
Real-Time Streaming Graph Embedding Through Local Actions
Xi Liu

Texas A&M University
xiliu.tamu@gmail.com

Ping-Chun Hsieh
Texas A&M University

pingchun.hsieh@tamu.edu

Nick Duffield
Texas A&M University
duffieldng@tamu.edu

Rui Chen
Samsung Research America
rui.chen1@samsung.com

Muhe Xie
Samsung Research America

muhexie@gmail.com

Xidao Wen
University of Pittsburgh
xidao.wen@pitt.edu

ABSTRACT
Recently, considerable research attention has been paid to graph
embedding, a popular approach to construct representations of
vertices in latent space. Due to the curse of dimensionality and
sparsity in graphical datasets, this approach has become indispens-
able for machine learning tasks over large networks. The majority
of the existing literature has considered this technique under the
assumption that the network is static. However, networks in many
applications, including social networks, collaboration networks,
and recommender systems, nodes, and edges accrue to a grow-
ing network as streaming. A small number of very recent results
have addressed the problem of embedding for dynamic networks.
However, they either rely on knowledge of vertex attributes, suffer
high-time complexity or need to be re-trained without closed-form
expression. Thus the approach of adapting the existing methods
designed for static networks or dynamic networks to the streaming
environment faces non-trivial technical challenges.

These challenges motivate developing new approaches to the
problems of streaming graph embedding. In this paper, we propose
a new framework that is able to generate latent representations
for new vertices with high efficiency and low complexity under
specified iteration rounds. We formulate a constrained optimiza-
tion problem for the modification of the representation resulting
from a stream arrival. We show this problem has no closed-form
solution and instead develop an online approximation solution. Our
solution follows three steps: (1) identify vertices affected by newly
arrived ones, (2) generating latent features for new vertices, and
(3) updating the latent features of the most affected vertices. The
new representations are guaranteed to be feasible in the original
constrained optimization problem. Meanwhile, the solution only
brings about a small change to existing representations and only
slightly changes the value of the objective function. Multi-class clas-
sification and clustering on five real-world networks demonstrate
that our model can efficiently update vertex representations and
simultaneously achieve comparable or even better performance
compared with model retraining.
ACM Reference Format:
Xi Liu, Ping-Chun Hsieh, Nick Duffield, Rui Chen, Muhe Xie, and Xidao
Wen. 2019. Real-Time Streaming Graph Embedding Through Local Actions.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6675-5/19/05.
https://doi.org/10.1145/3308560.3316585

In Companion Proceedings of the 2019 World Wide Web Conference (WWW
’19 Companion), May 13–17, 2019, San Francisco, CA, USA. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3308560.3316585

1 INTRODUCTION
Recently graph embedding, also known as graph (a.k.a network)
representation learning, has received considerable research atten-
tion. That is due to the fact that many real-world problems in
complex systems can be modeled as machine learning tasks over
large graphs. Direct representations of a vertex in such graphs are
usually by its adjacency vector and thus suffer from the curse of di-
mensionality and sparsity. The idea of graph embedding is to learn
a low-dimensional and dense representation for vertices in latent
space. The latent representations are learned with the objective of
preserving the structural information of the original graph into the
geometric relationships among vertices’ vector representations [1].
The learned vertex representations are regarded as informative
feature inputs to various machine learning tasks. Graph embedding
has been proven to be a useful tool for many machine learning
tasks, such as vertex classification [2], community detection [3],
and link reconstruction [4].

Prior studies have proposed several prominent graph embedding
methods [2, 5–9] (see Section 2 for a careful review). Unfortunately,
they are subject to three limitations. First, these methods have
focused on static graphs. However, the majority of real-world net-
works are naturally dynamic and continuously growing. New ver-
tices, as well as their partial edges, form in a streaming fashion. Such
networks are normally referred to as “streaming networks" [10].
Typical examples include social networks and collaboration net-
works. Those methods ignore the dynamic nature and are unable to
update the vertices’ embeddings in accordance with networks’ evo-
lution. Second, those methods are transductive. They require that all
vertices in a graph be present during training in order to generate
their embeddings and thus cannot generate embeddings for unseen
vertices. In streaming networks that constantly encounter new ver-
tices, the inductive capability is essential to support diverse machine
learning applications. Third, the time complexity of retraining in
those methods usually increases linearly with the number of ver-
tices. This makes simple adaptations of the above methods through
retraining computationally expensive, let alone the uncertainty of
convergence. Indeed, the few very recent works [11–16] adapted
from the above methods require either prior knowledge of new
vertices’ attributes to be inductive or require retraining on the
new graph. This presents a challenge for many high-throughput
production machine learning systems that need to generate the

https://doi.org/10.1145/3308560.3316585
https://doi.org/10.1145/3308560.3316585

WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA X. Liu, P. Hsieh, N. Duffield, R. Chen, M. Xie, and X. Wen

representations of new vertices in real time. In fact, a streaming net-
work’s structure may not change substantially within a short period
of time, and retraining over the entire graph is usually unnecessary.

