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Abstract— Many routers can generate and export statistics on
flows of packets that traverse them. Increasingly, high end routers
form flow statistics from only a sampled packet stream in order to
manage resource consumption involved.

This paper addresses three questions. Firstly: what are the
downstream consequences for the measurement infrastructure?
Long traffic flows will be split up if the time between sampled pack-
ets exceeds the flow timeout. Using packet header traces we show
that flows generated by increasingly prevalent peer-to-peer applica-
tions are vulnerable to this effect.

Secondly: can the volume of packet-sampled flow statistics be
easily determined? We develop a simple model that predicts both
the export rate of flow packet-sampled flow statistics and the num-
ber of active flows. It uses unsampled flow statistics—those com-
monly currently collected—as its data, i.e., it does not rely on having
packet header traces available.

Thirdly: what properties of the original traffic stream can be in-
ferred from the packet sampled flow statistics? We show that as
well as estimating total bytes and packets, one can also infer more
detail, specifically the number and average length of flows in the un-
sampled traffic stream, even though some flows will have no packets
sampled. We believe that this information is useful, both for under-
standing source traffic, e.g. the dependence of flow lengths on appli-
cation type, and also monitoring changes in the composition of the
traffic, e.g., a flood of short flows during a DoS attack. In all cases,
we evaluate our approach using packet header traces gathered in
backbone and campus networks.

I. I NTRODUCTION

A. Motivation

Many routers have the ability to generate and export
statistics on flows of packets that traverse them. However,
the consumption of computational and memory resources
by the generation of flow statistics becomes onerous at
line rate. For this reason, high-end routers increasingly
use packet sampling to select a substream of packets, from
which flow statistics are then formed.

This paper is motivated by the need to understand the
consequences of packet-sampled flow formation for two

broad questions. Firstly, we wish to determine resource
usage, for both formation and transmission of flow statis-
tics, and how it depends on the flow’s characteristics (e.g.
duration, size, source application) and the criteria used to
identify flows for measurement. A spectrum of possible
behavior can be demonstrated with packet traces reflect-
ing today’s Internet traffic; we wish to complement this
approach with a model to determine resource usage for
arbitrary traffic flows.

Secondly, we wish to estimate statistical properties of
the original packet stream from the packet-sampled flow
statistics. Original traffic volumes are relatively easy to
estimate. However, to date there has been no work on
recovering detailed properties of the original unsampled
packet stream, such as the number and lengths of flows.

B. The Formation of Flow Statistics

An IP flow is a set of packets, that are observed in the
network within some time period, and that share some
common property known as its key. The fundamental ex-
ample is that of so-called “raw” flows: a set of packets
observed at a given network element, whose key is the set
of values of those IP header fields that are invariant along
a packet’s path.

A router keeps statistics on active flows passing
through it. When a packet arrives at the router, the router
determines if a flow is active for the packet’s key. If not,
is instantiates a new set of statistics for the packet’s key.
The statistics include counters for packets and bytes that
are updated according to each packet that matches the key.

When the flow is terminated, its statistics are flushed
for export, and the associated memory released for use
by new flows. A router will terminate the flow if any
one of a number of criteria are met, including (i) timeout:
the interpacket time within the flow will not exceed some
threshold; (ii) protocol: e.g., observation a FIN packet of
the Transmission Control Protocol (TCP) [14] that termi-
nates a TCP connection; (iii) memory management: the
flow is terminated in order to release memory for new
flows; (iv) aging: to prevent data staleness, flows are ter-
minated after a given elapsed time since the arrival of the
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first packet of the flow.
Flow definition schemes have been developed in re-

search environments, see e.g. [1], [4], and are the subject
of standardization efforts [11], [16]. Reported flow statis-
tics typically include the properties that make up flows
defining key, its start and end times, and the number of
packets and bytes in the flow. Examples of flow defini-
tions employed as part of network management and ac-
counting systems can be found in Cisco’s NetFlow [3],
Inmon’s sFlow [10], Qosient’s Argus [15], Riverstone’s
LFAP [17] and XACCT’s Crane [19].

Flow statistics offer considerable compression of in-
formation over the header of the packet that comprise it,
since the flow key is specified once for a given flow. In
experiments, compression ratios of around 25 are not un-
common.

C. The Need for Packet Sampled Flow Statistics

The main resource constraint for the formation of flow
statistics is at the router flow cache. To perform lookup of
packet keys and counter increment at line rate would re-
quire the flow statistics to be stored in fast memory. How-
ever, core routers will carry increasingly large number of
concurrent flows, necessitating large amount of fast mem-
ory: this would be expensive. By sampling the packet
stream in advance of the construction of flow statistics,
the time window available for flow cache lookup is pro-
longed, enabling storage to be carried out in slower, less
expensive, memory.

D. Packet Sampling Methods

This paper considers sampling some target proportionp
of the packet stream. There are several ways to implement
this. In probabilistic sampling, the router makes a pseudo-
random decision whether to sample each packet. In im-
plementations, the decision could, for example, be gov-
erned by a pseudorandom number generator with well-
known properties (see e.g. [12]) or be driven by the en-
tropy of the packet contents itself (see e.g. [7]). When
p = 1/N for some integerN , periodic (or deterministic)
sampling can be used, e.g. everyN th packet is selected.

Periodic sampling is very simple to implement: the
router needs only decrement a counter. It has the poten-
tial disadvantage of introducing correlations into the sam-
pling process: when a packet is selected, none of the fol-
lowing N−1 packets are selected. Although this does not
bias against selection of any one packet, it can bias against
selection of multiple packets from short flows. However,
we do not believe this effect would be important for sam-
pling from high speed links that carry many flows con-
currently. In this case, successive packets of a given flow
would be interspersed by many packets from other flows,
effectively randomizing the selection of packets from the

given flow. While such randomization may not be effec-
tive at lower speed routers carrying fewer flows (e.g. edge
routers), packet sampling is not expected to be necessary
for flow formation in this case.

We mention some recent work in which the update of
statistics of existing flow keys is performed only for a sub-
stream of packets [8]. This approach favors collection of
statistics on longer flows. However, key lookup must still
be performed for every packet.

E. Flow Semantics and Sampling

From the discussion of Section I-B it should be clear
that an IP flow is an artifact of the manner in which the
measuring device defines them, rather than having an in-
dependent existence. One motivation for the concept of a
measured IP flow is that end hosts generate sets of pack-
ets as a result of transactions in applications, either au-
tomated or by users. A good definition of a flow, and in
particular its starting and termination criteria, should en-
capsulate each transaction through the flow summary.

