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Abstract

Network tomography using multicast probes enables inference of loss characteristics of internal net-
work links from reports of end-to-end loss seen at multicastreceivers. In this paper we develop estima-
tors for internal loss rates when reports are not available on some probes or from some receivers. This
problem is motivated by the use of unreliable transport control protocols, such as RTCP, to transmit loss
reports to a collector for inference. We use a maximum likelihood (ML) approach in which we apply
the Expectation Maximization (EM) algorithm to provide an approximate value for the ML estimator for
the incomplete data problem. We present a concrete implementation of the algorithm that can be applied
to measured data. For certain classes of models we establishidentifiability of the probe and report loss
parameters, and convergence of the EM sequence to the MLE. Numerical results suggest that these prop-
erties hold more generally. We derive convergence rates forthe EM iterates, and the estimation error of
the MLE. Last, we evaluate the accuracy and convergence ratethrough extensive simulations.

Keywords: End-to-end Measurement, Network Tomography, Missing Data, Maximum Likelihood Es-
timation, EM Algorithm, Multicast, RTP, RTCP.

1 Introduction

1.1 Motivation

As the Internet grows in size and diversity, its internal performance becomes ever more difficult to measure.

Any one organization has administrative access to only a small fraction of the network’s internal nodes,

whereas commercial factors often prevent organizations from sharing internal performance data.

One promising technique that avoids these problems,Multicast Inference of Network Characteristics

(MINC), uses end-to-end multicast measurements to infer link-level loss rates and delay statistics by ex-

ploiting the inherent (and well characterized) correlation in performance observed by multicast receivers.

These measurements do not rely on administrative access to internal nodes since the inference can be calcu-

lated using only information recorded at the end hosts.

The key intuition for inferring packet loss is that the arrival of a packet at a given internal node can

be directly inferred from the packet’s arrival at one or morereceivers reached from the source by paths

through that node; if it reaches the receivers, it must have reached the node. Conditioning on arrival at

�This work was supported in part by DARPA and the AFL under agreement F30602-98-2-0238
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a descendent, we can determine the probability of successful transmission to and beyond the given node.

Efficient inference algorithms are given in [2] for loss, [15] for delay distributions, [9] for delay variances,

and [3] for inferring the logical multicast tree topology itself. Extensions of these ideas to unicast (where

multicast is replaced by a packet pair [5] or a packet stripe [10]) have also been proposed.

All of the algorithms based on the MINC methodology rely on the availability of complete information

from the receivers. This poses a serious problem in their deployment. For example, one promising avenue of

deployment is through the extension of RTCP, the RTP [20] control protocol, to provide extended loss reports

[11]. By piggybacking MINC loss reports on a standard transport protocol, one can effectively co-opt regular

applications and their traffic to form a lightweight impromptu measurement infrastructure that encompasses

many host end-points. However, loss reports are typically transmitted unreliably. Furthermore, the RTP

standard imposes a constraint on the bandwidth that can be used by RTCP packets. Thus, this deployment

will result in the availability of onlyincomplete data setsfor the purpose of network inference. The need

to analyze incomplete data sets also arises in the extensionof the MINC techniques to unicast as they rely

on collecting data from subsets of receivers. Thus there is aneed to modify the inferencing techniques to

be able to handle incomplete data sets. Using loss as an example, the goal of this paper is to extend the

techniques developed in [2] to handle incomplete data.

1.2 Contribution

In this paper we adapt the multicast inference techniques proposed in [2] to perform inference of internal

network characteristics when data is missing from some of the receivers. The data for the inference com-

prises measured end-to-end loss of multicast probes sent from a source to a number of destinations but

where only a subset of the destinations report their observations for each multicast probe. This is used to

infer the loss characteristics of each logical link of the tree joining the source to the destinations, i.e., of the

composite paths between its branch points.

A simple approach to manage the impact of missing data would be to restrict inference to subsets of

probes and receivers for which complete data is available, then patch together such estimators to draw

inference on the complete tree. There are three drawbacks with this approach: (i) unless the coverage is

sufficiently rich, it is not possible to infer transmission probabilities for all links; (ii) unless the missing data

distribution obeys certain conditions–known as Missing Completely at Random (MCAR)–such estimators

are not consistent in that they remain biased even in the limit of infinitely many probes; and (iii) even under

MCAR such estimators are not generally efficient, i.e., there can exist estimators with smaller variance.

For these reasons we follow a more direct approach. We extendthe Maximum Likelihood (ML) for-

mulation of [2] to include the occurrence of missing data. The link loss probabilities are then estimated

by the Maximum Likelihood Estimator (MLE) arising from the corresponding likelihood function. In con-

trast to the results in [2], it is not generally possible to determine the MLE by simple root finding when

data is missing. Instead, we use the Expectation Maximization (EM) algorithm [7] to generate an approx-

imating sequence to the corresponding MLE. We now outline the remainder of the paper and the detailed

contributions.

In Section 2 we set up models for the multicast tree, probe propagation, and report loss, and review some
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results for loss inference from complete data from [2]. We describe the model frameworks for missing data

and give two examples: inference using unicast stripes [10], and inference using extended RTCP reports,

as proposed in [1]. In Section 3 we set up the incomplete data likelihood function, and describe the EM

algorithm and its application to the present model. We establish conditions required for convergence of the

EM iterates to the MLE. We translate these into conditions onthe measured data. If these conditions are

not fulfilled, it is possible to pass instead to one or more related inference problems on subtrees for which

the conditions are fulfilled. In Section 4 we tailor the EM algorithm to our specific problem and present an

algorithm for use on measured data. Section 5 addresses conditions for identifiability of model parameters

and relates these to topological properties of families of subtrees on which complete measurements can be

made. Convergence of the MLE as the number of probes grows is investigated in Section 6; in particular we

obtain explicit expressions for the asymptotic variance ofthe MLE for a class of simple models. A related

expression for the convergence rate of the EM iterates is obtained in Section 7. The algorithm from Section 4

is evaluated in model-based simulation and using experimentally derived traces in Section 8. We conclude

in Section 9. Details of most proofs are deferred to Section 10.

1.3 Related work

Several tools and methodologies exist for characterizing link-level behavior from end-to-end multicast mea-

surements. However, most of these require complete data from all of the receivers in the multicast tree.

These include the MINC methodologies for losses, [2], and for delay, [15, 9] and topology characteristics,

[3]. These methodologies have been adapted to unicast through the transmission of packet pairs [5] or

stripes [10] to pairs of receivers within a distribution tree. The data then consists of observations from pairs

of receivers and can be interpreted as observations in whichthe data is missing from all but these pairs of

receivers. The methodology presented in [10] treats the problem as separate problems corresponding to each

pair of receivers and produces link estimates by averaging over all of the estimates produced from each of

these receiver pair problems.

In [5], the authors introduce an additional link parameter,namely the conditional probability that the

second packet within a pair is not lost given that the first packet is not lost. The authors then treat the

outcomes of the each of the packets in a pair within the tree asunobserved data and use the EM algorithm

to infer the link probabilities and conditional link probabilities. Due to the complexity of this task, they

propose a heuristic for inferring these parameters. Because we rely on multicast, our task is simplified as

we only have one set of link parameters to infer. Our solutionmethodology uses the EM algorithm to obtain

a solution to the likelihood equation. Coates and Nowak haveextended their EM-based, unicast-based

techniques to infer delay statistics in [6].