To overcome the aforementioned limitations, we propose a novel
efficient real-time representation learning framework for streaming
graphs. In this framework, a constrained optimization model is for-
mulated to preserve temporal smoothness and structural proximity
in streaming representations. We show that the model belongs to
quadratic optimization with orthogonal constraints, which in gen-
eral has no closed-form solution. Therefore, we propose an online
approximation algorithm that is able to inductively generate embed-
dings for newly arrived vertices and has a closed-form expression.
In the online algorithm, we divide the task of streaming graph
embedding into three sub-tasks: identifying original vertices that
are affected most by the new vertices, calculating the embeddings
of the new vertices and adjusting the embeddings of the affected
original vertices. Since the change of a streaming graph within a
short time period, compared with the entire network, is small, the
algorithm only updates the representations of a small proportion
of vertices. Moreover, such an update does not require to retrain a
model or wait for convergence, has low space and time complexity
and thus our method is particularly suitable for high-throughput
production machine learning systems.
Contributions. Our research contributions are as follows:
(1) We propose a novel online representation learning framework
for streaming graphs based on a constrained optimization model.
Ourmodel simultaneously takes into consideration temporal smooth-
ness and structural proximity. Our framework is able to calcu-
late representations of unseen vertices without knowing their at-
tributes.
(2) We devise an approximation algorithm that is able to generate
representations in real time for vertices arriving in a streaming
manner. This algorithm is highly efficient. In particular, it does not
require retraining on the entire network or additional rounds of
gradient descent. Moreover, we prove that the generated represen-
tations are still feasible in the original optimization problem.
(3) We conduct extensive experiments on five real-world data sets
to validate the effectiveness and efficiency of our model in both
a supervised learning task (i.e., multi-class classification) and an
unsupervised learning task (i.e., clustering). The results demon-
strate that the proposed framework can achieve comparable or
even better performance than those achieved by retraining.

2 RELATEDWORK
Static Network Embedding. Recent developments in modeling
practical problems in complex systems by machine learning tasks
on large graphs have highlighted the need for graph embedding.
In graph embedding, each vertex is mapped to a low-dimensional
vector, while preserving a graph’s structural information. Current
studies in this direction can be roughly categorized by different
types of structural information preserved in the mapping. LINE [5]
and SDNE [6] preserve the first- and second-order proximities,
with the difference that SDNE uses highly non-linear functions to
model themapping. Inspired by recent advances in natural language
processing, DeepWalk [7] and node2vec [2] preserve higher-order

proximities by maximizing the conditional probability of observ-
ing the contexts of a vertex given its representations. The crucial
difference lies in that node2vec follows a biased approach to sample
contexts. struct2vec [8] proposes to preserve the structural identity
between nodes in the representation. To achieve this goal, it first
creates a new graph based on the structural identity similarity be-
tween nodes and then follows a similar method to DeepWalk on
the created graph. A very recent method GraphWave [9] makes
use of wavelet diffusion patterns by treating the wavelets from the
heat wavelet diffusion process as distributions.

Table 1: Comparison between our method and existing ones

Paper Time complexity Need retraining Need attributes
[1, 13] - ✓ ✓
[17] O (k2 (|Vt | + k)) × ✓

[18] O
(
|Vt |

2
)

× ✓

[19] O (|Vt |k2 + k4) ✓ ×

[14] O (|Vt |) ✓ ×

Ours O (β) × ×

DynamicNetworkEmbedding.Most of the aforementioned stud-
ies have focused on static and fixed networks. However, themajority
of real-world networks evolve over time and continuously grow.
New vertices as well as new edges form in a stream fashion. There
are several studies on techniques able to generate embeddings for
dynamic graphs. We compare them with our method in terms of
three aspects in Table 1: for embedding update at time t (1) the
time complexity, (2) whether retraining is needed, and (3) whether
vertex attributes is needed. From Table 1 we observe that the time
complexity of update at time t is O (β), where β is the average
degree of graph at time t and can be much smaller than |Vt |, the
total number of vertices. Furthermore, the discussion of complexity
in [17–19] is assumes a sparse adjacency matrix sparsity, which our
methods do not require. Our method has closed-form expression
and does not need to re-train the model for embedding updates, and
thus does not depend on convergence during training. Finally, our
method is able to generate embeddings for new vertices without
vertex attributes.

3 PROBLEM FORMULATION
For a streaming graph, we consider new vertices and edges to arrive
every with time interval between t0 + i∆t and time t0 + (i + 1)∆t
for i ∈ {0, 1, ...}, where t0 is the initial time and ∆t is the interval
width. We will use ti as a shorthand of t0 + i∆t . The number of
vertices and their edges that arrive within any ∆t can be arbitrary.
Let Gti = (Vti , Eti) denote the graph consisting of vertices Vti
and edges Eti formed before time ti . Let ∆Vti and ∆Eti be the
vertices and their edges formed between time ti and ti+1. For any
time ti , adding the vertices ∆Vti and the edges ∆Eti to the graph
Gti leads to the new graph Gti+1 at time ti+1. For example, consider
the “Observed” rectangle in Figure 1. Adding the vertices v4,v5,v6
and their edges (depicted by dashed lines) formed between time t0
and t1 to Gt0 leads to Gt1 . Let f

(ti)
v ∈ Rk be the embedding of vertex

v ∈ Vti , where the embedding dimension k ≪ |Vti |. Then at any
time ti , the collection of embeddings of vertices arrived before ti is
denoted by {f (ti)v }v ∈Vti . Our objective is to generate embeddings

Real-Time Streaming Graph Embedding Through Local Actions WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA

Figure 1: An illustrated example of the proposed embed-
ding technique for streaming graphs with D = 1. Gray
squares represent unchanged embeddings, blue ones repre-
sent updated embeddings for influenced vertices and orange
ones represent generated embeddings for new vertices. To
be clear, f (t+∆t)v2 = f (t+1)v2 , f (t+∆t)v3 = f (t+2)v3 , f (t+∆t)v4 = f (t+3)v4 ,
f (t+∆t)v5 = f (t+2)v5 , and f (t+∆t)v6 = f (t+3)v6 .

for the new vertices with a real-time, low-complexity and efficient
approach. Now we can formally define the real-time representation
learning problem for streaming graphs as follows, using notations
described in Table 2.

