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Abstract— Many routers can generate and export statistics on broad questions. Firstly, we wish to determine resource
flows of packets that traverse them. Increasingly, high end routers usage, for both formation and transmission of flow statis-
form flow statistics from only a sampled packet stream in order to . ' : ) ot
manage resource consumption involved. tics, and how it depends on the flow’s characteristics (e.g.

This paper addresses three questions. Firstly: what are the duration, size, source application) and the criteria used to
downstream consequences for the measurement infrastructure? jdentify flows for measurement. A spectrum of possible

Long traffic flows will be split up if the time between sampled pack- behavior can be demonstrated with packet traces reflect-
ets exceeds the flow timeout. Using packet header traces we show,

that flows generated by increasingly prevalent peer-to-peer applica- INg today’s Internet traffic; we wish to complement this

tions are vulnerable to this effect. approach with a model to determine resource usage for
Secondly: can the volume of packet-sampled flow statistics be arbitrary traffic flows.

easily determined? We develop a simple model that predicts both . . . .

the export rate of flow packet-sampled flow statistics and the num-  S€condly, we wish to estimate statistical properties of

ber of active flows. It uses unsampled flow statistics—those com- the original packet stream from the packet-sampled flow
monly currently collected—as its data, i.e., it does notrely on having  gtatistics. Original traffic volumes are relatively easy to
packet header traces available. .

Thirdly: what properties of the original traffic stream can be in- estlmatt_a. Howgver, to dat_e there has .b.een no work on
ferred from the packet sampled flow statistics? We show that as recovering detailed properties of the original unsampled

well as estimating total bytes and packets, one can also infer more packet stream, such as the number and lengths of flows.
detail, specifically the number and average length of flows in the un-

sampled traffic stream, even though some flows will have no packets . o

sampled. We believe that this information is useful, both for under- B. The Formation of Flow Statistics

standing source traffic, e.g. the dependence of flow lengths on appli-

cation type, and also monitoring changes in the composition of the ~ An IP flow is a set of packets, that are observed in the

traffic, e.g., a flood of short flows during a DoS attack. In all cases, network within some time period, and that share some
‘r’)":csg’z'n“:;eng‘é;ﬁqpppdgi‘;?vy;'g packet header traces gathered in common property known as its key. The fundamental ex-

ample is that of so-called “raw” flows: a set of packets
observed at a given network element, whose key is the set
of values of those IP header fields that are invariant along
A. Motivation a packet’s path.

Many routers have the ability to generate and exportA router keeps statistics on active flows passing
statistics on flows of packets that traverse them. Howevéirough it. When a packet arrives at the router, the router
the consumption of computational and memory resourc@gtermines if a flow is active for the packet's key. If not,
by the generation of flow statistics becomes onerous igtinstantiates a new set of statistics for the packet’s key.
line rate. For this reason, high-end routers increasingljn€ statistics include counters for packets and bytes that
use packet sampling to select a substream of packets, frafft updated according to each packet that matches the key.
which flow statistics are then formed. When the flow is terminated, its statistics are flushed

This paper is motivated by the need to understand tf@r export, and the associated memory released for use
consequences of packet-sampled flow formation for tway new flows. A router will terminate the flow if any

one of a number of criteria are met, including (i) timeout:
the interpacket time within the flow will not exceed some
threshold; (ii) protocol: e.g., observation a FIN packet of
the Transmission Control Protocol (TCP) [14] that termi-
nates a TCP connection; (iii) memory management: the
flow is terminated in order to release memory for new
flows; (iv) aging: to prevent data staleness, flows are ter-
minated after a given elapsed time since the arrival of the

I. INTRODUCTION



first packet of the flow. given flow. While such randomization may not be effec-
Flow definition schemes have been developed in rtive at lower speed routers carrying fewer flows (e.g. edge

search environments, see e.g. [1], [4], and are the subjemtiters), packet sampling is not expected to be necessary

of standardization efforts [11], [16]. Reported flow statisfor flow formation in this case.

tics typically include the properties that make up flows \we mention some recent work in which the update of

defining key, its start and end times, and the number gfyistics of existing flow keys is performed only for a sub-

packets and bytes in the flow. Examples of flow definkyream of packets [8]. This approach favors collection of

tions employed as part of network management and agajistics on longer flows. However, key lookup must still
counting systems can be found in Cisco’s NetFlow [3he performed for every packet.

Inmon’s sFlow [10], Qosient’s Argus [15], Riverstone’s
LFAP [17] and XACCT’s Crane [19].
Flow statistics offer considerable compression of irE. Flow Semantics and Sampling
formation over the header of the packet that comprise it,
since the flow key is specified once for a given flow. In From the discussion of Section I-B it should be clear
experiments, compression ratios of around 25 are not uhat an IP flow is an artifact of the manner in which the

common. measuring device defines them, rather than having an in-
o dependent existence. One motivation for the concept of a
C. The Need for Packet Sampled Flow Statistics measured IP flow is that end hosts generate sets of pack-

The main resource constraint for the formation of flo/ftS @S & result of transactions in applications, either au-
statistics is at the router flow cache. To perform lookup ¢pmated or by users. A good definition of a flow, and in
packet keys and counter increment at line rate would qaarticular its starting and termination criteria, should en-
quire the flow statistics to be stored in fast memory. Hov#aPsulate each transaction through the flow summary.

ever, core routers will carry increasingly large number of However, there are two factors that may hinder the ef-
concurrent flows, necessitating large amount of fast meffiectiveness of such encapsulation. One is that new appli-
ory: this would be expensive. By sampling the packeiations may generate packets in patterns that are not well
stream in advance of the construction of flow statisticeaptured by the flow definitions. The second factor, and
the time window available for flow cache lookup is promost relevant for this paper, is that packet sampling re-
longed, enabling storage to be carried out in slower, les®ves cues for flow delineation from the packet stream.

expensive, memory. For example, termination of a TCP flow based on obser-
vation of a FIN packet is hindered if the packet is not
D. Packet Sampling Methods present in the sampled stream. Thus interpacket timeout

Thi : i . Ag expected to become the domingnt method of termina-
is paper considers sampling some target propoptio n for TCP flows when the sampling rate is low.