Last, there exist several approaches that infer round trip link behavior. These includepathchar [8, 12]

and the linear algebraic approach of [21]. The former infersloss, delay, and available link bandwidth

whereas the latter infers round trip link delays. The formerrequires considerable time to converge. Both

lose accuracy with asymmetric round trip paths.
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2 Models for Probe and Report Transmission

2.1 Tree model

Let T = (V;L) denote a logical multicast tree with nodesV and linksL. We identify one node, the root

�, with the source of probes, and set of leavesR � V with the set of receivers. We assume that the root

has single child, denoted by1. If not, then we can treat separately the trees descended through each child of

�, each one having this property. Each nodek, apart from the root�, has a parentf(k) such that(f(k); k)

is a link inL. We will sometimes refer to the link(f(k); k) that terminates atk simply as linkk. Define

recursively the ancestors ofk by fn(k) = f(f

n�1

(k)) with f

0

(k) = k. We sayj is descended fromk, and

write j � k, if k = f

n

(j) for somen 2 N. The set of children ofk, namelyfj 2 V : f(j) = kg is denoted

by d(k). T (k) = (V (k); L(k)) will denote the subtree rooted atk; R(k) = R \ V (k) is the set of receivers

in T (k). DefineU = V n f�g.

2.2 Packet loss model

We assume a Bernoulli loss model in which probes are independent and each probe is successfully trans-

mitted across linkk with probability�
k

. Thus the progress of each probe down the tree is described byan

independent copy of a stochastic processX = (X

k

)

k2V

as follows.X
�

= 1. X
k

= 1 if the probe reaches

nodek 2 V and0 otherwise. IfX
k

= 0, thenX
j

= 0;8j � k. Otherwise,P [X
j

= 1jX

f(j)

= 1] = �

j

and

P [X

j

= 0jX

f(j)

= 1] = 1� �

j

. We adopt the convention�
�

= 1 and denote� = (�

i

)

i2V

. P
�

will denote

the distribution ofX.

2.3 Inference of link loss from complete data

When a probe is sent down the tree from the root�, we cannot observe the whole processX. We assume

that, at most, we know only the outcome(X
k

)

k2R

2 
 = f0; 1g

R that indicates whether or not the probe

reached each receiver. When the entire outcome for a probe isknown (i.e. X
k

for all receiversk), we

shall say that we have complete data from that probe. In [2] itwas shown how the link probabilities can be

determined from the the distribution of (complete) outcomes. We briefly review this.

Consider an experiment in whichn probes are dispatched from the root�. Each probei = 1; : : : ; n

gives rise to an independent realizationX(i) of the probe processX. We call

X

cplt

= (X

(i)

k

)

i=1;:::;n

k2R

(1)

the complete data for the experiment. For each outcomex 2 
, let n(x) denote the number of probes

i = 1; : : : n for whichX(i)

k

= x

k

for all k 2 R. Let

p

�

(x) = P

�

[X

k

= x

k

; 8k 2 R] (2)

denote the probability of an outcomex 2 
. Thecompletedata log-likelihood to obtain the dataX
cplt

=

(X

(1)

; : : : ;X

(n)

) can be written in terms of then(x) as

L

c

(�) = logP

�

[X

cplt

] =

X

x2


n(x) log p

�

(x): (3)
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We characterize the Maximum Likelihood Estimator (MLE) of�, namely, arg max
�

L(�), as follows.

For k 2 V , let A
k

be the probability that the probe reachesk. ThusA
k

=

Q

j�k

�

k

, the product of the

probabilities of successful transmission on each link betweenk and the root�. For eachk 2 U set



k

= E

�

[_

j2R(k)

X

j

] (4)

i.e.,
k

is the probability that a probe reaches at least one receiverdescended from nodek. Denote byb
k

the

corresponding empirical quantity, i.e., the proportion ofthen probes that reach at least one leaf descended

from k:

b

k

= n

�1

n

X

i=1

_

j2R(k)

X

(i)

j

: (5)

In what follows we consider� to lie in the open parameter setA = f� j �

k

2 (0; 1); k 2 Ug. Some of the

results of the following theorem also hold on subsets of the boundary ofA.

Theorem 1 ([2]) Assume� 2 A.

(i) For eachk 2 U ,

(1� 

k

=A

k

) =

Y

j2d(k)

(1� 

j

=A

k

); (6)

with the convention that an empty product occurs whenk 2 R is zero.

(ii) Let G = f(

k

)

k2U

: 

k

> 08k; 

k

<

P

j2d(k)



j

8k 2 U n Rg. For each 2 G andk 2 U , (6) has

a unique solutionH
k

() in the interval(
k

; 1).

(iii) Whenb 2 G, the likelihood equation,

@L

c

@�

k

(�) = 0; k 2 U (7)

has as a unique solution

b�

k

= K

k

(b) := H

k

(b)=H

f(k)

(b); k 2 U: (8)

(iv) With probability one, for sufficiently largen, bothb� and the MLE of� lie in A, and are hence equal.

(v) The parameters� are identifiable, i.e.,P
�

= P

�

0 for �; �0 2 A implies� = �

0.

It turns out that Theorem 1(iv) is weaker than required for the present paper. We now establish a stronger

version that provides a test as to whether or notb�

k

is the MLE for finiten.

Theorem 2 Assumeb 2 G. If b� 2 A, then it is the MLE for�.

Remark: Theorem 1(iv) establishes that forn sufficiently large, the MLE lies inA and hence must beb�,

the solution of the likelihood equation. Theorem 2 is more useful from the computational point of view; it

says that providedb� lies inA, a condition that can be checked by inspection, it is the MLE,regardless ofn.

As a consequence of the MLE property,b� is consistent (b�
n!1

�! � with probability 1), and asymptoti-

cally normal (
p

n(b�� �) converges in distribution to a multivariate Gaussian random variable asn!1);

see e.g. [19].
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2.4 Missing data model

We now want to generalize the problem by admitting the possibility that some outcomes may not be com-

pletely known because the receiver variables are missing. LetT = (T

(i)

k

))

i=1;:::;n

k2R

denote then�#R matrix

of missing data indicators, withT (i)

k

taking the value0 if the variableX(i)

k

is missing, andT (i)

k

= 1 if it is

present. The set of observed data and missing data are thus, respectively,

X

obs

= fX

(i)

k

j T

(i)

k

= 1g and X

mis

= fX

(i)

k

j T

(i)

k

= 0g: (9)

In this paper we assume that the missing data mechanism is ignorable in a sense we now describe;

see [14] for further details. We treatT as a random variable whose distribution is parameterized bysome

quantity �. P

�

will denote the distribution ofT under�, andP
�;�

the joint distribution ofX
cplt

andT .

We henceforth assume that the missing data ismissing at random(MAR). This is the property that the

distribution of the missing-data mechanismT does not depend on the missing valuesX

mis

. More formally,

we can write the MAR property asP
�

[T j X

obs

;X

mis

] = P

�

[T j X

obs

]. As a consequence of MAR it can be

shown that the joint distribution of the observed data and the missing-data mechanism enjoys the following

factorization property:

P

�;�

[X

obs

; T ] = P

�

[T j X

obs

]P

�

[X

obs

]: (10)

Assuming the parameters(�; �) to be distinct with product parameter spaceA � �, (10) says that the

missing data mechanism is ignorable in that likelihood-based inference for� based on the joint likelihood

P

�;�

[X

obs

; T ] are the same as those based uponP

�

[X

obs

]. Thus for purposes of inferring�, we may ignore

the parameters� of the missing data mechanism. A special case of MAR is datamissing completely at

random(MCAR). With MCAR the missingness probabilities do not depend on any data:P
�

[T j X

obs

] =

P

�

[T ].

2.5 Examples

We describe two applications where data is missing and placethem into the framework described above.

Inference using unicast data. In [10], the authors describe an approach tounicastbased inference in

whichn sets of packets, known as stripes, are transmitted by a source to all receiver pairs. The motivation

is that within each stripe, packets are transmitted back-to-back, and so their loss behavior on common links

should be highly correlated. With perfect correlations (i.e. both packets being either transmitted or lost on

a common link) the stripe has the same behavior as a notional multicast packet that follows the same route

and is subject to the same loss.