Definition 1. [Streaming graph embedding] Consider a graph
Gt0 = (Vt0 , Et0), possibly empty, at initial time t0. Starting from
i = 0, a set of vertices ∆Vti and associated edges ∆Eti form in graph
Gti between time ti and ti+1 and results in a new graph Gti+1 at
time ti . At any time ti+1 with i ∈ N, (1) generate representations
{f (ti+1)v }v ∈∆Vti for new vertices ∆Vti , and (2) update the representa-

tions {f (ti)v }v ∈Vti to {f
(ti+1)
v }v ∈Vti for existing verticesVti .

4 METHODS
In this section, we first provide a brief introduction to representa-
tion learning for static graphs based on spectral theory and then
present our model for streaming graphs. We show that our model
belongs to the class of quadratic optimization problem with or-
thogonality constraints, which has no general closed-form solution.
We proposed an approximate solution that has low-complexity,
high efficiency and being real-time. The approximated solution is
composed of three steps: (1) identify vertices influenced most by
the arrival of the new vertices, (2) generate representations of the
new vertices, and (3) adjust the representations of the influenced
vertices. The approximated solution is inspired by the line-search
method on the Stiefel manifold and influence the diffusion process.

4.1 Static Graph Representation Learning
Consider a static graph G = (V, E), whereV = {v1,v2, ..,v |V | }.
Each edge in E is represented by its two ends, i.e., (vi ,vj). The

Notations Descriptions or Definitions
Gti Graph consisting of vertices and edges formed be-

fore time ti
Vti Vertices formed before time ti
∆Vti Vertices formed between time ti and ti+1
Eti Edges formed before time ti
∆Eti Edges formed between time ti and ti+1
k Embedding dimension
D Depth of influence D = {1, 2, ... }
f (ti)v Rk representation of vertex v at time ti
Ati Adjacency matrix of graph Gti
Dti Diagonal matrix of graph Gti
Lti Laplacian matrix of graph Gti

{λ (ti)j }
|Vti |
j=1 Eigenvalues of D−1ti Lti in ascending order λ1 ≤

λ2 ≤ ... ≤ λ |Vti |
x(ti)j R|Vti | eigenvector corresponding to λj
Iti (m) Set of vertices influenced by vertexm in Gti
p (t+1)
uv Probability that v influences u in graph Gt+1
| · | Cardinality of a set
∥ · ∥ The l2 norm
∥ · ∥F The Frobenius norm
tr (·) Trace of a matrix

Table 2: Notations and Symbols.

target of spectral theory based graph representation [20] is to keep
the representations of two vertices close if they are connected, a
reflection of graph homophily. Denote the adjacency matrix of G
by A, where A(i, j) = 1 when (vi ,vj) ∈ E and A(i, j) = 0 other-
wise. For graph G, this target can be modelled as the optimization
problem below:

min
F
L (F) =

1
2

|V |∑
i, j=1

A(i, j)fvi − fvj

2

s .t . F⊤F = Ik×k , (1)

where the matrix of embeddings F ∈ R |V |×k is:

F =
[
(fv1)

⊤, (fv2)
⊤, · · · , (fv |V |)

⊤
]⊤ (2)

Denote the diagonal matrix of G by D and denote its element in
the i-th row and j-th column by D(i, j). Then the Laplacian matrix
L = D − A, where D(i, i) =

∑ |V |
j=1 A(i, j) and D(i, j) = 0 for i , j.

Belkin et al. [21] show that Eq. (1) can be solved by finding the top-
k eigenvectors of the following generalized eigen-problem: Lx =
λDx. Let x1, x2, ..., x |V | be the eigenvectors of the corresponding
eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λ |V | . It is easy to verify that
1 is the only corresponding eigenvector for eigenvalue λ1. Then
the matrix of embeddings can be obtained by F = [x2, x3, ..., xk+1].
The time complexity of calculating F can be as high as O (k |V |2)
without any sparsity assumption [22].

4.2 Dynamic Graph Representation Learning
For simplicity of presentation, our explanation for dynamic graph
representation learning focuses on the case where only one ver-
tex along with part of its edges is added to a graph each time. In
fact, with a solution able to handle a single vertex addition at a
time, the addition of multiple vertices can be solved by sequentially
processing multiple single vertex additions. This is illustrated by
the “Processed” rectangle in Figure 1. Processing the addition of

WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA X. Liu, P. Hsieh, N. Duffield, R. Chen, M. Xie, and X. Wen

{v4,v5,v6} in a batch can be decomposed into the sequential pro-
cessing of adding v4 at t + 1, v5 at t + 2 and v6 at t + 3, where t + i
simply indicates the virtual order of processing and does not have
any practical meaning. Therefore, in below discussion, suppose
initially at time t0 = 1, the graph is empty and starting from t0 = 1,
there is vertex arrival between t and t + 1 for any t ≥ t0. Also
suppose ∆t = 1. Then we denote the single vertex and part of its
edges that arrive at time t by vt and ∆Et , respectively. Then we
have,Vt = {v1,v2, ...,vt−1} and Et =

⋃t−1
i=1 ∆Ei .

To solve the problem defined in Definition 1, we propose an
optimization problem that needs to be solved at time t = 2, 3, The
objective function of the optimization problem is designed based on
two key properties of the graph streams: temporal smoothness and
graph homophily. First, since only one vertex and its edges arrive
per time, the dynamic graph will evolve smoothly, most of the
representations of the same vertices at two consecutive time steps
should be close. This property is referred to as temporal smoothness.
This property has also been observed and shown to be helpful to
improve representation performance in [13]. Suppose that we are
at time t + 1. Then, this property can be modeled by minimizing
the following objective function at any time t + 1:

L
(t+1)
s (Ft+1) : =

∑
vi ∈Vt

f
(t+1)
vi − f (t)vi

2
, (3)

which is the sum of squared ℓ2-norm representation difference for
the same vertices in two consecutive graph snapshots Gt and Gt+1.

