	these	achieves	the	minimum	value

– Study	the	limiting	distribution	as	D® 0

◊ Consistent	Weighted	Sampling	[Manasse, McSherry, Talway 07], [Ioffe 10]
– Use	hash	of	item	to	determine	which	points	sampled	via	careful	transform

– Many	details	needed	to	contain	bit-precision,	allow	fast	computation

◊ Other	combinations	of	key	weights	are	possible	[Cohen Kaplan Sen 09]
– Min	of	weights,	max	of	weights,	sum	of	(absolute)	differences
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Trajectory Sampling

◊ Aims	[Duffield Grossglauser 01]:	
– Probe	packets	at	each	router	they	traverse

– Collate	reports	to	infer	link	loss	and	latency

– Need	to	sample;	independent	sampling	no	use

◊ Hash-based	sampling:
– All	routers/packets:	compute	hash	h of	invariant	packet	fields

– Sample	if	h	Î some	H and	report	to	collector;	tune	sample	rate	with	|H|
– Use	high	entropy	packet	fields	as	hash	input,	e.g.	IP	addresses,	ID	field

– Hash	function	choice	trade-off	between	speed,	uniformity	&	security

◊ Standardized	in	Internet	Engineering	Task	Force	(IETF)
– Service	providers	need	consistency	across	different	vendors

– Several	hash	functions	standardized,	extensible
– Same	issues	arise	in	other	big	data	ecosystems	(apps	and	APIs)
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Hash Sampling in Network 
Management 
◊ Many	different	network	subsystems	used	to	provide	service
– Monitored	through	event	logs,	passive	measurement	of	traffic	&	protocols

– Need	cross-system	sample	that	captures	full	interaction	between	network	
and	a	representative	set	of	users

◊ Ideal:	hash-based	selection	based	on	common	identifier

◊ Administrative	challenges!	Organizational	diversity

◊ Timeliness	challenge:	
– Selection	identifier	may	not	be	present	at	a	measurement	location

– Example:	common	identifier	=	anonymized customer	id	

□ Passive	traffic	measurement	based	on	IP	address

□ Mapping	of	IP	address	to	customer	ID	not	available	remotely
□ Attribution	of	traffic	IP	address	to	a	user	difficult	to	compute	at	line	speed	
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Advanced Sampling from Sketches

◊ Difficult	case:	inputs	with	positive and	negative	weights

◊ Want	to	sample	based	on	the	overall	frequency	distribution
– Sample	from	support	set	of	n possible	items

– Sample	proportional	to	(absolute)	total	weights

– Sample	proportional	to	some	function	of	weights

◊ How	to	do	this	sampling	effectively?
– Challenge:	may	be	many	elements	with	positive	and	negative	weights
– Aggregate	weights	may	end	up	zero:	how	to	find	the	non-zero	weights?

◊ Recent	approach:	L0	sampling
– L0 sampling	enables	novel	“graph	sketching”	techniques

– Sketches	for	connectivity,	sparsifiers [Ahn, Guha, McGregor 12]
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L0 Sampling

◊ L0 sampling:	sample	with	prob ≈	fi0/F0
– i.e.,	sample	(near)	uniformly	from	items	with	non-zero	frequency

◊ General	approach:	[Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum05]
– Sub-sample	all	items	(present	or	not)	with	probability	p

– Generate	a	sub-sampled	vector	of	frequencies	fp
– Feed	fp to	a	k-sparse	recovery	data	structure	

□ Allows	reconstruction	of	fp if	F0 <	k	

– If	fp is	k-sparse,	sample	from	reconstructed	vector

– Repeat	in	parallel	for	exponentially	shrinking	values	of	p
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Sampling Process

◊ Exponential	set	of	probabilities,	p=1,	½,	¼,	1/8,	1/16…	1/U
– Let	N	=	F0 =	|{	i :	fi ¹ 0}|
– Want	there	to	be	a	level	where	k-sparse	recovery	will	succeed

– At	level	p,	expected	number	of	items	selected	S is	Np

– Pick	level	p so	that	k/3	<	Np £ 2k/3
◊ Chernoffbound:	with	probability	exponential	in	k,	1	£ S	£ k
– Pick	k	=	O(log	1/d)	to	get	1-dprobability

p=1

p=1/U

k-sparse	recovery	



Sampling for Big Data

Hash-based sampling summary

◊ Use	hash	functions	for	sampling	where	some	consistency	is	needed
– Consistency	over	repeated	keys

– Consistency	over	distributed	observations

◊ Hash	functions	have	duality	of	random	and	fixed
– Treat	as	random	for	statistical	analysis