We can put each receiver pair in correspondence with a missing data indicator as follows.T (i)

=

(T

(i)

k

)

k2R

identifies the pair of receivers corresponding to thei-th stripe, i.e.,T (i)

j

= T

(i)

k

= 1, T (i)

l

= 0,

l 2 R; l 6= j; k if the pair of receivers isj; k 2 R, j 6= k. Thus missingness of data from probei at receiver

` occurs becausèis not a member of the pair of receiver nodes selected for the probe.
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If the receiver pairs are chosen independently from stripe to stripe using the same distribution, then

T = (T

(i)

)

n

i=1

is a sequence of IID random variables. ThusT has the following distribution,

P[T = t] =

n

Y

i=1

P[T

(i)

= t

(i)

]; 8t 2 f0; 1g

#R (11)

where

P[T

(i)

= t] =

X

j;k2R;j 6=k

1ft

j

= 1g1ft

k

= 1g

Y

l2Rnfj;kg

1ft

l

= 0gp

j;k

; 8t 2 f0; 1g

#R

Herep
j;k

is the probability that the pair of receiversj and k is chosen. If we further assume thatT is

independent ofX, then the data is MCAR.

Another variation has the sender cycle through the pairs in around robin fashion. Let� : R

2

n f(j; j) :

j 2 Rg ! f1; : : : ;mg be a one-to-one mapping where�(j; k) is the position in the round robin schedule

where a probe is sent to receiver pairj andkandm = #R � (#R � 1). The joint probability distribution

for T is given by (11) with

P[T

(mi+d)

= t] =

X

j;k2R;j 6=k

1f�(j; k) = dg1ft

j

= 1g1ft

k

= 1g

Y

l2Rnfj;kg

1ft

l

= 0g; (12)

for all t 2 f0; 1g#R

; i � 0; 1 � d � m.

Inference using RTP/RTCP. The Reliable Transport Protocol (RTP) [20] is a protocol forthe transfer

of data from a single sender to one or more receivers. Associated with it is a control protocol RTCP that

allows receivers to broadcast loss behavior to each other and to a third party. Typically, the observations

are batched and each batch is broadcast as a single report. The third party can collect the observations

and apply inference methodologies to them. However, these reports are typically not transmitted reliably.

Consequently, the data collector must deal with missing information.

In the current implementation of RTCP, receivers broadcastonly average loss rates. Extensions to the

protocol, proposed in [1], enable receivers to report on thereception of individual packets. However, due

to the constraints imposed on reporting volumes by RTCP, it may not be possible to report on every packet.

The omission of certain reports to fulfill this constraint isthus an additional source of missingness.

We propose a simple model for this scenario. Consider receiver j 2 R that collects loss observations

and sends them to a data collector. LetffA

i;j

g

1

i=1

g

j2R

be a set of random variables whereA
i;j

is the

number of observations placed in thei-th report by thej-th receiver. LetffC(k)

j

g

1

k=1

g

j2R

be indicator

random variables that represent the outcome of the transmission of thek-th loss report by receiverj to the

data collector; it is received by the collector ifC(k)

j

= 1 and lost otherwise. Define�(i; j) = minfl :

P

l�1

k=1

A

k;j

< i �

P

l

k=1

A

k;j

g, i.e.,�(i; j) identifies which report thei-th observation from receiverj is

placed in. LetffS(i)

j

g

1

i=1

g

j2R

be a set of indicator random variables that represent whether probei was

actually selected for reporting from receiverj; it is selected ifS(i)

j

= 1. Then the missing data indicator

T

(i)

j

, i = 1; : : : ; n, j 2 R can be expressed asT (i)

j

= S

(i)

j

C

(�(i;j))

j

.
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Under strong simplifying assumptions, namely that the random variablesA;S andC are independent of

X, the model is MCAR. However we can posit a situation in which independence may not hold in practice.

Suppose the collector lies at a nodek in the multicast tree. Then the path for reports from receivers in

R n R(k) to k intersects with the paths of probe packets from� to receivers inR(k). Thus we may expect

the missingness variablesfT (i)

j

: j 2 R n R(k)g to be correlated with the receiver statefX
j

: j 2 R(k)g.

This is precisely the type of model allowed when data is MAR.

2.6 Approaches to the problem of missing data

It is tempting to reduce the problem of inference with missing data to a composite of known inferences by

performing inference using subsets of probes for which reports reached leaf descendents of a given node.

A simple approach to manage the impact of missing data is to restrict inference to subsets of probes and

receivers for which complete data is available, then patch together such estimators to draw inference on the

complete tree. A minimal way to do this would be to use only probes for which reports were received from

all receivers. A more sophisticated approach is the following:

(a) For eachk 2 R, estimatebA
k

= b

k

by the fraction of observed reports indicating probe reception.

(b) For eachk 2 U nR letR
k

denote the set of subsets ofR(k) in which each member is the descendant

of a different child ofk. For eachr 2 R
k

, use only probes with reports received from allj 2 r to

form the fractionsb
k

(r) andfb
j

(r)g

j2r

. EstimatebA
k

= (

P

r2R

k

H

k

(b(r))=#R

k

, i.e., averaging

over ther 2 R
k

.

(c) Estimate link transmission probabilitiesb�
k

=

b

A

k

=

b

A

f(k)

.

However, such “patchwork” approaches have three pitfalls:

(i) Unless the coverage is sufficiently rich, it is not possible to infer transmission probabilities for all

links. If not all nodes are branch points of some “complete data” subtree, it follows from one of our

later results that one cannot infer the transmission probability for the link that terminates at that node.

In the minimal case, there may benoprobes for which reports are received from all probes.

(ii) Such estimators are not consistent unless data is MCAR;we illustrate with an example in Section 3.1.

Furthermore, checking whether a given data set is consistent with the MCAR property may be a

complex task since the number of consistency conditions that would have to be checked grows expo-

nentially with the number of leaves in the tree.

(iii) Even under MCAR such estimators are not generally efficient, i.e., there can exist estimators with

smaller variance.

For these reasons we instead extend the previous ML approachto cover the missing data case directly:

under general conditions ML-estimators are consistent andefficient. This is the subject of the next section.
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3 Estimation of Link Loss Rates with Incomplete Data

In this section we present the likelihood functionL for the incomplete data. Determination of the cor-

responding ML estimator for the link probabilities turns out to be significantly more complex that in the

complete data case. We turn to a standard iterative method, the EM algorithm, to derive an approximating

sequence to the incomplete data MLE.

3.1 Description of incomplete data and the likelihood function

The correspondingincompletedata likelihood function is the marginal distribution function of the observed

data; formally we write this as
R

P

�

[X

obs

;X

mis

]dX

mis

. We now obtain an explicit expression. In order

to represent both missing and observed data in a compact form, we extend the set of outcomes to the set




�

= f0; 1; ug

R, whereu is used to denote that a given receiver datum is missing.u

�

= (u; : : : ; u) 2 


�

will denote the outcome in which data is missing from all receivers. Lett 2 f0; 1g

R denote the generic

vector of missing data indicator variables. With each sucht andx 2 
 we then associate an elementx(t) of




� through

x

k

(t) =

�

u if t
k

= 0

x

k

otherwise
; k 2 R: (13)

An inverse of the above map associates withx

�

2 


� its missing data indicatort(x�) by

t

k

(x

�

) =

�

0 if x�
k

= u

1 otherwise
; k 2 R: (14)

The set of complete outcomesx that can give rise to an incomplete outcomex

� is the set


(x

�

) = fx 2 
 j x

�

k

= x

k

, t

k

(x

�

) = 1g; and conversely 


�

(x) = fx

�

2 


�

j x 2 
(x

�

)g (15)

is the set of complete outcomesx� that can be obtained from a complete outcomex. The equivalent condi-

tionsx 2 
(x

�

) andx� 2 


�

(x) can be rewritten asx(t(x�)) = x

�.