Second, the target of representation learning suggests that con-
nected vertices should be embedded to close points in the latent rep-
resentation space. This property is referred to as graph homophily.
This property has been reflected in the objective function and con-
straints of the optimization in Eq. (1). Thus, they should be kept
for the new graph Gt+1. Formally, this property can be modeled by
minimizing the following objective function at time t + 1:

L
(t+1)
h (Ft+1) :=

1
2

|Vt+1 |∑
i, j=1

At+1 (i, j)
f

(t+1)
vi − f (t+1)vj

2
. (4)

To take into account these two properties, we include both
L

(t+1)
s and L (t+1)

h in the final objective function and retain the
constraint given in Eq. (1). The optimization problem to solve at
time t + 1 can be summarized as follows.

min
Ft+1
L (t+1) (Ft+1) = γ

(t+1)
s L

(t+1)
s (Ft+1) + γ

(t+1)
h L

(t+1)
h (Ft+1)

(5)
s .t . F⊤t+1Ft+1 = Ik×k ,

where, the matrix of embeddings Ft+1 ∈ R |Vt+1 |×k and γ (t+1)s =

1/|Vt+1 | and γ (t+1)h = 1/(4|Et+1 |) are trade-off terms for the tem-
poral smoothness loss functions L (t+1)

s and graph homophily loss
function L (t+1)

h . It is straightforward to observe that L (t+1)
h (Ft+1)

is convex in Ft+1. Since L (t+1)
s (Ft+1) can be expressed by

L
(t+1)
s (Ft+1) =

∑
vi ∈Vt

f
(t+1)
vi − f (t)vi

2
=
Jt+1Ft+1 − Ft

2
F

(6)

= tr
((
Jt+1Ft+1 − Ft)⊤ (Jt+1Ft+1 − Ft

))
,

where Jt+1 ∈ R |Vt |× |Vt+1 | is:

Jt+1 :=

1 0 . . . 0 0
0 1 . . . 0 0
...
...
. . .

...
...

0 0 . . . 1 0

 |Vt |× |Vt+1 |

, (7)

L
(t+1)
s (Ft+1) is also convex. Therefore L (t+1) (Ft+1) the objective

function in Eq. (5) is convex in Ft+1.
Since the constraints in Eq. (5) are orthogonality constraints,

the optimization problem to solve is a general formed quadratic
optimization problem under orthogonality constraints. The space
defined by the orthogonal constraints is Stiefel manifold. The prob-
lem with such format has been widely studied and concluded with
no closed-form solution. The state-of-the-art solution is to learn the
solution through Riemann gradient approach [23] or line-search
method on the Stiefel manifold [24], whose convergence analysis
has attracted extensive research attention very recently. However,
they are not suitable for streaming setting, because waiting for con-
vergence brings in time uncertainty and gradient-based methods
possess unsatisfied time complexity.

4.3 Approximated Algorithm in Graph Streams
Motivated by the aforementioned limitations, we propose an ap-
proximated solution that satisfies the low-complexity, efficiency
and real-time requirement in a streaming setting. The proposed
approximated solution is inspired by an observation of the line-
search method. The basic idea of the line-search method for the
optimization problem is to search the optimal solution in the tan-
gent space of the Stiefel manifold. We observed that the line-search
method based on the polar decomposition-based retraction updates
the representation of a vertex through a linear summation of other
representations in iterations [24]. In our problem, that means:

F(i+1)t+1 =
(
F(i)t+1 + αi Γ

(i)
) [
Ik×k + α

2
i (Γ

(i))⊤Γ (i)
]−1/2

, (8)

where αi is the step size, Γ (i) is the search direction in the tangent
space of the Stiefel manifold at iteration i , and F(i)t+1 is the matrix of
embedding at iteration i . This inspires us to generate new embed-
ding for a vertex from a linear summation of original embedding for
other vertices. Meanwhile, the temporal smoothness in the problem
indicates that the embeddings of most vertices would not change
a lot. Therefore, to reduce the summation complexity, in the ap-
proximated solution, we propose to only update the embeddings of
vertices that are influenced by the new vertex. We summarize the
steps of the approximated solution as follows: (1) identify vertices
influenced most by the arrival of the new vertices, (2) generate
embeddings of the new vertex, and (3) adjust the embeddings of
the influenced vertices.

The task for the first step can be summarized as: given a vertex,
identify the set of vertices that are influenced by it. Similar problems
have been widely discussed in the field “influence propagation” and
“information diffusion” (see [25] for a survey). A marriage between
this field and graph representation learning has been shown very
successful in a few recent works [9, 26] for static graphs. Therefore,
we apply the Weighted Independent Cascade Model (WICM), one
of the most widely used models in this field, to model the influence

Real-Time Streaming Graph Embedding Through Local Actions WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA

spread. Suppose the influence is spread through multiple rounds
when vertex v first becomes influenced at round j, it is given a
single chance to influence a currently uninfluenced neighbor u at
round j + 1. It succeeds with a probability p (t+1)uv . The outcome is
independent of the history and of v’s influence to other vertices.
p
(t+1)
uv is the probability that v influences u in graph Gt+1 and can
be estimated through

p
(t+1)
uv := 1∑

i ∈Vt+1 At+1 (i,u)
, (9)

where the denominator is the in-degree of vertex u in graph Gt+1.
If u has multiple already-influenced neighbors other than v , their
attempts are sequenced in an arbitrary order. The new influenced
vertices will also have a single chance to influence their neighbors
in next round. Denote by D total number of rounds determined by
us. The set of influence vertices is determined using Algorithm 1.