of the packet stream. There are several ways to implemgﬂ
this. In probabilistic sampling, the router makes a pseudo-It may be advantageous to adjust flow delineation cri-
random decision whether to sample each packet. In if@ria with sampling rate in order to match the flow defini-
plementations, the decision could, for example, be gotjon to the underlying nature of the transactions that gen-
erned by a pseudorandom number generator with wegrate the traffic. One case that we investigate in this paper
known properties (see e.g. [12]) or be driven by the eis scaling the interpacket timeout inversely with the sam-
tropy of the packet contents itself (see e.g. [7]). Whepling rate in order to capture longer lived packet streams
p = 1/N for some integeiV, periodic (or deterministic) as a single flow.

sampling can be used, e.g. evév‘)t/h packet is selected.  The inherently artificial nature of flows provides some-

Periodic sampling is very simple to implement: théhing of a challenge for terminology. Our initial descrip-
router needs only decrement a counter. It has the poteion of a flow as a set of packets with a common property
tial disadvantage of introducing correlations into the sanebserved in a given time interval serves to describe the
pling process: when a packet is selected, none of the flbw independent of the measurement mechanism. We
lowing N — 1 packets are selected. Although this does netill sometimes use the terroriginal flow to describe
bias against selection of any one packet, it can bias agaissth a set of packets. Once a measurement mechanism—
selection of multiple packets from short flows. Howeveincluding termination criteria—has been defined, we can
we do not believe this effect would be important for samspeak of aneasured flontogether with the resulting flow
pling from high speed links that carry many flows constatistic. Either type of flow can be callesgmpled for
currently. In this case, successive packets of a given fl@am original flow this means a substream of packets sam-
would be interspersed by many packets from other flowgled from it, while a sampled measured flow means a flow
effectively randomizing the selection of packets from thmeasured from such a substream.



F. Outline traffic characteristics, e.g., burst of short flows due to a

_ ) ) _ SYN flooding attack. The method could also be used to
This paper addresses three questions. Firstly: what Waracterize source traffic, e.g. mean flow lengths by ap-

the downstream consequences for the measurementjfisation type. We conclude and propose further work in
frastructure? We call an original flow sparse if the typ'c%ection V.

interpacket time of the sampled packet stream exceeds the

int_erpacket timeout for measur_ed flows. A ;in_gle sSparge Other Related Work

original flow gives rise to multiple flow statistics. The ]

increasing prevalence of longer file transfers by peer-to- 1 hereé has been some prior work on packet based sam-
peer applications—as much as 50% of traffic on soniding schemes and their consequences for estimation, al-
links—may lead to sparseness if the sampling rate is siffough these works did not deal with the resulting flow
ficiently low. This observation motivates the first topic oftalistics or estimation therefrom. Independent and de-
our study. In Section Il we use packet header traces fgministic 1 in N sampling, as well as stratified sam-
confirm that individual flows generated by streaming arRling out of finitely many bins, have been compared for
peer-to-peer applications do generate multiple flow statRacket sampling in [S]. The aim of this work was to effi-
tics at moderate sampling rates (e.g. 1in 10 to 1 in 1005;_|ently estimate packet size distributions. Enabling infer-

Given sparseness, our second question is to ﬁnce’ frog;asamhpled.packeigtre:m IS olne focusr(])f_thtilln-
whether the volumes of flow statistics, and the numb on’s sFlow scheme; see [10]. A novel approach in this

of active flows, can be easily predicted. Packet traces & t:]heogi;se t:fatthp;acgglt g?zzrgscgr?r;?nlrxli?cdhe Iz::?(rent]sg(r)g
not available at most points in a network; heterogenei Lected. Thi engbles d'rejct computation ofpthe attained
of traffic prevents generalizing the analysis from a give - IS ! putali !

trace to arbitrary network sites. Instead, in Section lll, W%ampllng rate. Use of the attained sampling rate for nor-

develop a simple sampling model that works with mor@allzatlon of total byte and packet estimates can reduce

readily available data. Given a set of statistics of unsal stimator variance. Standards for network event sampling

pled flows (perhaps derived directly from flow measur _asgd on randomizing the inter-sample time have been set
ments) the model predicts the flow export rate and megHt in [13]

number of active flows that would result if we had instead I
formed flow statistics from a sampled version of the orig-
inal packet stream. We evaluate our model using packt Resource Usage and Sparseness

header traces. In this section we investigate the use of memory and
Thirdly, we ask what properties of the original traftransmission resources by packet-sampled flows. Mem-
fic stream can be inferred from the packet sampled flayty usage will be characterized by the number of active
statistics. Inference of total bytes and packets, possililgws. Transmission usage will be characterized by the
differentiated by flow key, is straightforward: dividing byrate at which flow statistics are exported, or equivalently,
the sampling rate the traffic rate represented in the megnce we work in a fixed time window, the total number of
sured flows yields an unbiased estimate of the origingbws exported. We shall use trace driven experiments to
traffic rate. In Section IV we derive the variance of suchetermine the variation of the number of active flows and
estimates. export rate with sampling rate, broken down by applica-
More difficult to infer are the detailed properties of theion.
original flows: their arrival rate, their lengths. The main Consider an original flow with typical interpacket spac-
difficulty is that some flows may not be sampled at all; sipg 7. Supposel in N packets are sampled from this
it is not enough to simply form estimates through dividstream. Typically, the interpacket spacing in the sampled
ing the measured number of flows and their lengths by tee@eam is' N. If 7N exceeds the flow interpacket timeout,
sampling rate. When flow reports include supplementatiien the original flow tends to decompose into a number
protocol level information, specifically the occurrence abf separate measured flows, depending on how the pack-
SYN flags within a TCP flow, we are able to form unbiets are bunched. The worst case is even spacing: each
ased estimators of the flow rate and average lengths. Wanpled packet would give rise to a separate measured
evaluate our method using packet header traces. flow. If Nt is less than the flow interpacket timeout, the
Although the method is confined to TCP traffic, thiseverse holds, and the packets tend to be reported as a sin-
constitutes the overwhelming majority of Internet trafgle measured flow. If evenly spaced, a single measured
fic. We also derive variances for these estimators, afldw would result; bunching may increase the number of
find they are sufficiently accurate to monitor changes overeasured flows.
timescales of a few seconds at high speed links. Thus,This presupposes there are multiple packets in the sam-
the method could potentially be used to detect changespled stream. We will term an original flowparse if

. | MPACT OF SAMPLING ON FLOW STATISTICS
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Fig. 1. Exported flows (left) and active flows (right, mean and peak) as function of sampling perioterpacket timeout for measured flows was
30 seconds.