The probability to record an incomplete outcomeX

(i)

(T

(i)

) = x

� is denoted

q

�;�

(x

�

) = P

�;�

[X

(i)

(T

(i)

) = x

�

]: (16)

Now fX(i)

(T

(i)

) = x

�

g = fX

(i)

2 
(x

�

)g \ fT

(i)

= t(x

�

)g. Using the MAR property (10) we factorize

q

�;�

(x

�

) = p

�

�

(x

�

)�(x

�

) (17)

where

p

�

�

(x

�

) = P

�

[X

(i)

2 
(x

�

)] =

X

x2
(x

�

)

p

�

(x) and �(x

�

) = P

�

[T

(i)

= t(x

�

) j X

(i)

2 
(x

�

)]: (18)

Without loss of generality we have taken the missingness probabilities themselves as parameters�. Note that

by the MAR property, for anyx 2 
(x

�

), P
�

[T

(i)

= t(x

�

) j X

(i)

2 
(x

�

)] = P

�

[T

(i)

= t(x

�

) j X

(i)

= x].

Sinceft(x�) j x� 2 


�

(x)g = f0; 1g

R, the conditional probabilities� satisfy
X

x

�

2


�

(x)

�(x

�

) = 1; 8x 2 
: (19)
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Now let m(x

�

) denote the number of probesi = 1; : : : ; n for which X

(i)

(T

(i)

) = x

�. Due to the

factorization property (10), the log-likelihood functionlog
Q

n

i=1

q

�;�

(X

(i)

(T

(i)

)) can be written as a sum of

L(�) =

X

x

�

2


�

m(x

�

) log p

�

�

(x

�

); (20)

with a term that is independent of�. Thus, for the purposes of obtaining an ML estimate of�, we need only

considerL(�). We refer toL as the incomplete data likelihood function. Note that the term inm(u

�

) makes

no contribution toL since
(u�) = 
 and hencep�
�

(u

�

) = 1. Hence the sum in (20) can be restricted to




�

0

= 


�

n fu

�

g.

Example: 2 leaf tree with MAR data. We now give an example to show how the complete data MLE,

applied to those probes for which complete data is available, generally produces an inconsistent estimate of

the link probabilities in the MAR case. Consider a two leaf tree where data is MAR from the right leaf; the

probability of missingness thus depends on the data observed at the left leaf. The leaf probabilities obey:

q(11) = �

1

�

2

�

3

�(11); q(10) = �

1

�

2

�

3

�(10); q(01) = �

1

�

2

�

3

�(01); (21)

q(00) = (�

1

+ �

1

�

2

�

3

)�(00); q(1u) = �

1

�

2

�(1u); q(0u) = (1� �

1

�

2

)�(1u) (22)

Using the four instances of (19), namely,

x = 11 : �(11) + �(1u) = 1; x = 10 : �(10) + �(1u) = 1; (23)

x = 01 : �(01) + �(0u) = 1; x = 00 : �(00) + �(0u) = 1; (24)

(21) reduces to

q(11) = �

1

�

2

�

3

�(11); q(10) = �

1

�

2

�

3

�(11); q(01) = �

1

�

2

�

3

�(01); (25)

q(00) = (�

1

+ �

1

�

2

�

3

)�(01); q(1u) = �

1

�

2

�(11); q(0u) = (1� �

1

�

2

)�(01) (26)

Now, the complete data MLE based on the corresponding complete data empirical probabilities

bq(11); bq(10); bq(01); bq(00) is

b�

1

=

(bq(11) + bq(10))(bq(11) + bq(01))

bq(11)(bq(11) + bq(10) + bq(01) + bq(00))

; b�

2

=

bq(11)

bq(11) + bq(01)

; b�

3

=

bq(11)

bq(11) + bq(10)

(27)

In the MCAR case, all�(x�) appearing in (25) would be equal, and substitutingq for bq in (27) one recovers

�

1

; �

2

; �

3

: the estimator is consistent. But in the general MAR case oneobtains only

�

1

(�

2

�(11) + �

2

�(01))

�

1

�

2

�(11) + (1� �

1

�

2

)�(01)

6= �

1

;

�

2

�(11)

�

2

�(11) + �

2

�(01)

6= �

2

; �

3

; (28)

i.e. only estimation of�
3

is consistent.
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3.2 Application of the EM algorithm

We can in principle estimate the link probabilities� by the incomplete data MLE�� = arg max
�

L(�) in

(20) calculated from the counts of incomplete outcomesm = fm(x

�

) : x

�

2 


�

0

g. However, we have been

unable to obtain a direct solution to the incomplete-data likelihood equation. Instead, we employ a standard

statistical method,the Expectation-Maximization (EM) algorithm [7], to obtain an iterative approximation

b�

(`)

; ` = 0; 1; : : : to a stationary value of the incomplete data likelihood. Thealgorithm comprises the

following steps:

(i) Initialization. Pick some initial link probabilities�(0). This could be done, e.g., by settingb�(0)

= b�,

the complete data MLE determined from the counts of completeoutcomesm if these are non-zero.

When complete data is not available, we can use the fact (see the proof of Theorem 5 in [2]) that
k

=

A

k

+O(k�k

2

) to approximate�
k

= A

k

=A

f(k)

� 

k

=

f(k)

= (1�

k

)=(1�

f(k)

) � 1+

k

�

f(k)

.

This suggests the initial value

b�

(0)

k

= 1 + b

k

� b

f(k)

: (29)

(ii) Expectation.For eachb�(`) find the conditional expectation of the complete log-likelihood given the

incomplete dataQ(�0; b�(`)

) = E

b�

(`)

[L

c

(�

0

) jm].

(iii) Maximization.Find the maximizer of the condition expectation:b�(`+1)

= arg max
�

0

Q(�

0

; b�

(`)

)

(iv) Iteration. Iterate steps (ii) and (iii) until some termination criterion is satisfied.

Fork 2 V , define the conditional probabilities for a probe to reachR(k) as

b

k;�

= E

�

[_

j2R(k)

X

k

jm]: (30)

For notational convenience we write the conditional probability b
k;b�

(`)

derived from the iterateb�(`) asb(`)
k

.

Theorem 3 Assumeb(`) 2 G. Then

�

(`+1)

k

= K

k

(b

(`)

); k 2 U (31)

provided thatK(b(`)) lies inA.

We now investigate the question of convergence of the iterates b�(`). Whereas the complete data like-

lihood function can be shown to derive from a standard exponential family (see the proof of Theorem 2),

the incomplete data likelihood function derives only from acurved exponential family. Thus we cannot use

results based on standard exponential families (see e.g. [22]) alone to conclude convergence ofb�(`) to ��. We

now establish conditions under which the sequence exists inA and converges to the MLE for the incomplete

data problem.

Theorem 4 Assumeb(`) 2 G andK(b(`)) 2 A for all `.

(i) L(b�(`)

) converges to some limitL.

11



(ii) If f� 2 A j L(�) = Lg is discrete,b�(`) converges to some�� that is a stationary pointL, i.e.
@L

@�

(�

�

) = 0.

(iii) If L is unimodal,b�(`) converges to the incomplete data MLE��.