Algorithm 1: Influenced vertices identification
Input: Graph Gt+1, influenced rounds D, new vertex vt
Output: It+1 (vt) set of vertices influenced by new vertex vt

1 k = 0, Rk = {vt };
2 while k ≤ D do
3 k = k + 1, Rk+1 = ∅, It+1 (vt) = ∅;
4 for v ∈ Rk do
5 for u ∈ Nt+1 (v) do
6 Draw r ∼ Bernoulli (puv);
7 if r = 1 then
8 Rk+1 = Rk+1

⋃
{u};

9 end
10 end
11 end
12 It+1 (vt) = It+1 (vt)

⋃
Rk+1;

13 end
14 return It+1 (vt)

There are two benefits in computing It+1 (vt) using Algorithm 1.
First, by adjusting the value ofD we can control the time complexity.
When D = 1, Algorithm 1 will stop after all neighbors of vt are
visited. This is where O (β) comes from. Second, the influence from
new vertex vt is not equal among already-arrived vertices. It is
reasonable to hope the representation of a vertex influenced less
by vt has a smaller chance to be updated than those influenced
more by vt . This has already been handled by WICM. Compared to
vertices close to thevt , those far-away are less likely to be included
in It+1 (vt) because to be included, all the outcomes in line 7 of
Algorithm 1 must be 1 along an influence spreading path. We also
note that It+1 (vt) can be stored and thus computed incrementally.
All these benefits enable high efficiency in the streaming setting.

After identifying influenced vertices, following the idea inspired
by the line-search method, we generate the embedding for a new
vertex through a linear summation of the influenced vertices’ em-
beddings and adjust the original embeddings of influenced vertices.
This is detailed in Algorithm 2. The quantity αt+1 is determined in
a way that the orthogonal constraints in Eq. (5) are satisfied:

αt+1 := 1 −
√
1 − 1/|It+1 (vt) |. (10)

Algorithm 2: Representation generation and update
Input: Graph Gt , newly arrived vertex vt , newly arrived

edges ∆Et , matrix of embeddings Ft
Output: Updated matrix of embeddings Ft+1

1 Update graph:Vt+1 ←Vt ∪ {vt } and Et+1 ← Et ∪ ∆Et ;
2 Calculate representation for new vertex vt by:

3 f (t+1)vt =
1

|It+1 (vt) |
∑
u ∈It+1 (vt) f

(t)
u ;

4 Adjust representations for already-arrived vertices:
5 for u ∈ Vt do

6 f (t+1)u =

f (t)u − αt+1f
(t+1)
vt u ∈ It+1 (vt)

f (t)u o.w .

7 end
8 return Ft+1

Algorithm 2 ensures that the embedding of a vertex is generated
when it arrives and will be updated when it is influenced by some
vertices that come after it. That makes a connection between ver-
tices that arrive at different orders and preserves the temporal
pattern in later update. Since the algorithm will only update the em-
beddings of influenced vertices, different from those solutions that
suffer time uncertainty from retraining, the proposed algorithm
guarantees to output Ft+1 after |It+1 (vt) | operations. Therefore, the
time complexity of Algorithm 2 is O

(
|It+1 (vt) |

)
and is expected

to have small variance in running time. The value of |It+1 (vt) |
can be controlled through changing value of D. Thus this algo-
rithm enables trade-off between complexity and performance in
the streaming setting. As discussed in Section 2, it can be as low as
O (β) with β denoting the average degree of the graph and D = 1.

5 EXPERIMENTS
In this section, we conduct experiments of both multi-class vertex
classification and network clustering on five data sets to evaluate
the effectiveness and efficiency of the proposed method. We use the
indices of vertices as their arriving order and generate their arrived
edges at each time randomly to model the streaming scenario. We
evaluate our method in terms of the performance of the learning
tasks and the running time to generate vertex embeddings. The
experiments are structured to answer the following questions:
• Effectiveness: compared to state-of-the-art retraining based ap-
proaches, how does the proposed approach perform in supervised
learning and unsupervised learning in the streaming setting?
• Efficiency: compared to state-of-the-art retraining based approaches,
how fast is the proposed solution able to generate new embeddings?
• Scalability and stability: how stable and scalable is the proposed
solution in different-scale networks?

5.1 Data Sets
We use the following five real data sets to validate the propose
framework. All of them are publicly available and have been widely
used in previous research of static and dynamic graph embedding.
The statistics of the datasets are summarized in Table 3.
• Blogwas collected from the BlogCatalogwebsite, whichmanages
bloggers and their posted blogs. Bloggers follow each other to form

WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA X. Liu, P. Hsieh, N. Duffield, R. Chen, M. Xie, and X. Wen

network edges. Bloggers categorize their blogs under predefined
classes, which are taken as the ground truth of class labels.
• CiteSeer is a literature citation network for the selected papers
indexed in CiteSeer. Papers are considered as vertices. The paper
citation relations are considered as the links in the network and
papers are classified into the following six classes: Agents, Artificial
Intelligence, Database, Information Retrieval, Machine Learning
and Human-Computer Interaction.
• Cora also represents a citation network, whose vertices represent
publications from 7 classes: Case Based, Genetic Algorithms, Neural
Networks, Probabilistic Methods, Reinforcement Learning, Rule
Learning, and Theory. Each link is a citation relationship between
the two publications.
• Flickr was collected from Flickr, an image sharing website host-
ing images uploaded by users. Users in Flickr interact with others
to form edges. User can subscribe different interest groups, which
correspond to the class labels. The interest groups, for instance, are
“black and white photos".
• Wiki contains 2,405 documents from 17 classes and 17,981 links
between them.