sampling at a given rate typically yields more than onas a parameter, and outputs evéfy" packet. flows
packet, with the typical interpacket time of the samplethkes a header trace as input, and a flow timeaas a
packet exceeding the flow timeout. Thus an implicit angarameter. It constructs flows of packets with common
necessary condition for sparseness is that the typical fleource and destination IP addresses and TCP/UDP port
length exceed®V. Packet size distributions of measurethumbers, with successive packets separated by no more
flows have previously been found to be heavy-tailed; sé@ant. Packets using protocols other than TCP or UDP
e.g. [9]. This leads us to expect a noticeable number affe discarded. Protocol specific information, such as TCP
long, and hence potentially sparse, flows. SYN or FIN packets, is not used demarcate flows. The

With sparse flows, packet sampling can thiecrease output offlows comprises the constructed flow records,
the number of measured flows and hence the downstreaamtaining the address and port information, together with
resource usage for those flows. Note we do not expehe total number of packets and bytes in the flow. Except
that sparseness to increase consumption of memory atfitveSection II-E, we use a flow timeout of 30 seconds.
router. Whether or not splitting takes place, the original
flow gives rise to at most one active measured flow at afy Resource Usage by Aggregate Traffic
time. Figure 1(left) displays the number of exported flow

Peer-to-peer and streaming applications are candidagesistics for deterministic sampling with periodsof 1,
to produce sparse flows since they typically transmittexh, 100 and 1,000. The dependence is roughly linear on
packets over extended periods. The recent rise in up@ log scale, indicating the number of floésbehaves
of such applications is one driver for the study of theoughly as a power law” ~ N? for some powep. The
present paper. Following our terminology above we willope of the final portion is-0.88. Model calculations
call sparsethose applications which may be expected téhow that, asymptotically for larg¥, the probability that
transmit sparse flows of traffic at typical sampling ratesany packet of a given flow is selected is asymptotically

) ) proportional tol /N for large N, and thus we would ex-
B. Experimental Traces and Flow Formation pect the slope to approaehl in this limit.

An AT&T Labs PacketScope [2] was used to collect Figure 1(right) displays the average number of active
a packet header trace from a peering link, using tfi®ws over the duration of the trace. The dependence on
tcpdump tool. This preliminary study used a heade/V is similar to that of the flows. The peak number of
trace comprising 10,000,000 IP packets collected ovei@gtive flows occupancy is only about 10% larger than the
period of 37 minutes starting Thursday April 26 19:3%nean over the duration of the trace.

2001 GMT.

By passing the header trace successively through o
perl scriptssample andflows , we determine the flows Figure 2 breaks out the number of exported flows (left
that would be produced after 1 iv sampling of the figure), and the mean number of active flows (right) by
packet stream.sample accepts the header trace, onapplication, as determined from TCP/UDP port numbers.
record per packet as input, and the sampling pefidd As the sampling period@ increases, the number of flows

Variation by Application Type
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Fig. 2. Total flows (left) and active flows (right) for 30 second flow timeout, for selected applications. Sparse applications (napster, curve 3) and

realaudio (curve 7) show initiahcreasein total flows with V.

sampling period N

sampling periodV appl. kbytes | prop. kpkts | prop.
appl. 1 10 | 100 | 1,000 WWW 2,122,109| 0.5202| 5,500 | 0.5500
WWW 6.12| 191|123 1.04 other 981,697| 0.2406| 2,140 0.2139
other 2242| 6.06| 193| 1.15 napster 282,356| 0.0692 396 | 0.0396
napster | 455.31| 33.55| 2.63| 1.15 smtp 211,280| 0.0518 502 | 0.0502
smtp 5.66| 2.33|151| 114 ftp 126,433| 0.0310 231 | 0.0231
ftp 36.21| 10.36| 2.42| 1.26 nntp 101,214 0.0248 78 | 0.0078
nntp 107.23| 36.48| 7.11| 1.22 https 96,671 | 0.0237 345 0.0345
https 6.34| 158|109| 1.01 ms-strm 41,903 | 0.0103 88 | 0.0088
ms-strm 95.66| 24.91| 2.11| 1.10 pop3 33,537 0.0082 202 | 0.0202
pop3 5.19| 1.64|1.18| 1.01 domain 31,048 | 0.0076 204 | 0.0204
domain 226| 134|107| 1.01 realaudio 26,783 | 0.0066 48 | 0.0048
realaudio|| 467.16| 17.64| 2.45| 1.14 quake 22,949 0.0056 261 | 0.0261
quake 19.58| 15.30| 5.14| 1.25 http-alt 1,762 | 0.0004 7 | 0.0007
http-alt 412| 1.47|1.07| 1.00 TOTAL 4,079,741| 1.0000| 10,000| 1.0000
ALL 7.75] 249\ 144| 1.08

TABLE | TABLE Il

PACKET AND BYTES: NUMBER AND PROPORTION BY
DEPENDENCE OF MEAN PACKETS PER FLOW ON SAMPLING PERIQD
APPLICATION.

BY APPLICATION; 30 SECOND INTERPACKET TIMEOUT

decreases for most applications. However, streaming -packet measured flows by sampling, while shorter
file sharing applications, in particular napster (curve riginal flows (i.e. of length less thaw) will mostly have

and realaudio (curve 7) buck this trend. These applicg; o packet sampled, if any.

tions have_ the longest flow lengths (see Table I) and her@% in this trace, sparse applications constitute a rela-
the mostlikely to re.ndered_ sparse. Observe that: tively small proportion of the total bytes, being no more
(i) Once the sampling periali reachesV = 17 00,0' the_ than about 10%: see Table Il. However, use of peer to
number of flows measured for sparse applications is A e anpjications has risen since the trace used here was
greater th_an for the unsampled packet strgam (Ve= collected (April 2001). Flow statistics gathered at a large
1). This is because even for sparse applicatioNsy= service provider show that up to 50% of traffic in some
1,000 exceeds the typical original flow length—see thg ¢ can currently be attributed to peer to peer applica-
V= 1 column .Of Table |—and so we expect that odly tions, such as Grokster, Gnutella, Kazaa and Morpheus.
measured flow is produced from each original flow. (iv) for the sparse applications, the number of active

(i) From Table I, onceN = 1,000, the mean flow f4ys  see Figure 2 (right)— decreases withalthough
lengths are close tb, and hence most flows have length, .. -« quickly as for other applications.

equall. Sparse original flows have mostly been split into
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Fig. 3. Trade-off between total flows and active flows with interpacket timeout. (3, 10, 30, 100, 300 seconds). Trade-off for a sparse application
(napster, right) more sensitive than for non-sparse application (www, left), when sampling Nesiodller than typical flow length.