3.3 Calculation of the EM iterates

An algorithm for the calculatingK
k

() for a given 2 G has been detailed in [2]. It remains then to provide

an algorithm for the calculation of theb
�

. Letn
0

= n�m

�

(u

�

) denote the number of probes for which the

data is not entirely missing. Observe that

b

k;�

=

X

x

�

2


�

0

m(x

�

)

n

0

b

k;�

(x

�

) (32)

where

b

k;�

(x

�

) = E

�

[_

j2R(k)

X

k

jX

�

= x

�

]: (33)

Let R(k; x�) = fj 2 R(k) j t

j

(x

�

) = 1g denote the receivers descended fromk from which data is

observable. Leth(k; x�) denote the closest ancestorh of k for which a packet has been observed to reach at

least one descendant leaf, i.e.,

h(k; x

�

) = inf

j�k

fj : y

�

j

= 1g; (34)

wherey�
k

= _

�

j2R(k)

x

�

j

. Whenk � j, let d(j; k) denote that child ofj that is an ancestor (or possibly equal

to) k, i.e.,d(j; k) = fi 2 d(j) : i � kg.

Theorem 5 Wheny�
k

= 1, b
k;�

(x

�

) = 1. Wheny�
k

< 1,

b

k;�

(x

�

) =

c

k

� b

k

c

d(h;k)

Y

k�i�d(k;h)

8

<

:

�

i

Y

j2d(i)nd(i;k)

c

j

9

=

;

(35)

whereh = h(k; x

�

), and fork � i � h,

b

k

= P

�

[_

j2R(k)

X

j

= 0 j X

f(k)

= 1]; c

k

=

8

<

:

1; if R(k; x�) = ;

P

�

[_

j2R(k;x

�

)

X

j

= 0 j X

f(k)

= 1]

otherwise
: (36)

Remark: it was found in [2] that the problem of determining the� for a tree with complete data factors into

the problem of solving a set of depth two tree inference problems, one for each nodek 2 V n R. For each

leafk one constructs the logical tree with root� having single childk, andd(k) leaf-children. Furthermore,

for a general tree, the problem could be mapped onto that for abinary tree by the insertion of lossless links.

However, this method cannot be applied when there is missingdata. This is because the form (35) forb(`)
k;�

includes variables from receivers other than those descended fromk.
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3.4 Topology and data conditions

Theorems 3 and 4 required the iteratorsb(`) to lie in the domainG. In this section we specify conditions

on the data in order for these requirements to hold. In some cases where the conditions do not hold, it is

possible adjust the problem by passing to one or more subtrees of the original tree, for which the conditions

do hold. The requirements for Theorems 3 and 4 are then fulfilled: see Lemma 1 below. The conditions

describes here are similar to those applied in the case of complete data in [2].

Non-identifiable subtrees. Order the elements of the setf0; 1; ug asu < 0 < 1 and extend the usual

maximum operator_ on f0; 1g to an operation_� on f0; 1; ug, respecting the order in an obvious manner.

For a given realization(X;T ) of the single probe and missing data process, define the quantities

Y

�

k

= _

�

j2R(k)

X

j

(T ) (37)

i.e., the extended maximum ofX
j

(T ) over all receiversj descended fromk. Y �
k

takes the valueu if all data

fromR(k) on a given probe is missing,1 if a probe was observed to reach at least one receiver inR(k), and

0 otherwise. We first eliminate from consideration subtrees on which no data is missing but whose leaves

were reached by no probes. Fork 2 V , letD
k

denote the event that for some probei, X(i)

j

(T

(i)

) 6= 0 for

somej 2 R(k). We will assume

D

k

occurs for allk 2 V (38)

If (38) does not hold, the following procedure reduces the inference problem to one for which it does. IfD
k

fails, we remove from further consideration the subtreeT (k) rooted atk. If this pruning leaves the parent

f(k) with only one offspringj, the remaining tree is no longer a logical multicast tree. Tomake it so we

remove the link(f(k); j) and identify the nodesj andf(k). The consequence is that we will only able to

identify the characteristics of the composite link joiningj to f

2

(j) of the original tree. Performing these

operations for allk at whichD
k

fails, we obtain a tree for which (38) holds.

In general, it is not possible to attribute a transmission probability, even of zero, to individual links in

T (k), since we cannot distinguish the link or links with zero transmission rate. An exception to this is when

D

k

fails for a leaf nodek, butD
f(k)

holds at the parent nodef(k). In this case we may estimateb�
k

= 0.

Except in this case, we flag allf�
j

: j � kg as unknown.

Links with perfect transmission. Let D0

k

denote the complement of the eventfX(i)

j

(T

(i)

) = 1;8j 2

R(k); i = 1; : : : ; ng. WhenD0

k

fails, lossless transmission is reported for all probes to all receivers inR(k).

The effect is to positionK(b
�

) on the boundary ofA, since it follows thatK
j

(b

�

) = 1 for all j 2 R(k).

Although this is not a problem for computation, it takes us out of the domain of application of Theorems 2,

3 and 4. The formal application of these results requires that

D

0

k

holds for allk 2 V . (39)

If (39) does not hold, the following procedure reduces the inference problem to a set of one or more for

which it does. WhenD0

k

fails, we setb�
j

= 1 for all nodesj 2 V (k), and omit these nodes from further

13



consideration. We then spawn a set of separate inference problems by forming the set of subtrees not

containingk that are rooted at ancestors ofk. This is the set of treesfT (j; `) j j � k; ` 2 d(j); ` 6� kg,

whereT (j; `) has verticesfjg [ V (`) and linksf(j; `)g [ L(`).

Model Conformance. We also need a condition to ensure that estimated quantitiesb lie in G. Let D00

k

be the event thatk has childrenj; ` 2 d(k) such thatX(i)

j

(T

(i)

) = 1 andX(i)

`

(T

(i)

) 6= 0. Without this

condition, probe losses on different subtrees descended from k, conditional on the probe having reachedk,

are correlated. This is because each probe is observed on no more than one such subtree. Henceforth we

assume

D

00

k

holds for all anyk 2 V n R. (40)

If D00

k

fails, we adjust the tree by removing the link(f(k); k) from the tree and identifying its endpoints

k andf(k). In the original tree, we will only be able to identify the characteristics of the composite links

joining f(k) to the childrend(k). The procedure is iterated if necessary until (40) holds.

Conditions (38) and (40) enable us to fulfill some assumptions in Theorems 3 and 4. We will henceforth

assume that they hold.

Lemma 1 When (38) and (40) hold,b
�

2 G for any� 2 A.

3.5 Example: the two-receiver tree

In the simplest case we can establish unimodality ofL

c

directly, and thus conclude convergence of the EM

iterates to the incomplete data MLE. Consider the two receiver tree with root� having a single child1

whose children are the leaf nodes2 and3. In the two receiver tree, we enumerate
 = f11; 01; 10; 00g and




�

0

= f11; 01; 10; 00; 1u; u1; 0u; u0g. It is not difficult to determine that theb
k;�

(x

�

) are as given by the

following table:
x

�

b

1;�

(x

�

) b

2;�

(x

�

) b

3;�

(x

�

)

11 1 1 1

10 1 1 0

01 1 0 1

00 0 0 0

1u 1 1 �

3

u1 1 �

2

1

0u

�

1

�

2

�

3

�

1

+�

1

�

2

0

�

1

�

2

�

3

�

1

+�

1

�

2

u0

�

1

�

2

�

3

�

1

+�

1

�

3

�

1

�

2

�

3

�

1

+�

1

�

3

0

These yield

n

0

b

2;�

= m(11) +m(10) +m(1u) +m(u1)�

2

+m(u0)

�

1

�

2

�

3

�

1

+ �

1

�

3

n

0

b

3;�

= m(11) +m(01) +m(u1) +m(1u)�

3

+m(0u)

�

1

�

2

�

3

�

1

+ �

1

�

2

n

0

(b

2;�

+ b

3;�

� b

1;�

) = m(11) +m(1u)�

3

+m(u1)�

2

The EM iterates(K
1

(b

�

);K

2

(b

�

);K

3

(b

�

)) of (�
1

; �

2

; �

3

) are then

K

1

(b

�

) =

b

2;�

b

3;�

b

2;�

+ b

3;�

� b

1;�

; K

2

(b

�

) =

b

2;�

+ b

3;�

� b

1;�

b

3;�

; K

3

(b

�

) =

b

2;�

+ b

3;�

� b

1;�

b

2;�
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Theorem 6 In the two-receiver tree, the incomplete data likelihood functionL is unimodal, and henceb�(`)

converges to the incomplete data MLE provided thatK(b

(`)

) 2 A for all `.