Table 3: Dataset statistics

Dataset # of vertices # of edges # of classes
Blog 5,196 171,743 6

CiteSeer 3,312 4,732 6
Cora 2,708 5,429 7
Flickr 7,575 239,738 9
Wiki 2,405 17,981 17

5.2 Comparison with Baseline Methods
We compare our approach with the following four graph embedding
algorithms. Since they are designed for static graph embedding, the
retraining based utility of them has achieved similar performance in
graph embedding tasks for dynamic graphs compared to dynamic
methods. Many studies on dynamic graph embedding have used
them as baseline methods. For instance, node2vec in [19, 27–29],
NetMF in [17, 19], DeepWalk in [17, 19, 29]. Except for those al-
ready tested in existing works, we also compare our solution with
a new framework struct2vec. For each baseline, a combination of
their hyper parameters are tested and the one achieving the best
performance is reported as their performance. To be fair, our solu-
tion use the same values for the shared hyper parameters. In the
following, we refer to “walk length" aswl , “window size" asws , and
representation dimensions as d . The values of hyper parameters
for baselines are obtained through grid search of different combi-
nations: d ∈ {10, 20, ..., 200},wl ∈ {10, 20, 30, 40},ws ∈ {3, 5, 7, 10}.
where the finally chosen values are d = 90,wl = 10,ws = 7.
• NetMF [30] obtains graph embeddings through explicitly factor-
izing the closed-form matrices It has been shown to outperform
LINE [5] on several benchmark data sets.
• DeepWalk [7] learns graph embeddings by preserving higher-
order structural proximity between vertices in the latent space. A
pair of vertices are considered similar if they are close in truncated
random walks.
• node2vec is equipped with biased random walk to provide a
trade-off between BFS and DFS. Compared to DeepWalk, it has a

more flexible strategy to explore neighborhoods. The ranges of its
unique hyper parameters are experimented with: p ∈ {0.5, 1, 1.5, 2},
and q ∈ {0.5, 1, 1.5, 2}, where p = 1, q = 1 and the number of walks
is 10 are finally reported.
• struct2vec [8] learns embeddings by preserving the structural
similarities between vertices in the embedded space, where a hi-
erarchical multi-layer graph is used to encode vertex structural
similarities at different scales.
5.3 Supervised Tasks - Vertex Classification
To evaluate the effectiveness of the proposed model, we first com-
pare the performance of ourmethodwith different baselinemethods
on the vertex classification task. The vertex embeddings are fed
into a one-vs-rest logistic regression classifier with L2 regulariza-
tion. In our context, the training percentage (say 20%) specifies an
initial portion of arriving vertices for which the offline spectral
theory based method in (1) to generate the initial embeddings and
then follow Algorithm 2 to learn embeddings for vertices arriving
thereafter. For a vertex that arrives in the testing phase, only its
embedding obtained upon arrival is used in testing, although later
this may be updated, e.g., when there is arrival of its neighbors. As
comparison, baseline methods are retrained on all already arrived
vertices to generate embeddings for new vertices. Correspondingly,
the classifier for the our method will be trained on the embeddings
for the first 20% arrived vertices and tested on the remaining 80%
arrived vertices. In other words, the classifiers, the baseline meth-
ods and the proposed method must be trained and tested on same
percentage split of arrival vertices.

5.3.1 Discussion of Effectiveness. We use Micro-F1 and Macro-F1
as the evaluation metrics. Figure 2 and Figure 3 compare the Macro-
F1 and Micro-F1 performance in testing, respectively, with varying
percentages of data used for training. We observe that overall, the
performance of both the proposedmethod and the baseline methods
improves as the percentage of training increases. This is because as
the larger percentage of data is used for training, the embeddings
obtained by the proposed methods and retraining based baseline
methods are more similar to those by static methods. It can be
also observed that our solution achieves almost the same or even
slightly better Micro-F1 and Macro-F1 under varying percentages.
For example, on CiteSeer, Cora and Wiki data set, our method
slightly outperforms baseline methods for most percentages. On
Blog and Flickr data set, our method achieves almost the same
Micro-F1 and Macro-F1 for most percentages.

The observation that retraining based baseline methods some-
times are slightly worse than the proposed method indicates that
when a graph is highly incomplete, embeddings generated by re-
training based baseline methods that considered global structural
information may not be as reliable as the proposed method that
only considers local updates. This is because the global informa-
tion baseline methods are highly biased particularly when only a
small proportion of the whole graph has arrived. This effect slightly
degrades the baseline performance in some cases.

5.3.2 Discussion of Efficiency. We empirically evaluate the run-
ning times of different methods in Figure 4. Note that the y-axis
is in log scale. The running times for the proposed method count
both the times to generate training vertices and testing vertices.

Real-Time Streaming Graph Embedding Through Local Actions WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA

10 20 30 40 50 60 70 80 90
Percentage

0.2

0.3

0.4

0.5

0.6

0.7

M
ac

ro
 F

1

Ours
netMF
node2vec
struct2vec
DeepWalk

10 20 30 40 50 60 70 80 90
Percentage

0.2

0.3

0.4

0.5

0.6

0.7

M
ac

ro
 F

1

Ours
struct2vec
DeepWalk
netMF
node2vec

10 20 30 40 50 60 70 80 90
Percentage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ac

ro
 F

1

Ours
netMF
DeepWalk

struct2vec
node2vec

10 20 30 40 50 60 70 80 90
Percentage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ac

ro
 F

1

Ours
node2vec
netMF
DeepWalk
struct2vec

10 20 30 40 50 60 70 80 90
Percentage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ac

ro
 F

1

Ours
node2vec
netMF
DeepWalk
struct2vec

(a) Blog (b) CiteSeer (c) Cora (d) Flickr (e) Wiki

Figure 2: Comparison of vertex multi-class classification performance in Macro-F1 with D = 1.