E. Trade-offs and Dependence on Flow Timeout likely to be split by packet sampling into multiple mea-

. . sured flows. In the trace examined, packet sampling can
Lengthening the flow timeout could reduce the numbeér .

o . actually increases the number of measured flows exported
of flows exported by sparse apph_canons by grouping t?'r such applications. This phenomenon was observed for
gether packets that would otherwise be split into SePardEimne peer-to-peer and streaming applications at moderate
flows. However, this increases the number of active flows : .

) Sampling rates1 in N for N = 10 and N = 100, but de-

since the flow cache entry must be kept open longer. F'gﬁnes onceN = 1,000, since this exceeds the typical
ure 3 shows the trade off between total flows and acti LR

ve.
. ; . ; o%glnal flow length.
:‘Iso\\;\:isr,i:c)jr a given sampling periolf, as the flow timeout The rise in use of peer to peer applications has been

I , apid and recent; other sparse applications may arise in
For_a non-sparse _apphcatlorj, WWW, _(Flgure 3 le ture. This motivates the need to track flow length dis-
there IS I|t_tle benefit in increasing the timeout: the 4Gfibutions and determine their effect, in conjunction with
tive flows increase but the tota_l flows decrease very “&'ampling rate choices, on the consumption of memory
tle. From Table II, the mean original fI(_)w length is Onlyand transmission resource by measured flow statistics. In
about 6, so already fol = 10 there will be only 1 or the next section, we use a simple sampling model that en-

a few packets_reported on per original flow, _whether 'Bbles this to be done from unsampled flow statistics alone.
the same or different measured flows. Ori¢ds large

enough for 1 packet measured flows to be the norm, the I1l. PREDICTING RESOURCEUSAGE
total number of measured flows is roughly inversely pro- In the previous section we used packet traces to inves-
portional tol/N: the probability than a given packet is P P

selected. This is borne out by the figure. Since the origﬁ-gate the dependence of memory and resource consump-
t

nal flows were short, increasing the timeout increases lan by measured flows on application type, sampling rate

€ : .
mean number of active flows roughly proportionately, blﬁ‘nd flow interpacket timeout. Although we accounted for
has little effect on the total number of flows, particularl;gh

e qualitative dependence, we have no reason to think
for large N.

e detailed behavior (e.qg. traffic mix, mean flow lengths,
I . . the value of the power law in Figure 1) would be univer-
Fora sparse application, napster, (Figure 3, right), t@%l. However, in many cases packet header traces are not
trade-off is more pronounced. From Table |, the Meal ailable to perform an equivalent analysis in a case of in-

original flow length, 455, is long enough that flows can bﬁérest In this section we assume that a set of unsampled
sparse forN as large ad00. However, forN = 1,000, ’ P

. measured flow statistics is available. A sampling model
the flows tend not to be sparse for any timeout, and the stimates the number of measured and active flows, had
havior is roughly the same as for non-sparse applicatiorijﬁe original packet stream been sampled '

F. Summary A. Flow and Packet Model

Sparse applications produce original flows comprising Consider an original flow comprising packets dis-
many packets with moderate interarrival times, that ateébuted over a period of length Suppose packets are



sampled from this flow at mean rat¢N, and measured Timeout Sampling periodV

flows formed with timeouf” from the samples. We wish T 10 100 1,000 10,00(¢
to determine two quantities: 1 122 115 1.04 1.00
e f(n,t; N,T): the resulting number of measured flows, 10 121 113 1.13 1.02
e a(n,t; N, T): the total time the flow was active, i.e., the 100 1.23 1.10 1.10 1.09

time elapsed between the first and last sampled packet, 1,000 | 1.23 1.08 1.10 1.06
plus the timeouf".
Clearly, f anda are not determined without further as-

sumptions concerning (i) the spacing of packets within Timeout Sampling periodV

the original flow, and (ii) the manner in which sampling T 10 100 1,000 10,00
is performed, e.g., deterministic or random. Since sam- 1 118 1.08 1.01 1.00
pling involves random choice, the number of exported and 10 121 113 108 1.01
active flows are themselves random quantities. Thus we 100 123 111 110 1.05
must either provide their distribution, or summarize this 1000 | 123 1.09 1.10 1.05
through some statistic, such as their mean. To be specific, TABLE Il

we determine the average valuesfoinda under deter- Accuracy oF FLow PREDICTION: RATIOS PREDICTED TO ACTUAL
ministic sampling of an evenly spaced flow of packets. numser oF FLows (UPPER TOTAL FLows F| /F'; (LOWER)
Whereas this model would only be accurate for sampling active FLows A /A. FOR DIFFERENT TIMEOUTST' AND
traffic comprising a single flow, we shall see it yields sim- SAMPLING PERIODSN

ple explicit results that are quite accurate in practice.

B. Deterministic Sampling with Equal Spacing C. Prediction and Accuracy

The packets of the original flow are assumed equally Given a set of original flows = 1,2,..., M of du-
spaced in time. One iV of the packets are sampled pefationt; and comprising:; packets present during an in-
riodically. The initial phase of the sampling is assumet@rval of durationD, we estimate the total number of ex-
random, i.e., packets, m+ N, m+2N, ... are sampled, portAed flows byF};, and the mean number of active flows
wherem is distributed uniformly orni, 2,..., N. We de- by A1, where
note the expected value ¢fanda by f; anda;.