4 Network Inference Algorithm

In order to carry out inference on measured data, we express the calculation ofb in Theorem 5 as an

algorithm. We start by constructingb
k

; c

k

andy�
k

recursively. Clearly theb
k

satisfy

b

k

=

�

�

k

; k 2 R;

�

k

+ �

k

Q

j2d(k)

b

j

; k 2 U n R

(41)

Thec
k

satisfy a similar recursion:

c

k

=

8

<

:

1; k 2 R; x

�

k

= u

�

k

; k 2 R; x

�

k

6= u

�

k

+ �

k

Q

j2d(k)

c

j

; k 2 U nR

(42)

They�
k

satisfy the recursion

y

�

k

=

�

x

�

k

; k 2 R

_

�

j2d(k)

y

�

j

; k 2 V n R

(43)

We formally specify an algorithm for the calculation of theb
k;�

in Figure 1. The main procedure

comprises two phases. In the first phase,set ybc, calculates they�
k

, b
k

andc
k

passing up the tree from the

leaves. The second phase,set g, then calculates theb
k;�

traversing the tree from the root� downwards.

h

k

plays the role ofd(k; h) while e plays the role of�
i

Q

j2d(i)nfd(i;k)g

c

j

. On a given path down the tree,

ag = 1 until a nodek with y

�

k

= 0 is first encountered.ag = 0 on all calls toset g below k. The

identity of the nodeh(i; x�) is then maintained in calls at nodesi below the childj of k (lines 10–13).

We note there is some redundancy in the algorithms, which canbe avoided in implementations.b
k

and

c

k

need not be calculated at nodesk for which y�
k

= 1, since these values are not used. Thec

k

depend

only on the missing data indicatort(x�), and so need be calculated once for each set incomplete outcomes

fx

�

2 


�

: t(x

�

) = tg having the same missing data indicatort. Theb
k

do not depend onx�, and so may be

calculated once in advance; in particularb

k

= c

k

whenx� has no missing data, i.e., whenx�
k

6= u 8k 2 R.

Lastly, they�
k

need only be calculated once for each probe with distinctx

�, and once at the start of the

sequence of iterations.

5 Identifiability and Missing Data

We address the question of identifiability, i.e., whether there exists a unique set of model parameters giving

rise to a given distribution of observable data. The multicast inference method exploits correlations between

end-to-end measurements on intersection paths. Conversely, we expect that if the sets of receivers on which

data from a given probe is observable are insufficiently rich, it will not be possible to infer the loss rates on

all links. We give below a simple example that demonstrates this. In this section we shall derive conditions–

between the topology and the subsets at which data is observable–that must be satisfied in order that the

model parameters can be identified.
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1. procedure main(T ; �; x

�

)

2. set ybc(T ; �; x

�

; �);
3. set g(T ; �; 1; �; �; 1);
4. return(fg

k

: k 2 V g);

1. procedure set ybc(T ; �; x

�

; k)

2. if(d(k) == ;) then f

3. y

�

k

:= x

�

k

;

4. b

k

:= �

k

;

5. if(x

�

k

== u) then fc

k

:= 1; g

6. elsefc

k

:= �

k

; g

7. g

8. elsef

9. foreach(j 2 d(k) f

10. (y

�

j

; b

j

; c

j

) := set ybc(T ; �; x

�

; j);
11. g

12. y

�

k

:= _

�

j

y

�

j

;
13. b

k

:= �

k

+ �

k

Q

j2d(k)

b

j

;
14. c

k

:= �

k

+ �

k

Q

j2d(k)

c

j

;
15. g
16. return(y�

k

; b

k

; c

k

);

1. procedure set g(T ; �; e; k; h; ag)

2.
3. if(y

�

k

== 1) then f

4. g

k

:= 1;
5. foreach(j 2 d(k))f

6. set g(T ; �; 1; j; �; 1);
7. g

8. g

9.
10. elsef
11. if(ag == 1) then fh

k

:= k; g

12. elsefh

k

:= h; g

13. g

14. g

k

:= e(c

k

� b

k

)=c

h

k

;
15. foreach(j 2 d(k))f

16. set g(T ; �; e�

k

Q

i2d(k)nfjg

c

i

; j; h

k

; 0);
17. g

18. g

Figure 1: Algorithms for determiningb
k;�

(x

�

), as returned from the proceduremain.
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Consider a parameterized family of distributionfP
�

: � 2 �g with vector parameter�, and letF be

some function on�. We say thatP
�

identifiesF (�) whenP
�

= P

�

0 impliesF (�) = F (�

0

). Here,F will

be the identity, or some other projection of components of�. In an MAR model,P
�;�

identifies(�; �) iff

q

�;�

(x

�

) = q

�

0

;�

0

(x

�

);8x

�

2 


�

) (�; �) = (�

0

; �

0

): (44)

A simple example of MCAR data that is not identifiable is a two leaf tree in which, for each probe indepen-

dently, data is missing from exactly one leaf. Then the only non-trivial equations (17) become

q

�;�

(1u) = �

1

�

2

�(1u); q

�;�

(0u) = (1� �

1

�

2

)�(0u) (45)

q

�;�

(u1) = �

1

�

3

�(u1); q

�;�

(u0) = (1� �

1

�

3

)�(u0)

The RHS of these equations are invariant w.r.t. the transformations�
1

7! k�

1

, �
2

7! �

2

=k, �
3

7! �

3

=k.

With eachS � R we associate the minimal logical multicast treeT
S

= (V

S

; L

S

) that spans the root�

andS. This is obtained by first finding the minimum spanning tree of� andS in T . The branch points in

the spanning tree, together with� andS, form the node setV
S

. To defineL
S

, the parentf
S

(k) in T
S

, of

each node inU
S

:= V

S

n f�g, is the�-minimal j in V

S

such thatj � k in T . A path inT that connects

two nodes inV
S

is called anS-segment.K
S

(i) = fj 2 V : i � j � f

S

(i)g is theS-segment terminating

at i 2 U

S

. Giveni 2 V , �
S

(i) denote the node inV
S

that terminates theS-segment containingi, i.e,. that

for which i 2 K

S

(�

S

(i)). Likewise,�
S

(i) =

Q

j2K

S

(i)

�

j

denotes the composite transmission probability

along the segmentK
S

(i). �
S

= f�

S

(i) : i 2 U

S

g will denote the collection of such probabilities.

LetD
S

be the#U
S

�#U incidence matrix of the nodes ofU in the segments ofT
S

, i.e.,D
S;jk

= 1 if

k 2 K

S

(j) and0 otherwise. Setting�
S

(k) = log�

S

(k) andx
k

= log�

k

we have that

�

S

= D

S

x (46)

for anyS � R. Before stating and proving results on identifiability, we note that there exists at least one

solution, log�, to (46). LetP
�;�;S

denote the distribution of the reports from nodes inS. We give two

conditions for identifiability of�.

Theorem 7 LetT be a canonical loss tree andfS
i

g

m

i=1

a collection of subsets ofR.