10 20 30 40 50 60 70 80 90
Percentage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ic

ro
 F

1

Ours
DeepWalk
netMF
node2vec
struct2vec

10 20 30 40 50 60 70 80 90
Percentage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ic

ro
 F

1

Ours
struct2vec
DeepWalk
netMF
node2vec

10 20 30 40 50 60 70 80 90
Percentage

0.1

0.2

0.3

0.4

0.5

M
ic

ro
 F

1

Ours
netMF
DeepWalk

struct2vec
node2vec

10 20 30 40 50 60 70 80 90
Percentage

0.1

0.2

0.3

0.4

0.5

M
ic

ro
 F

1

Ours
node2vec
netMF
DeepWalk
struct2vec

10 20 30 40 50 60 70 80 90
Percentage

0.1

0.2

0.3

0.4

0.5

M
ic

ro
 F

1

Ours
node2vec
netMF
DeepWalk
struct2vec

(a) Blog (b) CiteSeer (c) Cora (d) Flickr (e) Wiki

Figure 3: Comparison of vertex multi-class classification performance in Micro-F1 with D = 1.

I II III IV V
10

1

10
2

10
3

R
un

ni
ng

 T
im

e
(s

)

I II III IV V10
0

10
1

10
2

R
un

ni
ng

 T
im

e
(s

)

I II III IV V10
0

10
1

10
2

R
un

ni
ng

 T
im

e
(s

)

I II III IV V10
1

10
2

10
3

R
un

ni
ng

 T
im

e
(s

)

I II III IV V10
0

10
1

10
2

R
un

ni
ng

 T
im

e
(s

)

(a) Blog (b) CiteSeer (c) Cora (d) Flickr (e) Wiki

Figure 4: Comparison of running time in seconds (I-Ours, II-DeepWalk, III-Node2Vec, IV-Struct2Vec, V-NetMF).

Table 4: Comparison of performance on clustering %

Blog CiteSeer Wiki Cora Flickr
Completeness NMI Completeness NMI Completeness NMI Completeness NMI Completeness NMI

Ours 16.48 26.71 16.48 22.46 16.48 26.71 34.50 34.62 16.53 20.44
DeepWalk 17.77 20.01 17.77 20.01 11.78 11.72 34.62 34.30 16.46 17.31
netMF 0.55 0.67 0.25 0.27 6.85 7.17 6.99 7.49 1.91 2.05
node2vec 16.78 22.93 17.55 22.93 16.60 27.77 31.77 31.60 15.82 21.65
struct2vec 4.35 6.44 2.34 2.44 3.57 4.74 9.80 7.94 7.23 8.04

Since the variation of training percentages influence the running
times, we collect running times over all training percentages. The
running times for the baseline methods count the times to gener-
ate embeddings for all vertices. We observe that, in general when
same number of embeddings are generated, the running time of
our solution is much smaller. If we compare them under gener-
ation at each t , the running time of our solution will be further
shorter because our method has lower time complexity as discussed
in Section 2. Meanwhile, along with the statistics in Table 3, we
note the increased running times of the proposed method is not as
large as other baseline methods when the network size increases.

That empirically demonstrates scalability of the proposed method.
This is because that all retraining baseline methods need to wait
for convergence of retraining, whose uncertainty increases as the
network size increases, while our method only need to update over
its neighbors and guarantee to stop after certain steps.
5.4 Unsupervised Tasks - Network Clustering
Next, we assess the effectiveness of different vertex representations
on an unsupervised learning task - network clustering. Since the
variation of training percentages influence the performance, we
compare the average clustering performance over all training per-
centages. We use the same embeddings used in vertex classification

WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA X. Liu, P. Hsieh, N. Duffield, R. Chen, M. Xie, and X. Wen

task. Thus our method’s running time is also illustrated in Figure 4.
We perform K-means clustering based on the embeddings gener-
ated by our method and different baselines. K is chosen to equal
the number of classes in each data set. K-means algorithm is re-
peated 10 times and the average results are reported since K-means
may converge to the local minima due to different initialization.
We use normalized mutual information (NMI) and completeness
score as the performance metrics. They help quantify how close
the clustering results are to the ground-truth class belongings. The
computation of the two evaluation metrics can be expressed below:

NMI := 2I (C;K)

H (C) + H (K)
, Completeness := 1 − H (K |C)

H (K)
,

where C denotes the class assignment, K denotes the clustering
assignment, I (X ;Y) = ∑y∈Y ∑x ∈X p (x ,y)loдp (x ,y)/p (x)p (y) is
the mutual information between random variable X and Y and
H (X) = −

∑
x ∈X p (x)loдp (x) is the entropy. The results are sum-

marized in Table 4. Again it can be seen that our method achieves
comparable or slightly better performance. For example, ourmethod
achieves slightly better performance on Cora and Flickr. As a re-
minder, Flickr network is the largest among all. Please refer Section
5.3.1 for discussion of the reasons.