M
Theorem 1:Assume deterministic sampling of a flow 5 .
with period NV and random initial phase. o= ; fulmi, tis N, ), 3)
Ji(n, t; N, T) ) ~ M
— p-! 4
1, Nt<(n-1)TandN <n A = DY ai(nitis N, T) )

— i=1

_{ n/N, otherwise
We investigated the accuracy of the estimaf@rby

ar(n,t; N, T) @ comparing it against the number of sampled flows con-
_ { t=fL+T, Nt<(n-1)TandN <n structed from packet header traces. For a single trace,
nT/N, otherwise Table 11l tabulates the ratios df; and 4; to their actual

values,F’ and A4, as a function of the sampling periad
Proof: Assume firstn < N. At most 1 packet is and timeoufl’. The same timeouf was used for the sam-
selected, with probability./N. If the measured flow ex- pled and unsampled flows. Agreement is quite close: one
ists, it comprises 1 packet, and hence had durdfioihe expects estimates within about 10% of the true value for,
timeout. Thusf; = n/N anda; = Tn/N. Otherwise say,T = 30 and N = 100. Note accuracy is better for
n > N. Then the separation between original packets lgrger V; as the sampling period exceeds the typical flow
t/(n — 1) and hence the separation between any selectedgth, most original flows have only one packet sampled,
packets isNt/(n — 1). and for these the detailed modeling of sparseness is irrel-
Suppose firsiVt/(n — 1) < T. The separation of se- evant.
lected packets does not exceed the timeout, and selected/e also argue that for long sparse flowsanda are
packets form one flowf; = 1. On average this flow hasreasonably insensitive to the detailed modeling of sparse-
n/N packets, soitis active far, = t(n—N)/(n—1)+T. ness. Detailed examination of the traces reveals that for
On the other hand, iNt/(n — 1) > T, n/N packets are larger N and smallefT’, the dominant contribution t@
selected on average, each packet giving rise to one fldvam sparse original flows comes from those flows which
The expected number of active flows is than= Tn/N. have many sampled packets (i/N > 1) and which
] are very sparse (i.eNt/n > T). Since for these flows,



Timeout Sampling periodV these are used by a variety of measurement based appli-

T 10 100 1,000 10,000 cations; they can also be of use in setting the parameters

1 0.89 0.66 0.64 0.73 for sampling itself. We shall consider the following:

10 1.08 0.79 0.65 0.69 1. Bytes and packet counts per flow key. These form the
100 117 096 0.86 0.77 raw data for usage-based applications, including traffic
1,000 | 1.23 1.04 1.01 1.00 engineering, and usage-based accounting.

2. Number of original flows, differentiated by flow key or
some aggregation thereof. Statistical properties of origi-
nal flows are useful for characterizing source traffic.

3. Mean size of original flows. Given 1 and 2 above, we
would already have an estimate at our disposal: packet
count divided by number of flows. We shall discuss other
possible choices. As well as helping source characteriza-
tion, knowing the mean original flow size would also help

Timeout Sampling periodV
T 10 100 1,000 10,000

1 140 4.24 13.32 57.38
10 131 223 7.10 14.46
100 143 199 253 2.82
1,000 | 1.25 1.19 1.24 1.18

TABLE IV in assessing resource usage by packet sampled flows, as
ACCURACY OF FLOW PREDICTION WITHOUT MODELING detailed in Section Ill.
SPARSENESS RATIOS PREDICTED TO ACTUAL NUMBER OF FLOWS The goal is the find estimates for these characteristics
(UPPER) TOTAL FLOWS Fb/F; (LOWER) ACTIVE FLOWS A3 /A. For  and understand the accuracy of these estimates. Estima-
DIFFERENT TIMEOUTST AND SAMPLING PERIODSN tion of bytes and packets in the original flows is com-

the typical sampled interpacket time is much larger thaifratively straightforward: one need only divide the cor-
the flow timeout, the sampled packets will tend to forrffSPonding totals in the measured flows by the sampling
single-packet measured flows, regardless of the detaiféde- We spell this out in Section IV-B, together with ex-

distribution of the sampled interpacket time. pressions for estimator accuracy. N
By contrast, the number and length of original flows
D. Impact of Sparse Flows cannot be obtained through “multiplication ky”, as

. o o shown by Table | for flow lengths. An impediment
Although we just argued a certain insensitivity 10 thg, estimating the original flow properties is that an un-

details of sparseness, sparseness itself should not beyigis.wn number of original flows will haveo packets sam-
nored. This would amount to reducing the conditions igje and thus not show up in the measured flows at all.
the upper lines of (1) and (2) to simply < n, i.e., With- - \ote that this applies predominantly to short flows: those

out testing whether the sampled interpacket time excegfjfose length is shorter that the inverse of the sampling

the measured flow timeout. We call the resulting funGxie  Then. most measured flows have lengtrand it

tions f, anday, with corresponding estimatés and A, || be difficult to distinguish different distributions of the
of the total and mean active flows, analogous to (3).  original flows. Consider the following two cases:

We tabulate the ratio$:/F' and A;/A in Table IV. (i) 1,000,000 original flows of size 2. Perform 1/10,000
Except for smallN and largeT’, F; underestimated’, packet sampling. The number of sampled flows of size 1
noticeably more thad, overestimates”. Overestima- is a random number whose mean is 199.8, while the prob-
tion of A by 22 is more striking, particularly for larga/ ~ ability of producing at least one measured flow of size 2
and smallT". By ignoring the sparseness, the measurdgionly about 1%.
flow is judged to be active over nearly the entire durdil) 1,998,000 original flows of size 1. Performing
tion of the original flow, rather than for the subintervald/10,000 packet sampling the number of flows of size 1
of the original flows. Thus, ignoring sparseness can leé&a random variable with mean 199.8, whose distribution
to substantial over-estimation of the mean number of aig-almost indistinguishable from the above case.
tive flows, and hence the buffering resources needed tbis demonstrates that a large difference in the number

accommodate them in a router. of original flows can be difficult to distinguish from the
distributions of the measured flows.
IV. INFERENCE OFORIGINAL FLOW One way to circumvent this problem is to use more in-
CHARACTERISTICS formation than the measured flow lengths alone.

(i) With a parameterized statistical model of the original
flow size distribution, we could estimate parameters of the
In the third part of our work we turn the telescope omodel from the measured flows. One difficulty here is ar-
the previous section around: we ask what properties of theing at a sufficiently rich model class. Although certain
original packet stream can be determined from the mdaroad features, e,g, heavy tails, have been observed in ex-
sured flow statistics of the sampled packet stream. Cleagdgriments, no generally accepted model exists. We do not

A. Goals and Impediments



pursue this approach in this paper. are unbiased estimators Bfand .