However, there are two factors that may hinder the ef-
fectiveness of such encapsulation. One is that new appli-
cations may generate packets in patterns that are not well
captured by the flow definitions. The second factor, and
most relevant for this paper, is that packet sampling re-
moves cues for flow delineation from the packet stream.
For example, termination of a TCP flow based on obser-
vation of a FIN packet is hindered if the packet is not
present in the sampled stream. Thus interpacket timeout
is expected to become the dominant method of termina-
tion for TCP flows when the sampling rate is low.

It may be advantageous to adjust flow delineation cri-
teria with sampling rate in order to match the flow defini-
tion to the underlying nature of the transactions that gen-
erate the traffic. One case that we investigate in this paper
is scaling the interpacket timeout inversely with the sam-
pling rate in order to capture longer lived packet streams
as a single flow.

The inherently artificial nature of flows provides some-
thing of a challenge for terminology. Our initial descrip-
tion of a flow as a set of packets with a common property
observed in a given time interval serves to describe the
flow independent of the measurement mechanism. We
will sometimes use the termoriginal flow to describe
such a set of packets. Once a measurement mechanism—
including termination criteria—has been defined, we can
speak of ameasured flow, together with the resulting flow
statistic. Either type of flow can be calledsampled; for
an original flow this means a substream of packets sam-
pled from it, while a sampled measured flow means a flow
measured from such a substream.
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F. Outline

This paper addresses three questions. Firstly: what are
the downstream consequences for the measurement in-
frastructure? We call an original flow sparse if the typical
interpacket time of the sampled packet stream exceeds the
interpacket timeout for measured flows. A single sparse
original flow gives rise to multiple flow statistics. The
increasing prevalence of longer file transfers by peer-to-
peer applications—as much as 50% of traffic on some
links—may lead to sparseness if the sampling rate is suf-
ficiently low. This observation motivates the first topic of
our study. In Section II we use packet header traces to
confirm that individual flows generated by streaming and
peer-to-peer applications do generate multiple flow statis-
tics at moderate sampling rates (e.g. 1 in 10 to 1 in 100).

Given sparseness, our second question is to ask
whether the volumes of flow statistics, and the number
of active flows, can be easily predicted. Packet traces are
not available at most points in a network; heterogeneity
of traffic prevents generalizing the analysis from a given
trace to arbitrary network sites. Instead, in Section III, we
develop a simple sampling model that works with more
readily available data. Given a set of statistics of unsam-
pled flows (perhaps derived directly from flow measure-
ments) the model predicts the flow export rate and mean
number of active flows that would result if we had instead
formed flow statistics from a sampled version of the orig-
inal packet stream. We evaluate our model using packet
header traces.

Thirdly, we ask what properties of the original traf-
fic stream can be inferred from the packet sampled flow
statistics. Inference of total bytes and packets, possibly
differentiated by flow key, is straightforward: dividing by
the sampling rate the traffic rate represented in the mea-
sured flows yields an unbiased estimate of the original
traffic rate. In Section IV we derive the variance of such
estimates.

More difficult to infer are the detailed properties of the
original flows: their arrival rate, their lengths. The main
difficulty is that some flows may not be sampled at all; so
it is not enough to simply form estimates through divid-
ing the measured number of flows and their lengths by the
sampling rate. When flow reports include supplementary
protocol level information, specifically the occurrence of
SYN flags within a TCP flow, we are able to form unbi-
ased estimators of the flow rate and average lengths. We
evaluate our method using packet header traces.

Although the method is confined to TCP traffic, this
constitutes the overwhelming majority of Internet traf-
fic. We also derive variances for these estimators, and
find they are sufficiently accurate to monitor changes over
timescales of a few seconds at high speed links. Thus,
the method could potentially be used to detect changes in

traffic characteristics, e.g., burst of short flows due to a
SYN flooding attack. The method could also be used to
characterize source traffic, e.g. mean flow lengths by ap-
plication type. We conclude and propose further work in
Section V.

G. Other Related Work

There has been some prior work on packet based sam-
pling schemes and their consequences for estimation, al-
though these works did not deal with the resulting flow
statistics or estimation therefrom. Independent and de-
terministic 1 in N sampling, as well as stratified sam-
pling out of finitely many bins, have been compared for
packet sampling in [5]. The aim of this work was to effi-
ciently estimate packet size distributions. Enabling infer-
ence from a sampled packet stream is one focus of the In-
Mon’s sFlow scheme; see [10]. A novel approach in this
method is that packet reports are to include information
of the size of the pool of objects from which packets are
selected. This enables direct computation of the attained
sampling rate. Use of the attained sampling rate for nor-
malization of total byte and packet estimates can reduce
estimator variance. Standards for network event sampling
based on randomizing the inter-sample time have been set
out in [13].

II. I MPACT OF SAMPLING ON FLOW STATISTICS

A. Resource Usage and Sparseness

In this section we investigate the use of memory and
transmission resources by packet-sampled flows. Mem-
ory usage will be characterized by the number of active
flows. Transmission usage will be characterized by the
rate at which flow statistics are exported, or equivalently,
since we work in a fixed time window, the total number of
flows exported. We shall use trace driven experiments to
determine the variation of the number of active flows and
export rate with sampling rate, broken down by applica-
tion.

Consider an original flow with typical interpacket spac-
ing τ . Suppose1 in N packets are sampled from this
stream. Typically, the interpacket spacing in the sampled
stream isτN . If τN exceeds the flow interpacket timeout,
then the original flow tends to decompose into a number
of separate measured flows, depending on how the pack-
ets are bunched. The worst case is even spacing: each
sampled packet would give rise to a separate measured
flow. If Nτ is less than the flow interpacket timeout, the
reverse holds, and the packets tend to be reported as a sin-
gle measured flow. If evenly spaced, a single measured
flow would result; bunching may increase the number of
measured flows.

This presupposes there are multiple packets in the sam-
pled stream. We will term an original flowsparse, if
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Fig. 1. Exported flows (left) and active flows (right, mean and peak) as function of sampling periodN . Interpacket timeout for measured flows was
30 seconds.

sampling at a given rate typically yields more than one
packet, with the typical interpacket time of the sampled
packet exceeding the flow timeout. Thus an implicit and
necessary condition for sparseness is that the typical flow
length exceedsN . Packet size distributions of measured
flows have previously been found to be heavy-tailed; see
e.g. [9]. This leads us to expect a noticeable number of
long, and hence potentially sparse, flows.