6 CONCLUDING REMARKS
We proposed an efficient online representation learning framework
for graph streams, in which new vertices and edges arrive as a
stream. The framework is inspired by incrementally approximating
the solution to a constructed constrained optimization problem,
which preserves temporal smoothness and structural proximity in
resultant representations. Our approximating solution has closed
form, high efficiency, and low complexity, and remains feasible
under orthogonality constraints. To validate the effectiveness of
our model and learning algorithm, we conducted experiments on
five real-world networks for both supervised and unsupervised
learning tasks (multi-class classification and clustering) with four
baseline methods. Experimental results demonstrate that compared
with several state-of-the-art techniques, our approach achieves
comparable performance to that of retraining the entire graph with
substantially less running time.

ACKNOWLEDGMENTS
This workwas supported in part by the National Science Foundation
under Grant No. IIS-1848596

REFERENCES
[1] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on

graphs: Methods and applications. IEEE Data Engineering Bulletin, 2017.
[2] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-

works. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 855–864, 2016.

[3] Ye Li, Chaofeng Sha, Xin Huang, and Yanchun Zhang. Community detection
in attributed graphs: An embedding approach. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, pages 338–345, 2018.

[4] Zhu Cao, Linlin Wang, and Gerard de Melo. Link prediction via subgraph
embedding-based convex matrix completion. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, pages 2803–2810, 2018.

[5] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
Line: Large-scale information network embedding. In Proceedings of the 24th
International Conference on World Wide Web, pages 1067–1077, 2015.

[6] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1225–1234, 2016.

[7] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 701–710, 2014.

[8] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec:
Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 385–394, 2017.

[9] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning
structural node embeddings via diffusion wavelets. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1320–1329, 2018.

[10] Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi Chang, Mark A Hasegawa-
Johnson, and Thomas S Huang. Positive-unlabeled learning in streaming net-
works. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 755–764, 2016.

[11] Lun Du, Yun Wang, Guojie Song, Zhicong Lu, and Junshan Wang. Dynamic
network embedding: An extended approach for skip-gram based network em-
bedding. In Proceedings of the 17th International Joint Conferences on Artificial
Intelligence, pages 2086–2092, 2018.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In Advances in Neural Information Processing Systems, pages
1024–1034, 2017.

[13] Xi Liu, Muhe Xie, Xidao Wen, Rui Chen, Yong Ge, Nick Duffield, and Na Wang.
A semi-supervised and inductive embedding model for churn prediction of large-
scale mobile games. In IEEE International Conference on Data Mining (ICDM),
2018.

[14] Jianxin Ma, Peng Cui, and Wenwu Zhu. Depthlgp: Learning embeddings of
out-of-sample nodes in dynamic networks. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, pages 370–377, 2018.

[15] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee
Koh, and Sungchul Kim. Continuous-time dynamic network embeddings. In
Companion of the The Web Conference 2018 on The Web Conference 2018, pages
969–976. International World Wide Web Conferences Steering Committee, 2018.

[16] Qixiang Wang, Shanfeng Wang, Maoguo Gong, and Yue Wu. Feature hashing
for network representation learning. In IJCAI, pages 2812–2818, 2018.

[17] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. Attributed
network embedding for learning in a dynamic environment. In Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management, pages
387–396, 2017.

[18] Ling Jian, Jundong Li, and Huan Liu. Toward online node classification on
streaming networks. Data Mining and Knowledge Discovery, 32(1):231–257, 2018.

[19] Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, and Wenwu Zhu. High-order
proximity preserved embedding for dynamic networks. IEEE Transactions on
Knowledge and Data Engineering, 2018.

[20] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications,
and performance: A survey. Knowledge-Based Systems, 151:78–94, 2018.

[21] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques
for embedding and clustering. In Advances in Neural Information Processing
Systems, pages 585–591, 2002.

[22] Johann Paratte and Lionel Martin. Fast eigenspace approximation using random
signals. EPFL-ARTICLE, 2017.

[23] Zhiqiang Xu and Xin Gao. On truly block eigensolvers via riemannian optimiza-
tion. In International Conference on Artificial Intelligence and Statistics, pages
168–177, 2018.

[24] Huikang Liu, Weijie Wu, and Anthony Man-Cho So. Quadratic optimization with
orthogonality constraints: explicit łojasiewicz exponent and linear convergence
of line-search methods. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning, pages 1158–1167, 2016.

[25] Sancheng Peng, Yongmei Zhou, Lihong Cao, Shui Yu, Jianwei Niu, and Weijia Jia.
Influence analysis in social networks: a survey. Journal of Network and Computer
Applications, pages 17–32, 2018.

[26] Yuan Zhang, Tianshu Lyu, and Yan Zhang. Cosine: Community-preserving social
network embedding from information diffusion cascades. In Proceedings of the
32nd AAAI Conference on Artificial Intelligence, pages 2620–2627, 2018.

[27] Franco Manessi, Alessandro Rozza, and Mario Manzo. Dynamic graph convolu-
tional networks. arXiv preprint arXiv:1704.06199, 2017.

[28] Rakshit Trivedi, Mehrdad Farajtbar, Prasenjeet Biswal, and Hongyuan Zha. Rep-
resentation learning over dynamic graphs. arXiv preprint arXiv:1803.04051, 2018.

[29] Le-kui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic
network embedding by modeling triadic closure process. In Proceedings of the
32nd AAAI Conference on Artificial Intelligence, pages 571–578, 2018.

[30] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In Proceedings of the 11th ACM International Conference on Web Search
and Data Mining, pages 459–467, 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Methods
	4.1 Static Graph Representation Learning
	4.2 Dynamic Graph Representation Learning
	4.3 Approximated Algorithm in Graph Streams

	5 Experiments
	5.1 Data Sets
	5.2 Comparison with Baseline Methods
	5.3 Supervised Tasks - Vertex Classification
	5.4 Unsupervised Tasks - Network Clustering

	6 Concluding Remarks
	Acknowledgments
	References