(i) Additional information may be provided in the flow(ii) The standard errors @ and B are bounded above as
records themselves. As an example, Cisco NetFlow re-

ports the set of TCP flags that were set by any packet in \/Var P N  VVarB N bpax
the flow. In section IV-C we show how to use thisin- ~— p < P’ B < P b,
formation to estimate the number of original TCP flows,

and hence their mean length. Although the method is coftihereb,,, andb, ., are the average and maximum packet
fined to TCP traffic, this forms the overwhelming majoritysize respectively.

of current traffic in the Internet: roughly 95% of all traf- -

fic flowing in a set of high speed links in a major servic& Number of oniginal TCP flows

(6)

provider. The TCP protocol signals the start and end of connec-
tions with packets that are distinguished by flags (bits)
B. Byte and packet totals in the code bits of the TCP header; see e.g. [6]. The

We start by setting out the relatively simple estimatof§'st packet of a connection has a SYN flag set, whereas
for numbers of original bytes and packets. If packets af@e last has the FIN flag set. NetFlow traces include the
sampled at average rategfN, independent of their size, cumulative OR of the code bits. Thus by inspecting the
(for periodic Samp"ngN would be an integer, but needCOde bits of the flow, we may determine whether or not
not be in general) then estimates of the bytes and packeg SYN and FIN flags were set on any packet detected in
of the original traffic are obtained by multiplying the meathe flow. We will refer to a packet with a SYN flag set as
sured bytes and packets By. This applies to the aggre-a SYN packet. Here we assume:
gate, or to subsets of flows of a given key. (A1) original TCP flows start with a SYN packet

To be SpeciﬁC, we can estimate the numPbeof Orig- (AZ) Original TCP flows contain exaCtly one SYN paCket.
inal packets by the random variabfe= Np wherepis Thus, ifa SYN packetis reported in a measured flow, even

the total number of packets in the measured flows. MatliL @ Sampled one, it must have been set in the first packet
ematically, we can writ¢ = -7 w; where thew; are of the flow. We shall investigate the extent to which these

random variables taking the value(indicating that the assumptions are satisfied, and the effect of these viola-
packet was sampled) with probability N' and 0 (indi- tONS: in Section IV-F.
cating that the packet was not sampled) with probability A Parallel methodology could be based on FIN flags,

1 — 1/N. Each packet sampled contributes 1 to the suriinc® all TCP sessions should end with a FIN p_acket.
which is that the number of packets actually sampled. However, there may b_e many flows for_ which this is not
P is an unbiased estimator &, i.e.. its expectation the case: a SYN-flooding denial of service attack employs

equalsP. In detail: EP = NYF Ew; = P. Note flows comprising one SYN packet.

independence of the; is not assumed. C.1 Two estimators of TCP flow numbers

For independent sampling, the are independent, and L
P Ping hlg b We now show that when packet sampling is used, the

we can write the varianc&ar P = PNZ2Varw; . . .
o o/ Nar B/P i statistics of the flow code bits allow us to infer the number
PN(1 — N7%). The standard errov Var P/P is thus ot griginal flows, M, that were present during the collec-

bounded above by/N/P. tion period. We will construct two estimators df, each
BytAe totaIsAare est|rl1ated similarly, by the random varjyiih distinct statistical advantages.
able B = Nb whereb is the total number of bytes in  \we assume that packets are selected with probability
the measured flows. We write= 31, w;b; where the 1/N. (At this point we do not assume independent selec-
b; are the byte sizes of the packets in the original flowsion of different packets). If the SYN packet is selected,
Each packet sampled contributels to the sum, which is then trivially the flow is sampled. Thus the numbgg
hence the total bytes of sampled packets. With indepest-measured flows that contain a SYN packet has expec-
dent samplingVar B = N(1 — N~*) 3> 2. Writing  tation M/N. Consequenth\/; = N, is an unbiased
the average and maximum packet sizebasandbmq.. —estimator ofM.
respectively, we can bound the standard erraBefbove  One potential disadvantage of, is that it uses only
by /N/P - binaz/bay. SUMmarizing: flows containing a SYN, i.e., only a subset proportion of
Theorem 2: (i) Suppose a stream d?P packets con- the measured flows as its data. An alternative that ad-
taining B bytes is sampled with average probabilityresses this issue is the following. We assume that no
1/N > 0independent of packet size, with reported packeplitting of flows due to sparseness takes place; this can be
and byte total$ andb. Then realized through using an infinite flow timeout. We divide
R R R the original flows into three classes; comprises those
P=Np, and B=Nb (5) flows for which the measured flow comprises exactly one
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SYN packet.S; comprises those flows for which the mea~N —!) /N, Var M; = M N(1 — N—1). The result follows
sured flow has at least one non-SYN packet. Note thatfibm the Central Limit Theorem; [18].
any packet of a given original flow is sampled, then it (ii) Flow i falls in S if z;12; = 1 and inS, if z; = 0.
must be in eithes; or S,. S3 will denote the set of orig- Hence we can writé//, = Zﬁl {14+ (Nzjy — 1)z} .
inal flows from which no packet was sampled. Using (a) the independence of the terms for different
Assume now that sampling of the first packet of thows i; (b) the formulaVar AB = VarA - EB? +
original flow occurs independently of the other packet¥ar B - (EA)? with A = Nux; — 1; (¢) 22 = 2; (d)
SinceS; C 5§ (hereSs denotes the compliment ¢, E[z] = (1 — N~1)/i71; (e) Varz;, = (1 — N~1)/N,
i.e., S1 U S3), then for a given flowP[Si] = P[Si | we find Var My = MN(1 — N~1)z,,, wherez,, =
95]P[S5] = (1 — P[S,])/N. Now lets, ands; denote j—15~M (1 _ y~1)fi < 1. Each term in the last sum
the measured numbers flows stemming frémand S2  has common distribution with finite meanand hence by
respectively. Definel/; = Ns; + 52 and observe that the Strong Law of Large NumbeEs,, converges almost
EM,; = MNP[S1] + MP[Sz] = M. Hence we have surely toz. The result then follows by the Central Limit
proved: Theoremm
Theorem 3:Assume (A1) and (A2). Theht; is an un-
biased estimator af/, and so isM5 under the additional
assumption of infinite flow interpacket timeout.

We can restate Theorem 4 as saying tﬁn\athas stan-
dard error roughly/N/M while ]/\4\2 has standard error
roughly/ZN/M. Sincez < 1 (unless all flows comprise
C.2 Estimator variance 1 packet) we have achieved the aim of reducing estimator

) _ variance. However, this is done at the potential cost of

We now compare the sampling variance of these esfiyrqqucing bias.1, was formulated under the assump-
mators as the number of original flowls” grows. OUr 5 that flows are not split. Flow splitting will lead to
model for this is the following. Consider a sequence Qfercounting of flows in class,. For smaller samples is
original flows of lengthsf, fa,.... We assume that the may be better to sustain such bias instead of suffering the
fi-are i.i.d. random variables of finite megh Conse- ,creased variance, which is more noticeable for smaller
guently, by the Strong Law of Large Numbers ([18]) th‘%amplesz is closer tol for largerN.