With sparse flows, packet sampling can thenincrease
the number of measured flows and hence the downstream
resource usage for those flows. Note we do not expect
that sparseness to increase consumption of memory at the
router. Whether or not splitting takes place, the original
flow gives rise to at most one active measured flow at any
time.

Peer-to-peer and streaming applications are candidates
to produce sparse flows since they typically transmitted
packets over extended periods. The recent rise in use
of such applications is one driver for the study of the
present paper. Following our terminology above we will
call sparsethose applications which may be expected to
transmit sparse flows of traffic at typical sampling rates.

B. Experimental Traces and Flow Formation

An AT&T Labs PacketScope [2] was used to collect
a packet header trace from a peering link, using the
tcpdump tool. This preliminary study used a header
trace comprising 10,000,000 IP packets collected over a
period of 37 minutes starting Thursday April 26 19:35
2001 GMT.

By passing the header trace successively through two
perl scripts,sample andflows , we determine the flows
that would be produced after 1 inN sampling of the
packet stream.sample accepts the header trace, one
record per packet as input, and the sampling periodN

as a parameter, and outputs everyN th packet. flows
takes a header trace as input, and a flow timeoutt as a
parameter. It constructs flows of packets with common
source and destination IP addresses and TCP/UDP port
numbers, with successive packets separated by no more
thant. Packets using protocols other than TCP or UDP
are discarded. Protocol specific information, such as TCP
SYN or FIN packets, is not used demarcate flows. The
output offlows comprises the constructed flow records,
containing the address and port information, together with
the total number of packets and bytes in the flow. Except
for Section II-E, we use a flow timeout of 30 seconds.

C. Resource Usage by Aggregate Traffic

Figure 1(left) displays the number of exported flow
statistics for deterministic sampling with periodsN of 1,
10, 100 and 1,000. The dependence is roughly linear on
the log scale, indicating the number of flowsF behaves
roughly as a power lawF ∼ Nβ for some powerβ. The
slope of the final portion is−0.88. Model calculations
show that, asymptotically for largeN , the probability that
any packet of a given flow is selected is asymptotically
proportional to1/N for largeN , and thus we would ex-
pect the slope to approach−1 in this limit.

Figure 1(right) displays the average number of active
flows over the duration of the trace. The dependence on
N is similar to that of the flows. The peak number of
active flows occupancy is only about 10% larger than the
mean over the duration of the trace.

D. Variation by Application Type

Figure 2 breaks out the number of exported flows (left
figure), and the mean number of active flows (right) by
application, as determined from TCP/UDP port numbers.
As the sampling periodN increases, the number of flows
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Fig. 2. Total flows (left) and active flows (right) for 30 second flow timeout, for selected applications. Sparse applications (napster, curve 3) and
realaudio (curve 7) show initialincreasein total flows withN .

sampling periodN
appl. 1 10 100 1,000
www 6.12 1.91 1.23 1.04
other 22.42 6.06 1.93 1.15
napster 455.31 33.55 2.63 1.15
smtp 5.66 2.33 1.51 1.14
ftp 36.21 10.36 2.42 1.26
nntp 107.23 36.48 7.11 1.22
https 6.34 1.58 1.09 1.01
ms-strm 95.66 24.91 2.11 1.10
pop3 5.19 1.64 1.18 1.01
domain 2.26 1.34 1.07 1.01
realaudio 467.16 17.64 2.45 1.14
quake 19.58 15.30 5.14 1.25
http-alt 4.12 1.47 1.07 1.00
ALL 7.75 2.49 1.44 1.08

TABLE I

DEPENDENCE OF MEAN PACKETS PER FLOW ON SAMPLING PERIOD,

BY APPLICATION; 30 SECOND INTERPACKET TIMEOUT

decreases for most applications. However, streaming and
file sharing applications, in particular napster (curve 3)
and realaudio (curve 7) buck this trend. These applica-
tions have the longest flow lengths (see Table I) and hence
the most likely to rendered sparse. Observe that:
(i) Once the sampling periodN reachesN = 1, 000, the
number of flows measured for sparse applications is no
greater than for the unsampled packet stream (i.e.N =
1). This is because even for sparse applications,N =
1, 000 exceeds the typical original flow length—see the
N = 1 column of Table I—and so we expect that only1
measured flow is produced from each original flow.
(ii) From Table I, onceN = 1, 000, the mean flow
lengths are close to1, and hence most flows have length
equal1. Sparse original flows have mostly been split into

appl. kbytes prop. kpkts prop.
www 2,122,109 0.5202 5,500 0.5500
other 981,697 0.2406 2,140 0.2139
napster 282,356 0.0692 396 0.0396
smtp 211,280 0.0518 502 0.0502
ftp 126,433 0.0310 231 0.0231
nntp 101,214 0.0248 78 0.0078
https 96,671 0.0237 345 0.0345
ms-strm 41,903 0.0103 88 0.0088
pop3 33,537 0.0082 202 0.0202
domain 31,048 0.0076 204 0.0204
realaudio 26,783 0.0066 48 0.0048
quake 22,949 0.0056 261 0.0261
http-alt 1,762 0.0004 7 0.0007
TOTAL 4,079,741 1.0000 10,000 1.0000

TABLE II

PACKET AND BYTES: NUMBER AND PROPORTION, BY

APPLICATION.

one-packet measured flows by sampling, while shorter
original flows (i.e. of length less thanN ) will mostly have
one packet sampled, if any.
(iii) in this trace, sparse applications constitute a rela-
tively small proportion of the total bytes, being no more
than about 10%: see Table II. However, use of peer to
peer applications has risen since the trace used here was
collected (April 2001). Flow statistics gathered at a large
service provider show that up to 50% of traffic in some
links can currently be attributed to peer to peer applica-
tions, such as Grokster, Gnutella, Kazaa and Morpheus.
(iv) for the sparse applications, the number of active
flows—see Figure 2 (right)— decreases withN , although
not as quickly as for other applications.
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Fig. 3. Trade-off between total flows and active flows with interpacket timeout. (3, 10, 30, 100, 300 seconds). Trade-off for a sparse application
(napster, right) more sensitive than for non-sparse application (www, left), when sampling periodN smaller than typical flow length.

E. Trade-offs and Dependence on Flow Timeout

Lengthening the flow timeout could reduce the number
of flows exported by sparse applications by grouping to-
gether packets that would otherwise be split into separate
flows. However, this increases the number of active flows,
since the flow cache entry must be kept open longer. Fig-
ure 3 shows the trade off between total flows and active
flows, for a given sampling periodN , as the flow timeout
is varied.