(i) U = [

n

i=1

U

S

i

if and only if the equationsf�
S

i

= D

S

i

xg

m

i=1

have a unique solutionx.

(ii) AssumeP
�;�;S

i

identifies�
S

i

for eachi. ThenfP
�;�;S

i

g

m

i=1

identifies� iff either (and hence both) of

the conditions of part (i) are satisfied.

Remarks. Uniqueness of the solution to (46) is determined by the structure of theD
S

, which depend only

on the topology and the choice of theS, not on�
S

. Consequently, when uniqueness holds, it does so for

any additive metric. Thus one can devise a test for identifiability based on path length in terms of number of

links. Furthermore, if� is not identifiable, the procedure can be modified to determine which links can be

solved.

We say thatcomplete data is availablefrom a subsetS if �(x�) > 0 for all x� such thatR(�; x�) = S,

i.e,. for which reports are received from all receivers inS and no others. LetS
�

denote the set of subsets
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S of R for which complete data is available, and�
c

denote the set of missingness parameters� for which

U = [

S2S

U

S

.

Theorem 8 Restrict the parameter space toA��

c

and assume data is MCAR. ThenP
�;�

identifies(�; �).

Although we do not have a corresponding result for general MAR models, Theorem 8 is sufficient to

enable further analysis of simple models in the following sections.

6 Asymptotics for Large Numbers of Probes

Let �� = arg max
�

L(�) denote the incomplete data MLE arising from (20). In this section we examine the

asymptotic properties of�� as the number of probesn grows, without specific reference to the EM algorithm.

Theorem 9 Assume data is MCAR. The incomplete data MLE�� is consistent, i.e.,lim
n!1

�� = � almost

surely.

We now describe the asymptotic variance of�� for large numbers of probesn in the regime of small

loss probabilities�. We calculate the expected Fisher information matrix for the incomplete data problem,

i.e., the matrixI(�; �) = [I

ij

(�; �)]

ij2U

, whereIij(�) = �E

@

2

L(�)

@�

i

@�

j

. Under conditions that we establish

below, the inverse ofI(�), suitably rescaled, is the asymptotic variance of��.

Our approach is to decompose the Fisher information matrix as a sum over subtrees for which complete

data is present at the leaves. In the original incomplete data problem for the logical multicast topologyT ,

the countsn
S

= fm(x

�

) j R(�; x

�

) = Sg, for eachS � R, can be considered as a set of counts of complete

outcomes onT
S

stemming from those probes for which reports were received only from nodes inS. Thus

the incomplete data log-likelihood function can then be decomposed as follows:

L(�) =

X

S�R:S 6=;

L

c

(T

S

;n

S

; �

S

); where L

c

(T

S

;n

S

; �

S

) =

X

x

�

:R(�;x

�

)=S

m(x

�

) log p

�

S

(x

�

S

) (47)

andx�
S

= fx

�

k

: k 2 Sg is the data inx� that is observable atS. The corresponding decomposition of the

expected Fisher information matrix is

I

ij

(�) =

X

S�R:S 6=;

X

k`2U

S

I

k`

S

(�

S

)

@�

S

(k)

@�

i

@�

S

(`)

@�

j

(48)

whereIjk
S

(�

S

) = �E

@

2

L

c

(T

S

;n

S

;�

S

)

@�

S

(j)@�

S

(k)

. Let N
S

= nP[R(T

(i)

(X

(i)

)) = S] be the mean number of probes

with data observable exactly atS, andW
S

(i) =

P

j2K

S

(�

S

(i))

�

j

the sum of link loss rates on theS-segment

containingi.

Theorem 10 (i) When� 2 �

c

and hence when�� is consistent,
p

n(�� � �) converges in distribution to

a mean zero multivariate Gaussian random variable with covariance matrixn�1I(�).

(ii) When data is MCAR,Iij =
P

S�R:S 6=;

N

S

W

S

(i)

�

�

S

(i)�

S

(j)

+O(1) as�! 0.

18



Example: uniform report transmission. Let reports be transmitted independently with uniform proba-

bility p 2 (0; 1]. ThenN
S

= np

#S

p

#R�#S . For eachS � R, and nodè 2 U

S

, let C
S

(`) denote the

matrix onU with entriesCij

S

(`) = 1=W

S

(i) if i; j 2 K

S

(`) and0 otherwise. Fors 2 f1; : : : ;#Rg let

C

s

=

P

S:#S=s

P

`2U

S

C

S

(`). Then

I = nC � (1 +O(�)); where C =

#R

X

s=1

p

s

(1� p)

#R�s

C

s

(49)

LetP
K

denote the orthogonal projection onto the nullspace of a symmetric matrixK, and recursively define

matricesK
1

; : : : ;K

#R

byK
1

= C

1

, and

K

s

= P

K

1

+:::K

s�1

C

s

P

K

1

+:::K

s

; K

1

= C

1

: (50)

Let r
0

denote the minimals for whichP
K

1

+:::+K

s

= 1. SinceC
#R

= 1, such ar
0

� #R exists.

Proposition 1 p

r

0

C

�1 converges to the pseudo-inverse ofK

r

0

asp! 0.

Let I
2

denote the Fisher information arising from measurements onbinary subsets, i.e.,I
2

is the sum ob-

tained by restricting (48) to binary subsetsS.

Proposition 2 (i) I � eI
2

> 0, and hence0 < I

�1

� I

�1

2

, in the order of positive linear operators.

(ii) Proposition 1 holds withr
0

= 2.

Thus we have established:

Proposition 3 Assume independent report loss with uniform probabilityp. Then
p

n(����) converges to a

multivariate Gaussian random variable with mean zero and covarianceG(�; p), wherelim
p!0

p

2

G(�; p) =

KI

2

+O(k�k

2

) as�! 0, whereKI

2

is the pseudo-inverse ofK
2

.

Remark: Proposition 3 suggests that we approximate the variance of��

k

by (KI

2

)

kk

=(np

2

) whenp and

� are small, andn is large.

Example: uniform report transmission from binary trees Consider the family of binary trees with2r

leaves,r = 1; 2; : : :, with small uniform link loss probabilities� and uniform small report transmission
ratep. Let v(r) = (v

1

(r); : : : ; v

r+1

(r)) denote the set of unique diagonal elements ofKI

2

=�, the jth

element determining the asymptotic variance on linksj nodes away from the root. Using Mathematica [16]
to perform the algebra, we found the first sixv(r) to be:

v(1) = f

1

3

;

1

3

g; v(2) = f

1

8

;

21

40

;

2

5

g; v(3) = f

3

80

;

49

240

;

25

42

;

3

7

g; v(4) = f

1

96

;

43

672

;

27

112

;

91

144

;

4

9

g;

v(5) = f

5

1792

;

33

1792

;

5

64

;

21

80

;

36

55

;

5

11

g; v(6) = f

3

4096

;

187

36864

;

133

5760

;

153

1760

;

73

264

;

209

312

;

6

13

g (51)

In all cases the estimator variance rises in a given tree on moving away from the root, except falling slightly

at a leaf link as compared with its parent. At a given distancefrom the root, the link variance decreases as

the tree depth increases. Both this trends can be understoodby the intuition that variance should decrease
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Figure 2: 4-RECEIVER BINARY TREE: used in model based simulation of Section 8.1.

when data is available from larger subtrees below a given link of interest. Considering the root and leaf links

only, the values in (51) are consistent with the forms

v

1

(r) =

r

r + 2

1

2

2(r�1)

; v

r+1

(r) =

r

2r + 1

(52)

7 Convergence Rates for the EM iterates

We now consider convergence of the EM iterates themselves. LetM denote the map onRU
+

that implements

the iteration, i.e., such thatb�(`+1)

=M(b�

(`)

). A Taylor expansion of the iterative map gives

b�

(`+1)

� � � rM � (b�

(`)

� �) (53)

whererM
ij

=

@M

i

@�

j

is the gradient ofM. A standard result [17,x3.9.3] expressesrM = (1 � I

�1

c

I),

with I
c

the complete data information matrix andI the incomplete data information matrix from (48). The

convergence ratio of the iteration is taken as the maximum eigenvalue� for rM.