> =Hong Rew o _
average lengttf, = M~ ) _;_, fi of the firstM flows 1 give an example, consider geometrically distributed

converges almost surely fbas M grows. This is almost fi. Thenz = 1/(1 + (f — 1)/N). If the mean flow

the only statistical behavior of thg that shall concern us. length is much longer than the sampling periﬁ/@ will
In what follows, we shall condition on a particular realiza;

. X . ) ave noticeably lower variance that; . Other the other
tion of the flow sizes, which hence appear fixed. The on . .
and, these are the conditions, depending on the flow

statistical behavior comes from the sampling. The fom?meout under which sparse flows could be split up into
of our results will depend on the flow sizes only throug I, i pTh differedde_ 17 pt IFI)
the meanf, and hence will hold for almost all realization>CVeral measuredfiows. The ditterenag — ;i actually
of the flow lengths. gives us some measure of this, since it can be rewritten

L . . as the number of flows with properf§, minus N times
Define indicator variable§r;;)i—1 2,...;j=1,...,s, taking . )
. ) SIS e ) the number of flows with propert§, that also contain a
the valuel if packet; of flow i is sampled, and oth- — =~ ) - )
. £ ~ SYN: M, — M, estimates the additional flows that arise
erwise. Letz; = [[;L,(1 — z;5). No packets of flow

beyond the first are sampled:if = 1. due o splitting.
Theorem 4:Assume (Al) and (A2) and independen
packet sampling with probability/N.

0 M_1/2(]/\4\1 — M) converges in distribution to a Gaus- Equipped with estimates of the number of packets (Sec-
sian random variable of medrand variance? = N (1— tion IV-B) and the number of flows (Section IV-C) we can

N, straightforwardly estimate the mean length of TCP flows
(i) Assume additionally an infinite flow interpacke@S/ = P/Mi. for eitherk = 1 or 2. Although these are
timeout and that the flow length% are i.i.d. with finite NOt unbiased estimators gi they satisfy the following

mean. Then for almost all sequences of flow lengths, tREOPErty: . )
conditional distribution 0M71/2(M‘2 — M) converges to Theorem 5:Under the assumptions of Theorem 4(ii),

that of Gaussian random variable of meésand variance €achP’/M;; is, for almost all sequences of flow lengths, a
02 = o2z wherez = E[(1— N—1)f1-1]is the probability Cconsistent estimator of, i.e., they converge t¢ almost
that no packets of a flow beyond the first get sampled. surely asM grows. P

Proof: (i) Write M; = NYM 2. Since M, Prvof: Write P = N>iZ1 255, xiy. By assump-
is a sum of i.i.d random variables andrz;; = (1 — tion, P/M andM;,/M are sums of independent random

b. Mean Length of Original TCP Flows



variables with finite meang and1 respectively. The re-
sult then follows by the Strong Law of Large Numbers,

Theorem 6:Under the assumptions of Theorem 4(ii),

11

trace packets | flows SYN FIN

full 9,566,657| 354,950| 315,200| 283,357

reduced| 6,889,444| 299,875| 315,067 | 270,081
TABLE V

fork = 1,2 eaChM1/2(P/Mk — f) is asymptotically Trace PROPERTIES OF FULL TRACE AND REDUCED SUBTRACE OF

normally distributed with mean zero and varianggsas
follows:

o= NA-N"HF(f-1), ()
m o= NA-NH(f(f-1)z+f1-2) 8

Proof: The variance is estimated by using thenethod,;
see [18]. This supposes a sequehtE? (XM, ... XM)

of vector valued random variables that is asymptoticall|¥
Gaussian, ad/ grows, with mean 0 and asymptotic co- -
variance matrixc;;); j—1,..m. If g is a real function on

R™ differentiable aboud, thenM/2(g(X1,..., X,,) —

FLOWS STARTING WITHSYN PACKET. FLOWS TERMINATED BY 30
SECOND TIMEOUT.

in the composition of aggregate traffic whose manifesta-
tions included a change in flow lengths. One example we
have in mind is a burst in proportion of short flows due

flooding with SYN packets that occurs in some denial of

service attacks.

Evaluation of TCP Flow Length Estimators

We evaluate the method on a trace of TCP packets, both
araw version, and a reduced version constructed to better

¢(0)) is asymptotically Gaussian, & grows, with mean conform to the assumptions. Even for the raw trace, we

0 and asymptotic varianag(0) - ¢g’(0). (Hereg' is the
derivative ofg). We expresg asg(P/M — f, My /M —1)
whereg(z,y) = (z + f)/(y + 1). Theng’(0) = (1, )
and it remains only to calculate the covariance matiok
the numerator and denominator termg?in

c11 Is the same for both estimators,
limpy—oe MP M Var(N S 2) = N -
N=YF. For My, c1a = limp oo M~ 5™ Cov(N
Z;ﬂ:l .Ijij7NIi) :/\ N(l — N_l), while coy =
limp/ oo M~*VarM; = N(1 — N—1) from The-
orem 4. Using My, 1o = limy oo M1 Zfil
Cov(N 300 @iy, (Nwiy — 1)2;) =N(1 — N~1)z, while
Co2 = limpsoo M1 Var My = N(1 — N=1)z from

namel

find that estimation is accurate to within 10% at a sam-
pling rate of 1 in 1,000.

F.1 Packet Trace

We evaluated the estimator@/]\//fk of mean flow

ngth using a second trace of 9,566,657 TCP packets col-
ected over a period of 5 hours near the boundary of a cor-
porate campus network. Note that SYN flagged packets
for a given flow may be missing from the trace, due to
flows having started before the trace was initiated, collec-
tion errors when taking the packet header trace, or net-
work packet drops. In order to evaluate our approach un-
der conditions that more closely matched the assumptions
for which it was formulated, we constructed a subtrace
comprising only those packets belonging to flows—as de-

Theorem 4. The stated results then follow from the§geated by a 30 second timeout—that started with a SYN

forms forc. m

E. Timescales and Accuracy

packet. This resulted in a a trace of 6,889,444 packets
distributed in 299,875 such flows.