For a non-sparse application, www, (Figure 3, left)
there is little benefit in increasing the timeout: the ac-
tive flows increase but the total flows decrease very lit-
tle. From Table II, the mean original flow length is only
about 6, so already forN = 10 there will be only 1 or
a few packets reported on per original flow, whether in
the same or different measured flows. OnceN is large
enough for 1 packet measured flows to be the norm, the
total number of measured flows is roughly inversely pro-
portional to1/N : the probability than a given packet is
selected. This is borne out by the figure. Since the origi-
nal flows were short, increasing the timeout increases the
mean number of active flows roughly proportionately, but
has little effect on the total number of flows, particularly
for largeN .

For a sparse application, napster, (Figure 3, right), the
trade-off is more pronounced. From Table I, the mean
original flow length, 455, is long enough that flows can be
sparse forN as large as100. However, forN = 1, 000,
the flows tend not to be sparse for any timeout, and the be-
havior is roughly the same as for non-sparse applications.

F. Summary

Sparse applications produce original flows comprising
many packets with moderate interarrival times, that are

likely to be split by packet sampling into multiple mea-
sured flows. In the trace examined, packet sampling can
actually increases the number of measured flows exported
for such applications. This phenomenon was observed for
some peer-to-peer and streaming applications at moderate
sampling rates:1 in N for N = 10 andN = 100, but de-
clines onceN = 1, 000, since this exceeds the typical
original flow length.

The rise in use of peer to peer applications has been
rapid and recent; other sparse applications may arise in
future. This motivates the need to track flow length dis-
tributions and determine their effect, in conjunction with
sampling rate choices, on the consumption of memory
and transmission resource by measured flow statistics. In
the next section, we use a simple sampling model that en-
ables this to be done from unsampled flow statistics alone.

III. PREDICTING RESOURCEUSAGE

In the previous section we used packet traces to inves-
tigate the dependence of memory and resource consump-
tion by measured flows on application type, sampling rate
and flow interpacket timeout. Although we accounted for
the qualitative dependence, we have no reason to think
the detailed behavior (e.g. traffic mix, mean flow lengths,
the value of the power law in Figure 1) would be univer-
sal. However, in many cases packet header traces are not
available to perform an equivalent analysis in a case of in-
terest. In this section we assume that a set of unsampled
measured flow statistics is available. A sampling model
estimates the number of measured and active flows, had
the original packet stream been sampled.

A. Flow and Packet Model

Consider an original flow comprisingn packets dis-
tributed over a period of lengtht. Suppose packets are
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sampled from this flow at mean rate1/N , and measured
flows formed with timeoutT from the samples. We wish
to determine two quantities:
• f(n, t; N, T ): the resulting number of measured flows,
• a(n, t; N,T ): the total time the flow was active, i.e., the
time elapsed between the first and last sampled packet,
plus the timeoutT .
Clearly, f anda are not determined without further as-
sumptions concerning (i) the spacing of packets within
the original flow, and (ii) the manner in which sampling
is performed, e.g., deterministic or random. Since sam-
pling involves random choice, the number of exported and
active flows are themselves random quantities. Thus we
must either provide their distribution, or summarize this
through some statistic, such as their mean. To be specific,
we determine the average values off anda under deter-
ministic sampling of an evenly spaced flow of packets.
Whereas this model would only be accurate for sampling
traffic comprising a single flow, we shall see it yields sim-
ple explicit results that are quite accurate in practice.

B. Deterministic Sampling with Equal Spacing

The packets of the original flow are assumed equally
spaced in time. One inN of the packets are sampled pe-
riodically. The initial phase of the sampling is assumed
random, i.e., packetsm, m+N, m+2N, . . . are sampled,
wherem is distributed uniformly on1, 2, . . . , N . We de-
note the expected value off anda by f1 anda1.

Theorem 1:Assume deterministic sampling of a flow
with periodN and random initial phase.

f1(n, t;N, T ) (1)

=
{

1, Nt ≤ (n− 1)T andN < n
n/N, otherwise

a1(n, t;N, T ) (2)

=
{

tn−N
n−1 + T, Nt ≤ (n− 1)T andN < n

nT/N, otherwise

Proof: Assume firstn ≤ N . At most 1 packet is
selected, with probabilityn/N . If the measured flow ex-
ists, it comprises 1 packet, and hence had durationT , the
timeout. Thusf1 = n/N anda1 = Tn/N . Otherwise
n > N . Then the separation between original packets is
t/(n− 1) and hence the separation between any selected
packets isNt/(n− 1).

Suppose firstNt/(n − 1) ≤ T . The separation of se-
lected packets does not exceed the timeout, and selected
packets form one flow:f1 = 1. On average this flow has
n/N packets, so it is active fora1 = t(n−N)/(n−1)+T .
On the other hand, ifNt/(n − 1) > T , n/N packets are
selected on average, each packet giving rise to one flow.
The expected number of active flows is thena1 = Tn/N .

Timeout Sampling periodN
T 10 100 1,000 10,000
1 1.22 1.15 1.04 1.00
10 1.21 1.13 1.13 1.02
100 1.23 1.10 1.10 1.09

1,000 1.23 1.08 1.10 1.06

Timeout Sampling periodN
T 10 100 1,000 10,000
1 1.18 1.08 1.01 1.00
10 1.21 1.13 1.08 1.01
100 1.23 1.11 1.10 1.05

1,000 1.23 1.09 1.10 1.05

TABLE III

ACCURACY OFFLOW PREDICTION: RATIOS PREDICTED TO ACTUAL

NUMBER OF FLOWS. (UPPER) TOTAL FLOWS bF1/F ; (LOWER)

ACTIVE FLOWS bA1/A. FOR DIFFERENT TIMEOUTST AND

SAMPLING PERIODSN

C. Prediction and Accuracy

Given a set of original flowsi = 1, 2, . . . ,M of du-
rationti and comprisingni packets present during an in-
terval of durationD, we estimate the total number of ex-
ported flows byF̂1, and the mean number of active flows
by Â1, where

F̂1 =
M∑

i=1

f1(ni, ti; N, T ), (3)

Â1 = D−1
M∑

i=1

a1(ni, ti;N, T ) (4)

We investigated the accuracy of the estimatorF̂1 by
comparing it against the number of sampled flows con-
structed from packet header traces. For a single trace,
Table III tabulates the ratios of̂F1 andÂ1 to their actual
values,F andA, as a function of the sampling periodN
and timeoutT . The same timeoutT was used for the sam-
pled and unsampled flows. Agreement is quite close: one
expects estimates within about 10% of the true value for,
say,T = 30 andN = 100. Note accuracy is better for
largerN ; as the sampling period exceeds the typical flow
length, most original flows have only one packet sampled,
and for these the detailed modeling of sparseness is irrel-
evant.