– Treat	as	fixed	for	giving	consistency	properties

◊ Can	become	quite	complex	and	subtle
– Complex	sampling	distributions	for	consistent	weighted	sampling

– Tricky	combination	of	algorithms	for	L0 sampling

◊ Plenty	of	scope	for	new	hashing-based	sampling	methods
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Data Scale:
Massive Graph Sampling
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Massive Graph Sampling

◊ “Graph	Service	Providers”
– Search	providers:	web	graphs	(billions	of	pages	indexed)

– Online	social	networks

□ Facebook:	~109users	(nodes),	~1012 links

– ISPs:	communications	graphs

□ From	flow	records:	node	=	src or	dst IP,	edge	if	traffic	flows	between	them	

◊ Graph	service	provider	perspective	
– Already	have	all	the	data,	but	how	to	use	it?

– Want	a	general	purpose	sample	that	can:

□ Quickly	provide	answers	to	exploratory	queries

□ Compactly	archive	snapshots	for	retrospective	queries	&	baselining

◊ Graph	consumer	perspective
– Want	to	obtain	a	realistic	subgraphdirectly	or	via	crawling/API
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Retrospective analysis of ISP graphs

◊ Node	=	IP	address		

◊ Directed	edge	=	flow	from	source	node	to	destination	node

compromise

control

flooding

• Hard	to	detect	against	background

• Known	attacks	can	be	detected:	
– Signature	matching	based	on	partial	graphs,	

flow	features,	timing

• Unknown	attacks	are	harder	to	spot:	
– exploratory	&	retrospective	 analysis

– preserve	accuracy	if	sampling?BOTNET
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Goals for Graph Sampling

Crudely	divide	into	three	classes	of	goal:

1. Study	local	(node	or	edge)	properties
– Average	age	of	users	(nodes),	average	length	of	conversation	(edges)

2. Estimate	global	properties	or	parameters	of	the	network
– Average	degree,	shortest	path	distribution

3. Sample	a	“representative”	subgraph
– Test	new	algorithms	and	learning	more	quickly	than	on	full	graph

◊ Challenges:	what	properties	should	the	sample	preserve?
– The	notion	of	“representative”	is	very	subjective

– Can	list	properties	that	should	be	preserved	
(e.g.	degree	dbn,	path	length	dbn),	but	there	are	always	more…
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Models for Graph Sampling

Many	possible	models,	but	reduce	to	two	for	simplicity

(see	tutorial	by	Hasan,	Ahmed,	Neville,	Kompella in	KDD	13)

◊ Static	model:	full	access	to	the	graph	to	draw	the	sample
– The	(massive)	graph	is	accessible	in	full	to	make	the	small	sample

◊ Streaming	model:	edges	arrive	in	some	arbitrary	order
– Must	make	sampling	decisions	on	the	fly

◊ Other	graph	models	capture	different	access	scenarios
– Crawling	model:	e.g.	exploring	the	(deep)	web,	API	gives	node	neighbours

– Adjacency	list	streaming:	see	all	neighboursof	a	node	together
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Node and Edge Properties

◊ Gross	over-generalization:	
node	and	edge	properties	can	be	solved	using	previous	techniques
– Sample	nodes/edge	(in	a	stream)
– Handle	duplicates	(same	edge	many	times)	via	hash-based	sampling

– Track	properties	of	sampled	elements

□ E.g.	count	the	degree	of	sampled	nodes

◊ Some	challenges.		E.g.	how	to	sample	a	node	proportional	to	its	degree?
– If	degree	is	known	(precomputed),	then	use	these	as	weights
– Else,	sample	edges	uniformly,	then	sample	each	end	with	probability	½	
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Induced subgraph sampling

◊ Node-induced	subgraph
– Pass	1:	Sample	a	set	of	nodes	(e.g.	uniformly)

– Pass	2:	collect	all	edges	incident	on	sampled	nodes

– Can	collapse	into	a	single	streaming	pass

– Can’t	know	in	advance	how	many	edges	will	be	sampled

◊ Edge-induced	subgraph
– Sample	a	set	of	edges	(e.g.	uniformly	in	one	pass)

– Resulting	graph	tends	to	be	sparse,	disconnected

◊ Edge-induced	variant	[Ahmed Neville Kompella 13]:	
– Take	second	pass	to	fill	in	edges	on	sampled	nodes

– Hack:	combine	passes	to	fill	in	edges	on	current	sample
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HT Estimators for Graphs

◊ Can	construct	HT	estimators	from	uniform	vertex	samples	[Frank 78]
– Evaluate	the	desired	function	on	the	sampled	graph	(e.g.	average	degree)