Properties of the full and reduced trace are shown in
Table V. This shows that constructing the subtrace dis-

We can interpret Theorem 6 as saying that the standaiglqeq about 28% of the packets comprising 16% of the
deviation of P/M, is roughly f/N/M. Substituting fiows, while the discarded flows contain less than 0.05%
M, = Nm, for M, we estimate the likely error due toof the SYN packets in their interior. On the other hand,

sampling asj; ~ f/v/m;.

5% of the total SYN packets in the reduced trace did not

We can re-express this a saying that the relative estartaflow. These figures suggest discarded packets came

ror of estimation of the flow length i, /f ~ 1/v/m;.
Consider flows collected over a period of duratidnom

from longer original flows, either ones that were already
in progress (i.e. the initial SYN occurred before the trace

a link carrying traffic at rate”' bytes/second. Assumewas initiated) or flows that were already sparse with a 30
a mean packet length bytes, and ballpark mean flowsecond interpacket timeout. In the reduced trace, SYN
length of ¢. Then with sampling ratd /N we expect could occur in flow interiors due to retransmission if loss
my =~ Ct/(Npf). Taking a full OC48 (2.4Gb/second)occurred downstream in the packets path from the collec-
and supposingv = 100, p = 500 and¢ = 20 we obtain tor, or when a second TCP connection followed one with
a relative error of abou.06/+/t. This shows that track- the same key before the interpacket timeout expired. One
ing flow lengths each second would have a relative erroould guard against the latter by terminating flows on oc-
of only about 6%, probably sufficient to detect changesirrence of a FIN packet; however the table shows that
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N | P/M, | P/My | P/My(S) | o full trace. The relative accuracies of the estimators is un-
11 2297 1 22.97 | 22.97 | 299875 n/a changed. Deviations from the true values are greater than
10 | 2239 | 2211 22.49 30767 | 0.12
100 | 2248 | 2188 2225 3064 | 0.40 for the redug:ed traces, and greater than wo_uld b_e expected
1,000 | 22.00 | 21.69 21.84 313 | 1.23 from sampling variation alone, they are still quite accu-

rate: within 10% of the true value evenist= 1, 000.

N | P/3, | P/Ma | P/Ma(S) | @ i V. CONCLUSIONS ANDFURTHER WORK
1 3150 1 27.11 2011 299875 n/a In this paper we have examined the consequences of
10 | 30.75 | 29.34 30.80 31116 | 0.17 : - X
100 | 3063 | 29.27 30.00 3123 | 0.55 collecting packet sampled flow statistics. We pointed out
1,000 | 29.52 | 29.27 29.46 313 | 1.67 the flows in the original stream whose length is greater
TABLE VI than the sampling period tend to give rise to multiple flow

ESTIMATED MEAN FLOW LENGTHS. REDUCED TRACE (Uppen  T€POMtS when the interpacket time in the sampled stream
AND FULL TRACE (LOWER). P/N1, P/ AND B/Ma(S) WITH exceeds the flow timeout. In practice this occurs pre-
FLOW TIMEOUT SCALING. MEASURED NUMBERSi7:1 OF FLOWS d_ominantly for traﬁ?c generated by pe_er-t_o-peer applica-
CONTAINING SYN PACKETS, AND ESTIMATOR 71 OF STANDARD  LIONS. Such traffic is on the rise, motivating the need to
DEVIATIONS. better understand the implications for resource usage in
the measurement infrastructure of such splitting. To this
) . . end, we developed a model to predict sampled flow ex-
10% of the flows did not terminate with a FIN, more thapt rates and the number of active flows from original
did not start with a SYN. traffic statistics. Using traffic traces, we found the model
to predictions accurate to within about 10% of number
of total flows produce in a period and the mean number
The predicted flow lengths for sampling periais= of active flows. Failing to take account of sparse flows
1,10,100 and1, 000 ranging froml to 1,000 are shown (those vulnerable to splitting) can lead to underestimation
for the reduced trace in the upper table of Table VI. Thef the total flows, and severe overestimation of the size of
true mean flow length for this trace is thé = 1 entry of the buffer needed to accommodate active flows. We ar-
the column forP/M,. Observe thaf’ /1M, is uniformly gued that the predictions would be relatively insensitive
closer to the true value tha/ M. We believe this is due t0 the model details. Work in progress is to substantiate
to the bias inM, in overcounting flows discussed previthiS assertion for other packet sampling models.
ously. We also tabulatéi;, the number of flows with a _1Urning the problem around, we also showed how to
SYN, and;, the estimator of the standard deviatigrof infer characteristics of the original traffic flows from the
ﬁ/Z\/Zl. If our assumption (A2) were obeyed, we Wouldneasured packe_t sampleq flows. W*_“?“?as byte and packet
expectii; to decrease inversely with. However, the volumes are estimated simply by dividing the measured

decrease is a little slower than this, a symptom of the fayantiies by the sampling rate, this approach does not

that the trace contains SYN packets that do not start rovVg?rk to estimate the number and mean length of flows,

and hencdl, overcounts of the number of flows Indeedsmce some original flows will not be sampled at all. In-
1 . . . .
we would expech], to be close to the numbaf of SYN $tead, we introduced a method that exploited the statis

packets ifN andY/N are large; this is borne out by Ta-FICS of reported SYN pzli_ckets for TﬁP dﬂovv_s.f Inhwo(;k
bles VV and VI, In progress, we generalize our method to infer the dis-

One wav to alleviate overcounting it due to split- tribution of the lengths of original flows, not just the
in fW yr f V\\/II : tVI n tl:1 :1?h ?I vvtim p;. f mean. Further work will determine the effectiveness of

g of sparse Tlows 1S 1o lengthen the 1io €OUL T0fhe method in understanding the characteristics of sub-
example making it proportional t&/. The resulting es-

i ) PSS streams of the traffic, e.g. according to application.
timate is shown under the colunf/ M5 (S). Although

this offsets the bias somewhﬁt/]?[l is, mostly, more ac- Acknowledgments
curate. Actually, the estimate/ M, is rendered slightly e thank Cristian Estan and Matt Grossglauser for use-
more accurate by the same method. ful discussions.
We can compare the difference betwe?éﬂ/\/fl and ac-
tual mean flow length withy; . For N’ = 10, the difference
is about77;, greater than one would expect statistically,
and hence indicative of bias. But At = 1,000 the dif-
ference is only abouf;, so indistinguishable from usual
statistical variation.
In the lower table we report the same results for the

F.2 Accuracy: Mean Flow Length
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