We also argue that for long sparse flows,f anda are
reasonably insensitive to the detailed modeling of sparse-
ness. Detailed examination of the traces reveals that for
largerN and smallerT , the dominant contribution toF
from sparse original flows comes from those flows which
have many sampled packets (i.e.n/N À 1) and which
are very sparse (i.e.Nt/n À T ). Since for these flows,
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Timeout Sampling periodN
T 10 100 1,000 10,000
1 0.89 0.66 0.64 0.73
10 1.08 0.79 0.65 0.69
100 1.17 0.96 0.86 0.77

1,000 1.23 1.04 1.01 1.00

Timeout Sampling periodN
T 10 100 1,000 10,000
1 1.40 4.24 13.32 57.38
10 1.31 2.23 7.10 14.46
100 1.43 1.99 2.53 2.82

1,000 1.25 1.19 1.24 1.18

TABLE IV

ACCURACY OF FLOW PREDICTION WITHOUT MODELING

SPARSENESS: RATIOS PREDICTED TO ACTUAL NUMBER OF FLOWS.

(UPPER) TOTAL FLOWS bF2/F ; (LOWER) ACTIVE FLOWS bA2/A. FOR

DIFFERENT TIMEOUTST AND SAMPLING PERIODSN

the typical sampled interpacket time is much larger than
the flow timeout, the sampled packets will tend to form
single-packet measured flows, regardless of the detailed
distribution of the sampled interpacket time.

D. Impact of Sparse Flows

Although we just argued a certain insensitivity to the
details of sparseness, sparseness itself should not be ig-
nored. This would amount to reducing the conditions in
the upper lines of (1) and (2) to simplyN < n, i.e., with-
out testing whether the sampled interpacket time exceeds
the measured flow timeout. We call the resulting func-
tionsf2 anda2, with corresponding estimateŝF2 andÂ2

of the total and mean active flows, analogous to (3).
We tabulate the ratioŝF2/F and Â2/A in Table IV.

Except for smallN and largeT , F̂2 underestimatesF ,
noticeably more than̂F1 overestimatesF . Overestima-
tion of A by Â2 is more striking, particularly for largeN
and smallT . By ignoring the sparseness, the measured
flow is judged to be active over nearly the entire dura-
tion of the original flow, rather than for the subintervals
of the original flows. Thus, ignoring sparseness can lead
to substantial over-estimation of the mean number of ac-
tive flows, and hence the buffering resources needed to
accommodate them in a router.

IV. I NFERENCE OFORIGINAL FLOW

CHARACTERISTICS

A. Goals and Impediments

In the third part of our work we turn the telescope of
the previous section around: we ask what properties of the
original packet stream can be determined from the mea-
sured flow statistics of the sampled packet stream. Clearly

these are used by a variety of measurement based appli-
cations; they can also be of use in setting the parameters
for sampling itself. We shall consider the following:
1. Bytes and packet counts per flow key. These form the
raw data for usage-based applications, including traffic
engineering, and usage-based accounting.
2. Number of original flows, differentiated by flow key or
some aggregation thereof. Statistical properties of origi-
nal flows are useful for characterizing source traffic.
3. Mean size of original flows. Given 1 and 2 above, we
would already have an estimate at our disposal: packet
count divided by number of flows. We shall discuss other
possible choices. As well as helping source characteriza-
tion, knowing the mean original flow size would also help
in assessing resource usage by packet sampled flows, as
detailed in Section III.

The goal is the find estimates for these characteristics
and understand the accuracy of these estimates. Estima-
tion of bytes and packets in the original flows is com-
paratively straightforward: one need only divide the cor-
responding totals in the measured flows by the sampling
rate. We spell this out in Section IV-B, together with ex-
pressions for estimator accuracy.

By contrast, the number and length of original flows
cannot be obtained through “multiplication byN ”, as
shown by Table I for flow lengths. An impediment
to estimating the original flow properties is that an un-
known number of original flows will havenopackets sam-
pled and thus not show up in the measured flows at all.
Note that this applies predominantly to short flows: those
whose length is shorter that the inverse of the sampling
rate. Then, most measured flows have length1, and it
will be difficult to distinguish different distributions of the
original flows. Consider the following two cases:
(i) 1,000,000 original flows of size 2. Perform 1/10,000
packet sampling. The number of sampled flows of size 1
is a random number whose mean is 199.8, while the prob-
ability of producing at least one measured flow of size 2
is only about 1%.
(ii) 1,998,000 original flows of size 1. Performing
1/10,000 packet sampling the number of flows of size 1
is a random variable with mean 199.8, whose distribution
is almost indistinguishable from the above case.
This demonstrates that a large difference in the number
of original flows can be difficult to distinguish from the
distributions of the measured flows.

One way to circumvent this problem is to use more in-
formation than the measured flow lengths alone.
(i) With a parameterized statistical model of the original
flow size distribution, we could estimate parameters of the
model from the measured flows. One difficulty here is ar-
riving at a sufficiently rich model class. Although certain
broad features, e,g, heavy tails, have been observed in ex-
periments, no generally accepted model exists. We do not
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pursue this approach in this paper.
(ii) Additional information may be provided in the flow
records themselves. As an example, Cisco NetFlow re-
ports the set of TCP flags that were set by any packet in
the flow. In section IV-C we show how to use this in-
formation to estimate the number of original TCP flows,
and hence their mean length. Although the method is con-
fined to TCP traffic, this forms the overwhelming majority
of current traffic in the Internet: roughly 95% of all traf-
fic flowing in a set of high speed links in a major service
provider.

B. Byte and packet totals

We start by setting out the relatively simple estimators
for numbers of original bytes and packets. If packets are
sampled at average rate of1/N , independent of their size,
(for periodic samplingN would be an integer, but need
not be in general) then estimates of the bytes and packet
of the original traffic are obtained by multiplying the mea-
sured bytes and packets byN . This applies to the aggre-
gate, or to subsets of flows of a given key.