◊ For	functions	of	edges (e.g.	number	of	edges	satisfying	a	property):
– Scale	up	accordingly,	by	N(N-1)/(k(k-1))	for	sample	size	k on	graph	size	N

– Variance	of	estimates	can	also	be	bounded	in	terms	of	N and	k

◊ Similar	for	functions	of	three	edges	(triangles)	and	higher:
– Scale	up	by	NC3/kC3	≈	1/p3 to	get	unbiased	estimator
– High	variance,	so	other	sampling	schemes	have	been	developed
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Graph Sampling Heuristics

“Heuristics”,	since	few	formal	statistical	properties	are	known

◊ Breadth	first	sampling:	sample	a	node,	then	its	neighbours…
– Biased	towards	high-degree	nodes	(more	chances	to	reach	them)

◊ Snowball	sampling:	generalize	BF	by	picking	many	initial	nodes
– Respondent-driven	sampling:	weight	the	snowball	sample	to	give	

statistically	sound	estimates	[Salganik Heckathorn 04]
◊ Forest-fire	sampling:	generalize	BF	by	picking	only	a	fraction	of	
neighboursto	explore	[Leskovec Kleinberg Faloutsos 05]
– With	probability	p,	move	to	a	new	node	and	“kill”	current	node

No	“one	true	graph	sampling	method”
– Experiments	show	different	preferences,	depending	on	graph	and	metric

[Leskovec,	Faloutsos06;	Hasan,	Ahmed,	Neville,	Kompella13]

– None	of	these	methods	are	“streaming	friendly”:	require	static	graph
□ Hack:	apply	them	to	the	stream	of	edges	as-is
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Random Walks Sampling

◊ Random	walks	have	proven	very	effective	for	many	graph	computations
– PageRank for	node	importance,	and	many	variations

◊ Random	walk	a	natural	model	for	sampling	a	node
– Perform	“long	enough”	random	walk	to	pick	a	node

– How	long	is	“long	enough”	(for	mixing	of	RW)?		

– Can	get	“stuck”	in	a	subgraph if	graph	not	well-connected
– Costly	to	perform	multiple	random	walks

– Highly	non-streaming	friendly,	but	suits	graph	crawling

◊ Multidimensional	Random	Walks	[Ribeiro, Towsley 10]
– Pick	k random	nodes	to	initialize	the	sample

– Pick	a	random	edge	from	the	union	of	edges	incident	on	the	sample

– Can	be	viewed	as	a	walk	on	a	high-dimensional	extension	of	the	graph
– Outperforms	running	k independent	random	walks
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Subgraph estimation: counting triangles

◊ Hot	topic:	sample-based	triangle	counting
– Triangles:	simplest	non-trivial	representation	of	node	clustering

□ Regard	as	prototype	for	more	complex	subgraphs	of	interest

– Measure	of	“clustering	coefficient”	in	graph,	parameter	in	graph	models…

◊ Uniform	sampling	performs	poorly:
– Chance	that	randomly	sampled	edges	happen	to	form	subgraph is	≈	0

◊ Bias the	sampling	so	that	desired	subgraph is	preferentially	sampled
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Subgraph Sampling in Streams

Want	to	sample	one	of	the	T triangles	in	a	graph

◊ [Buriol et al 06]:	sample	an	edge	uniformly,	then	pick	a	node
– Scan	for	the	edges	that	complete	the	triangle

– Probability	of	sampling	a	triangle	is	T/(|E|	(|V|-2))

◊ [Pavan et al 13]:	sample	an	edge,	then	sample	an	incident	edge
– Scan	for	the	edge	that	completes	the	triangle

– (After	bias	correction)	probability	of	sampling	a	triangle	is	T/(|E|	D)
□ D = max	degree,	considerably	smaller	than	|V| in	most	graphs

◊ [Jha et.al. KDD 2013]: sample	edges,	the	sample	pairs	of	incident	edges
– Scan	for	edges	that	complete	“wedges”	(edge	pairs	incident	on	a	vertex)

◊ Advert:	Graph	Sample	and	Hold	[Ahmed, Duffield, Neville, Kompella, KDD 2014]
– General	framework	for	subgraph counting;	e.g.	triangle	counting

– Similar	accuracy	to	previous	state	of	art,	but	using	smaller	storage
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Graph Sampling Summary

◊ Sampling	a	representative	graph	from	a	massive	graph	is	difficult!