To be specific, we can estimate the numberP of orig-
inal packets by the random variablêP = Np̂ wherep̂ is
the total number of packets in the measured flows. Math-
ematically, we can writêp =

∑P
i=1 wi where thewi are

random variables taking the value1 (indicating that the
packet was sampled) with probability1/N and0 (indi-
cating that the packet was not sampled) with probability
1 − 1/N . Each packet sampled contributes 1 to the sum,
which is that the number of packets actually sampled.

P̂ is an unbiased estimator ofP , i.e., its expectation
equalsP . In detail: EP̂ = N

∑P
i=1 Ewi = P . Note

independence of thewi is not assumed.
For independent sampling, thewi are independent, and

we can write the varianceVar P̂ = PN2 Var w1 =
PN(1 − N−1). The standard error

√
Var P̂ /P is thus

bounded above by
√

N/P .
Byte totals are estimated similarly, by the random vari-

able B̂ = Nb̂ where b̂ is the total number of bytes in
the measured flows. We writêb =

∑P
i=1 wibi where the

bi are the byte sizes of the packets in the original flows.
Each packeti sampled contributesbi to the sum, which is
hence the total bytes of sampled packets. With indepen-
dent sampling,Var B̂ = N(1 − N−1)

∑P
i=1 b2

i . Writing
the average and maximum packet size asbav and bmax

respectively, we can bound the standard error ofB̂ above
by

√
N/P · bmax/bav. Summarizing:

Theorem 2: (i)Suppose a stream ofP packets con-
taining B bytes is sampled with average probability
1/N > 0 independent of packet size, with reported packet
and byte totalŝp andb̂. Then

P̂ = Np̂, and B̂ = Nb̂ (5)

are unbiased estimators ofP andB.
(ii) The standard errors of̂P andB̂ are bounded above as

√
Var P̂

P
≤

√
N

P
,

√
Var B̂

B
≤

√
N

P
· bmax

bav
, (6)

wherebav andbmax are the average and maximum packet
size respectively.

C. Number of original TCP flows

The TCP protocol signals the start and end of connec-
tions with packets that are distinguished by flags (bits)
in the code bits of the TCP header; see e.g. [6]. The
first packet of a connection has a SYN flag set, whereas
the last has the FIN flag set. NetFlow traces include the
cumulative OR of the code bits. Thus by inspecting the
code bits of the flow, we may determine whether or not
the SYN and FIN flags were set on any packet detected in
the flow. We will refer to a packet with a SYN flag set as
a SYN packet. Here we assume:
(A1) original TCP flows start with a SYN packet
(A2) original TCP flows contain exactly one SYN packet.
Thus, if a SYN packet is reported in a measured flow, even
in a sampled one, it must have been set in the first packet
of the flow. We shall investigate the extent to which these
assumptions are satisfied, and the effect of these viola-
tions, in Section IV-F.

A parallel methodology could be based on FIN flags,
since all TCP sessions should end with a FIN packet.
However, there may be many flows for which this is not
the case: a SYN-flooding denial of service attack employs
flows comprising one SYN packet.

C.1 Two estimators of TCP flow numbers

We now show that when packet sampling is used, the
statistics of the flow code bits allow us to infer the number
of original flows,M , that were present during the collec-
tion period. We will construct two estimators ofM , each
with distinct statistical advantages.

We assume that packets are selected with probability
1/N . (At this point we do not assume independent selec-
tion of different packets). If the SYN packet is selected,
then trivially the flow is sampled. Thus the numberm̂1

of measured flows that contain a SYN packet has expec-
tationM/N . ConsequentlŷM1 = Nm̂1 is an unbiased
estimator ofM .

One potential disadvantage of̂M1 is that it uses only
flows containing a SYN, i.e., only a subset proportion of
the measured flows as its data. An alternative that ad-
dresses this issue is the following. We assume that no
splitting of flows due to sparseness takes place; this can be
realized through using an infinite flow timeout. We divide
the original flows into three classes.S1 comprises those
flows for which the measured flow comprises exactly one



10

SYN packet.S2 comprises those flows for which the mea-
sured flow has at least one non-SYN packet. Note that if
any packet of a given original flow is sampled, then it
must be in eitherS1 or S2. S3 will denote the set of orig-
inal flows from which no packet was sampled.

Assume now that sampling of the first packet of the
original flow occurs independently of the other packets.
SinceS1 ⊂ Sc

2 (hereSc
2 denotes the compliment ofS2,

i.e., S1 ∪ S3), then for a given flowP[S1] = P[S1 |
Sc

2]P[Sc
2] = (1 − P [S2])/N . Now let ŝ1 and ŝ2 denote

the measured numbers flows stemming fromS1 andS2

respectively. DefinêM2 = Nŝ1 + ŝ2 and observe that
EM̂2 = MNP[S1] + MP[S2] = M . Hence we have
proved:

Theorem 3:Assume (A1) and (A2). Then̂M1 is an un-
biased estimator ofM , and so iŝM2 under the additional
assumption of infinite flow interpacket timeout.

C.2 Estimator variance

We now compare the sampling variance of these esti-
mators as the number of original flowsM grows. Our
model for this is the following. Consider a sequence of
original flows of lengthsf1, f2, . . .. We assume that the
fi are i.i.d. random variables of finite meanf . Conse-
quently, by the Strong Law of Large Numbers ([18]) the
average lengthfM = M−1

∑M
i=1 fi of the firstM flows

converges almost surely tof asM grows. This is almost
the only statistical behavior of thefi that shall concern us.
In what follows, we shall condition on a particular realiza-
tion of the flow sizes, which hence appear fixed. The only
statistical behavior comes from the sampling. The form
of our results will depend on the flow sizes only through
the meanf , and hence will hold for almost all realization
of the flow lengths.

Define indicator variables(xij)i=1,2,...;j=1,...,fi taking
the value1 if packet j of flow i is sampled, and0 oth-
erwise. Letzi =

∏fi

j=2(1 − xij). No packets of flowi
beyond the first are sampled ifzi = 1.

Theorem 4:Assume (A1) and (A2) and independent
packet sampling with probability1/N .

(i) M−1/2(M̂1−M) converges in distribution to a Gaus-
sian random variable of mean0 and varianceσ2

1 = N(1−
N−1).
(ii) Assume additionally an infinite flow interpacket
timeout and that the flow lengthsfi are i.i.d. with finite
mean. Then for almost all sequences of flow lengths, the
conditional distribution ofM−1/2(M̂2−M) converges to
that of Gaussian random variable of mean0 and variance
σ2

2 = σ2
1z wherez = E[(1−N−1)f1−1] is the probability

that no packets of a flow beyond the first get sampled.

Proof: (i) Write M̂1 = N
∑M

i=1 xi1. SinceM1

is a sum of i.i.d random variables andVar xij = (1 −

N−1)/N , Var M1 = MN(1−N−1). The result follows
from the Central Limit Theorem; [18].

(ii) Flow i falls in S1 if xi1zi = 1 and inS2 if zi = 0.
Hence we can writêM2 =

∑M
i=1 {1 + (Nxi1 − 1)zi} .

Using (a) the independence of the terms for different
flows i; (b) the formulaVar AB = Var A · EB2 +
Var B · (EA)2 with A = Nxi − 1; (c) z2

i = zi; (d)
E[zi] = (1 − N−1)fi−1; (e) Var xi1 = (1 − N−1)/N ,
we find Var M̂2 = MN(1 − N−1)zM , wherezM =
M−1

∑M
i=1(1 − N−1)fi ≤ 1. Each term in the last sum

has common distribution with finite meanz, and hence by
the Strong Law of Large NumberszM converges almost
surely toz. The result then follows by the Central Limit
Theorem.

We can restate Theorem 4 as saying thatM̂1 has stan-
dard error roughly

√
N/M while M̂2 has standard error

roughly
√

zN/M . Sincez < 1 (unless all flows comprise
1 packet) we have achieved the aim of reducing estimator
variance. However, this is done at the potential cost of
introducing bias.M̂2 was formulated under the assump-
tion that flows are not split. Flow splitting will lead to
overcounting of flows in classS2. For smaller samples is
may be better to sustain such bias instead of suffering the
increased variance, which is more noticeable for smaller
samples.z is closer to1 for largerN .

To give an example, consider geometrically distributed
fi. Thenz = 1/(1 + (f − 1)/N). If the mean flow
length is much longer than the sampling period,M̂2 will
have noticeably lower variance than̂M1. Other the other
hand, these are the conditions, depending on the flow
timeout, under which sparse flows could be split up into
several measured flows. The differencêM2−M̂1 actually
gives us some measure of this, since it can be rewritten
as the number of flows with propertyS2 minusN times
the number of flows with propertyS2 that also contain a
SYN: M̂2 − M̂1 estimates the additional flows that arise
due to splitting.

D. Mean Length of Original TCP Flows

Equipped with estimates of the number of packets (Sec-
tion IV-B) and the number of flows (Section IV-C) we can
straightforwardly estimate the mean length of TCP flows
asf̂ = P̂ /M̂k for eitherk = 1 or 2. Although these are
not unbiased estimators off , they satisfy the following
property:

Theorem 5:Under the assumptions of Theorem 4(ii),
eachP̂ /M̂k is, for almost all sequences of flow lengths, a
consistent estimator off , i.e., they converge tof almost
surely asM grows.

Proof: Write P̂ = N
∑M

i=1

∑fi

j=1 xij . By assump-

tion, P̂ /M andM̂k/M are sums of independent random
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variables with finite meansf and1 respectively. The re-
sult then follows by the Strong Law of Large Numbers.

Theorem 6:Under the assumptions of Theorem 4(ii),
for k = 1, 2 eachM1/2(P̂ /M̂k − f) is asymptotically
normally distributed with mean zero and variancesη2

k as
follows:

η2
1 = N(1−N−1)f(f − 1), (7)

η2
2 = N(1−N−1)

(
f(f − 1)z + f(1− z)

)
(8)

Proof: The variance is estimated by using theδ-method;
see [18]. This supposes a sequenceM1/2(X̂M

1 , . . . , X̂M
m )

of vector valued random variables that is asymptotically
Gaussian, asM grows, with mean 0 and asymptotic co-
variance matrix(cij)i,j=1,...m. If g is a real function on
Rm differentiable about0, thenM1/2(g(X̂1, . . . , X̂m)−
g(0)) is asymptotically Gaussian, asM grows, with mean
0 and asymptotic varianceg′(0) · cg′(0). (Hereg′ is the
derivative ofg). We expresŝf asg(P̂ /M−f, M̂k/M−1)
whereg(x, y) = (x + f)/(y + 1). Theng′(0) = (1,−f)
and it remains only to calculate the covariance matrixc of
the numerator and denominator terms inf̂ .

c11 is the same for both estimators, namely
limM→∞M−1

∑M
i=1 Var(N

∑fi

j=1 xij) = N(1 −
N−1)f . For M̂1, c12 = limM→∞M−1

∑M
i=1 Cov(N∑fi

j=1 xij , Nxi) = N(1 − N−1), while c22 =

limM→∞M−1 Var M̂1 = N(1 − N−1) from The-
orem 4. UsingM̂2, c12 = limM→∞M−1

∑M
i=1

Cov(N
∑fi

j=1 xij , (Nxi1 − 1)zi) =N(1 −N−1)z, while

c22 = limM→∞M−1 Var M̂2 = N(1 − N−1)z from
Theorem 4. The stated results then follow from these
forms forc.

E. Timescales and Accuracy

We can interpret Theorem 6 as saying that the standard
deviation of P̂ /M̂1 is roughly f

√
N/M . Substituting

M̂1 = Nm̂1 for M , we estimate the likely error due to
sampling aŝη1 ≈ f/

√
m̂1.

We can re-express this a saying that the relative er-
ror of estimation of the flow length isη1/f ≈ 1/

√
m̂1.

Consider flows collected over a period of durationt from
a link carrying traffic at rateC bytes/second. Assume
a mean packet lengthp bytes, and ballpark mean flow
length of `. Then with sampling rate1/N we expect
m̂1 ≈ Ct/(Np`). Taking a full OC48 (2.4Gb/second)
and supposingN = 100, p = 500 and` = 20 we obtain
a relative error of about0.06/

√
t. This shows that track-

ing flow lengths each second would have a relative error
of only about 6%, probably sufficient to detect changes

trace packets flows SYN FIN
full 9,566,657 354,950 315,200 283,357

reduced 6,889,444 299,875 315,067 270,081

TABLE V

TRACE PROPERTIES OF FULL TRACE AND REDUCED SUBTRACE OF

FLOWS STARTING WITH SYN PACKET. FLOWS TERMINATED BY 30

SECOND TIMEOUT.

in the composition of aggregate traffic whose manifesta-
tions included a change in flow lengths. One example we
have in mind is a burst in proportion of short flows due
flooding with SYN packets that occurs in some denial of
service attacks.