◊ Current	state	of	the	art:
– Sample	nodes/edges	uniformly	from	a	stream

– Heuristic	sampling	from	static/streaming	graph

◊ Sampling	enables	subgraph sampling/counting
– Much	effort	devoted	to	triangles	(smallest	non-trivial	subgraph)

◊ “Real”	graphs	are	richer
– Different	node	and	edge	types,	attributes	on	both

– Just	scratching	surface	of	sampling	realistic	graphs
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Current Directions in Sampling
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Outline

◊ Motivating	application:	sampling	in	large	ISP	networks

◊ Basics	of	sampling:	concepts	and	estimation

◊ Stream	sampling:	uniform	and	weighted	case
– Variations:	Concise	sampling,	sample	and	hold,	sketch	guided

BREAK
◊ Advanced	stream	sampling:	sampling	as	cost	optimization
– VarOpt,	priority,	structure	aware,	and	stable	sampling

◊ Hashing	and	coordination
– Bottom-k,	consistent	sampling	and	sketch-based	sampling

◊ Graph	sampling
– Node,	edge	and	subgraphsampling

◊ Conclusion	and	future	directions
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Role and Challenges for Sampling

◊ Matching

– Sampling	mediates	between	data	characteristics	and	analysis	needs

– Example:	sample	from	power-law	distribution	of	bytes	per	flow…
□ but	also	make	accurate	estimates	from	samples

□ simple	uniform	sampling	misses	the	large	flows

◊ Balance

– Weighted	sampling	across	key-functions:	e.g.	customers,	network	paths,	
geolocations

□ cover	small	customers,	not	just	large

□ cover	all	network	elements,	not	just	highly	utilized

◊ Consistency

– Sample	all	views	of	same	event,	flow,	customer,	network	element
□ across	different	datasets,	at	different	times

□ independent	sampling	Þ small	intersection	of	views
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Sampling and Big Data Systems

◊ Sampling	is	still	a	useful	tool	in	cluster	computing
– Reduce	the	latency	of	experimental	analysis	and	algorithm	design

◊ Sampling	as	an	operator	is	easy	to	implement	in	MapReduce
– For	uniform	or	weighted	sampling	of	tuples

◊ Graph	computations	are	a	core	motivator	of	big	data
– PageRankas	a	canonical	big	computation

– Graph-specific	systems	emerging	(Pregel,	LFgraph,	Graphlab,	Giraph…)
– But… sampling	primitives	not	yet	prevalent	in	evolving	graph	systems

◊ When	to	do	the	sampling?
– Option	1:	Sample	as	an	initial	step	in	the	computation	

□ Fold	sample	into	the	initial	“Map”	step

– Option	2:	Sample	to	create	a	stored	sample	graph	before	computation
□ Allows	more	complex	sampling,	e.g.	random	walk	sampling
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Sampling + KDD

◊ The	interplay	between	sampling	and	data	mining	is	not	well	understood
– Need	an	understanding	of	how	ML/DM	algorithms	are	affected	by	sampling

– E.g.	how	big	a	sample	is	needed	to	build	an	accurate	classifier?

– E.g.	what	sampling	strategy	optimizes	cluster	quality

◊ Expect	results	to	be	method	specific
– I.e.	“IPPS	+	k-means”	rather	than	“sample	+	cluster”
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Sampling and Privacy

◊ Current	focus	on	privacy-preserving	data	mining	
– Deliver	promise	of	big	data	without	sacrificing	privacy?

– Opportunity	for	sampling	to	be	part	of	the	solution

◊ Naïve	sampling	provides	“privacy	in	expectation”
– Your	data	remains	private	if	you	aren’t	included	in	the	sample…

◊ Intuition:	uncertainty	introduced	by	sampling	contributes to	privacy
– This	intuition	can	be	formalized	with	different	privacy	models

◊ Sampling	can	be	analyzed	in	the	context	of	differential	privacy
– Sampling	alone	does	notprovide	differential	privacy
– But	applying	a	DP	method	to	sampled	data	does	guarantee	privacy

– A	tradeoff	between	sampling	rate	and	privacy	parameters

□ Sometimes,	lower	sampling	rate	improves	overall	accuracy
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Advert: Now Hiring…

◊ Nick	Duffield,	Texas	A&M
– Phds in	big	data,	graph	sampling

◊ Graham	Cormode,	University	of	Warwick	UK
– Phds in	big	data	summarization	

(graphs	and	matrices,	funded	by	MSR)
– Postdocs in	privacy	and	data	modeling	

(funded	by	EC,	AT&T)



Graham	Cormode,	University	of	Warwick
G.Cormode@warwick.ac.uk

Nick	Duffield,	Texas	A&M	University
duffieldng@tamu.edu
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