F. Evaluation of TCP Flow Length Estimators

We evaluate the method on a trace of TCP packets, both
a raw version, and a reduced version constructed to better
conform to the assumptions. Even for the raw trace, we
find that estimation is accurate to within 10% at a sam-
pling rate of 1 in 1,000.

F.1 Packet Trace

We evaluated the estimatorŝP/M̂k of mean flow
length using a second trace of 9,566,657 TCP packets col-
lected over a period of 5 hours near the boundary of a cor-
porate campus network. Note that SYN flagged packets
for a given flow may be missing from the trace, due to
flows having started before the trace was initiated, collec-
tion errors when taking the packet header trace, or net-
work packet drops. In order to evaluate our approach un-
der conditions that more closely matched the assumptions
for which it was formulated, we constructed a subtrace
comprising only those packets belonging to flows—as de-
lineated by a 30 second timeout—that started with a SYN
packet. This resulted in a a trace of 6,889,444 packets
distributed in 299,875 such flows.

Properties of the full and reduced trace are shown in
Table V. This shows that constructing the subtrace dis-
carded about 28% of the packets comprising 16% of the
flows, while the discarded flows contain less than 0.05%
of the SYN packets in their interior. On the other hand,
5% of the total SYN packets in the reduced trace did not
start a flow. These figures suggest discarded packets came
from longer original flows, either ones that were already
in progress (i.e. the initial SYN occurred before the trace
was initiated) or flows that were already sparse with a 30
second interpacket timeout. In the reduced trace, SYN
could occur in flow interiors due to retransmission if loss
occurred downstream in the packets path from the collec-
tor, or when a second TCP connection followed one with
the same key before the interpacket timeout expired. One
could guard against the latter by terminating flows on oc-
currence of a FIN packet; however the table shows that
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N bP/cM1
bP/cM2

bP/cM2(S) bm1 bη1

1 22.97 22.97 22.97 299875 n/a
10 22.39 22.11 22.49 30767 0.12

100 22.48 21.88 22.25 3064 0.40
1,000 22.00 21.69 21.84 313 1.23

N bP/cM1
bP/cM2

bP/cM2(S) bm1 bη1

1 31.90 27.11 27.11 299875 n/a
10 30.75 29.34 30.80 31116 0.17

100 30.63 29.27 30.00 3123 0.55
1,000 29.52 29.27 29.46 313 1.67

TABLE VI

ESTIMATED MEAN FLOW LENGTHS: REDUCED TRACE (UPPER)

AND FULL TRACE (LOWER). bP/cM1 , bP/cM2 AND bP/cM2(S) WITH

FLOW TIMEOUT SCALING. MEASURED NUMBERSbm1 OF FLOWS

CONTAINING SYN PACKETS, AND ESTIMATOR bη1 OF STANDARD

DEVIATIONS.

10% of the flows did not terminate with a FIN, more than
did not start with a SYN.

F.2 Accuracy: Mean Flow Length

The predicted flow lengths for sampling periodsN =
1, 10, 100 and1, 000 ranging from1 to 1, 000 are shown
for the reduced trace in the upper table of Table VI. The
true mean flow length for this trace is theN = 1 entry of
the column forP̂ /M̂1. Observe that̂P/M̂1 is uniformly
closer to the true value than̂P/M̂2. We believe this is due
to the bias inM̂2 in overcounting flows discussed previ-
ously. We also tabulatêm1, the number of flows with a
SYN, andη̂1, the estimator of the standard deviationη1 of
P̂ /M̂1. If our assumption (A2) were obeyed, we would
expectm̂1 to decrease inversely withN . However, the
decrease is a little slower than this, a symptom of the fact
that the trace contains SYN packets that do not start flows,
and hencêM1 overcounts of the number of flows. Indeed,
we would expect̂M1 to be close to the numberY of SYN
packets ifN andY/N are large; this is borne out by Ta-
bles V and VI.

One way to alleviate overcounting in̂M2 due to split-
ting of sparse flows is to lengthen the flow timeout; for
example making it proportional toN . The resulting es-
timate is shown under the column̂P/M̂2(S). Although
this offsets the bias somewhat,P̂ /M̂1 is, mostly, more ac-
curate. Actually, the estimatêP/M̂1 is rendered slightly
more accurate by the same method.

We can compare the difference betweenP̂ /M̂1 and ac-
tual mean flow length witĥη1. ForN = 10, the difference
is about7η̂1, greater than one would expect statistically,
and hence indicative of bias. But atN = 1, 000 the dif-
ference is only about̂η1, so indistinguishable from usual
statistical variation.

In the lower table we report the same results for the

full trace. The relative accuracies of the estimators is un-
changed. Deviations from the true values are greater than
for the reduced traces, and greater than would be expected
from sampling variation alone, they are still quite accu-
rate: within 10% of the true value even atN = 1, 000.

V. CONCLUSIONS ANDFURTHER WORK

In this paper we have examined the consequences of
collecting packet sampled flow statistics. We pointed out
the flows in the original stream whose length is greater
than the sampling period tend to give rise to multiple flow
reports when the interpacket time in the sampled stream
exceeds the flow timeout. In practice this occurs pre-
dominantly for traffic generated by peer-to-peer applica-
tions. Such traffic is on the rise, motivating the need to
better understand the implications for resource usage in
the measurement infrastructure of such splitting. To this
end, we developed a model to predict sampled flow ex-
port rates and the number of active flows from original
traffic statistics. Using traffic traces, we found the model
to predictions accurate to within about 10% of number
of total flows produce in a period and the mean number
of active flows. Failing to take account of sparse flows
(those vulnerable to splitting) can lead to underestimation
of the total flows, and severe overestimation of the size of
the buffer needed to accommodate active flows. We ar-
gued that the predictions would be relatively insensitive
to the model details. Work in progress is to substantiate
this assertion for other packet sampling models.

Turning the problem around, we also showed how to
infer characteristics of the original traffic flows from the
measured packet sampled flows. Whereas byte and packet
volumes are estimated simply by dividing the measured
quantities by the sampling rate, this approach does not
work to estimate the number and mean length of flows,
since some original flows will not be sampled at all. In-
stead, we introduced a method that exploited the statis-
tics of reported SYN packets for TCP flows. In work
in progress, we generalize our method to infer the dis-
tribution of the lengths of original flows, not just the
mean. Further work will determine the effectiveness of
the method in understanding the characteristics of sub-
streams of the traffic, e.g. according to application.
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