Our analysis of the convergence ratio is confined to the regime treated in Section 6, namely that of

independent report transmission with small probabilityp, and small link loss probabilities�. In this regime,

we have seen that(I�1
c

)

ij

= n

�1

(�

i

�

ij

+O(k�k

2

) and so from (49)rM(�)

ij

= �

ij

��

i

C

ij

+O(k�k

2

).

Let E(X) denote the set of eigenvalues of a matrixX.

Proposition 4 Assume independent report loss with probabilityp 2 (0; 1) and small uniform probe loss

rate�. The convergence rate� for the EM algorithm obeys� = 1 � p

2

� + O(p

2

(p + �)). where� is the

minimum non-zero eigenvalue of�K
2

.

8 Experiments and Simulations

In order to evaluate the performance of the missing data inference algorithm, we conducted two types of

simulation. First, we used model-based simulation in whichthe model for missing data indicators conformed

20



with the MCAR property. Second, we used a network-based implementation of the RTCP-based reporting

mechanism outlined in Section 2.5. In this case the missing data indicators are not known to conform to

the MAR model. This enabled us to test robustness of the algorithm with respect to violations of the MAR

hypothesis that might occur in a real network application.

8.1 Model-based simulation

We conducted model based simulations on a balanced binary tree with 4 receivers, illustrated in Figure 2.

Probe losses were independent with a uniform loss rate per link. Receiver reports were generated at each

receiver for each probe and were transmitted independentlywith uniform probabilityp. We conducted 100

separate simulation runs, each of 100,000 probes. Initialization ofb�(0) used (29). The termination criterion

for the EM algorithm was that successive iteratesb�(`)

k

should have an absolute difference of less than10

�4

on each linkk.

Figure 3(left) shows the mean and error bars for 95% confidence of link loss rate estimates obtained

using the missing data algorithm. We also display the corresponding quantities for the complete data es-

timator applied to only those probes for which complete reports were available. In both cases the mean

estimate is close to the model loss rate, i.e.�

k

= 0:01. But note the rapid widening of error bars for the full

data algorithm, compared with the missing data algorithm, as the report transmission probability decreases.

From Prop. 3 we expect the standard error of the link loss rateestimates to diverge asp�1 for the missing

data algorithm, regardless of the topology. However, in a 4-leaf tree the number of probes with complete

data is proportional top4. Hence we expect the standard error to diverge asp

�2, with faster divergence for

trees with more receivers. In this example, forp less than0:4, the error bars encompass loss rate0: the

inferred loss from complete becomes statistically indistinguishable from0.

Figure 3(right) breaks down the standard error of the link loss rate estimates according to the location of

the link in the topology links 1, 2 and 4 being representativeof links respectively 0, 1 and 2 links removed

from the root. The experimental standard errors show close agreement with the theoretical values obtained

by inverting the information matrixI in (49). We also show the smallp approximation obtained using

Proposition 3 and the valuesv(2) from (51). The approximation remains reasonable even for quite largep.

8.2 RTCP-based experiments

The RTCP-based simulations used data gathered from a network-based implementation of loss reporting.

Loss reports are embedded in RTCP feedback packets; any collector listening to these can then perform

inference. The basic RTCP reporting mechanism includes only the average loss rate based on sequence

numbers of received packets. An extension of the report format allows the inclusion of a binary vector

indicating receipt or otherwise of a set of packets.

According to the RTP standard [20], the total report volume over all receivers should not exceed 5% of

the source rate. RTCP clients estimate their share of this based upon the reports they hear from the other

receivers, and limit report frequency and size accordingly. Consequently, for a sufficiently large number of

receivers, it will not be possible to report on all probes. Missingness arises then by two mechanisms: the

omission of certain probes from reporting, and the loss of report packets during transmission to the collector.
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Figure 3: VARIANCE OF M ISSING DATA ESTIMATOR IN 4-RECEIVER UNIFORM PROBE AND PACKET

LOSS MODEL: Over 100 simulation runs each of 100,000 probes, uniform link loss� = 0:01, probe trans-
mission ratep from 0:1 to 0:9. LEFT: mean estimate with error bars for95% confidence. Comparison
with estimator using only probes with complete data. RIGHT: standard error depending on link location:
experiment, theory and approximation.

The implementation of extended RTCP-based reporting used in this study has a simulation mode that

enables it to report on packet losses generated on a model topology according to a Bernoulli loss model,

rather than due to packet loss in a real network. The probe source was chosen to have the characteristics

of a GSM audio stream that could act as a probe source in real networks, sending packets at a rate of 50

per second. Since probe losses follow the assumed statistical model, only the missing data indicators can

potentially exhibit departures from our model assumptions. Report thinning and transmission then takes

place in the manner described above.

We collected traces from a 32 receiver balanced binary tree for which the link loss rates were chosen in-

dependently with a uniform distribution between 1% and 10%.The trace comprised reports on 11,956 probe

packets, encompassing about 4 minutes at 50 packets per second. The mean number of reports received for

a given probe was 18.8, so that the proportion of missing reports was 1 - 18.8/32 = 0.413. The maximum

number of reports per probe was 29, i.e. no probe had completedata. Figure 4(left) shows a scatter plot of

the 63 pairs of (actual,inferred) loss rates. The agreementis quiet close, with tight clustering around the line

of slope 1 through the origin. The median relative error overall links was only 4.5%.

Figure 4(right) displays the median, 5th and 95th percentile of the relative error over all links as a

function of the size of a subset of probes used for inference.Note that even with 2000 probes the relative

error is typically less than 50%. Hence we can expect to identify the lossiest links with measurements over

a duration less than 1 minute. The median error is only about 13% for this number of probes.
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relative error over all links as function of number of probes.

9 Conclusions

In this paper we have extended the multicast based method forinferring network internal loss from end-to-

end measurements that was first proposed in [2]. The originalmethod assumed the presence of complete data

specifying the set of end-points reached by each multicast probe. However, the proposed use of the RTCP

transport protocol to transmit measurements inevitably leads to missing data, either through the need to thin

data, or due to loss of reports in transmission. This motivated extending the former approach to work with

missing data. An ad hoc approach of working with subsets of complete data would have several drawbacks:

inference on all links may not be possible; inference would be inconsistent under the types of correlation

between probe data and missingness that could reasonably occur in this context (see Section 2.5); and the

estimators are not generally efficient. These considerations motivated the use of a more generally applicable

scheme that accommodates the missing data directly, under more general conditions on the missing data

mechanism.

This paper extended the Maximum-Likelihood approach of [2]to encompass missing data. We applied

the EM algorithm to generate an iterative approximation to the corresponding MLE. We analyzed conver-

gence rates for the EM algorithm itself, and for the MLE as thenumber of probes grows, and showed how to

calculate these rates explicitly for a particular class of models. We tested an implementation of the algorithm

in model-based simulations with known missingness statistics, and also in traces gathered from an imple-

mentation of the RTCP-based report transfer method. These results showed (i) the reduction in estimator

variance, as compared with the ad hoc approach, where applicable; and (ii) accuracy of inferred loss rates

compared with model or directly measured rates in the simulation; (iii) robustness of the approach under

potential departures from the model assumptions on the missingness statistics in the RTCP-based applica-

tion. In the RTCP-based experiments the median estimation error on a 32 receiver tree was only about 13%

for 2,000 probes, and was typically less than about 50%. Thusinference sufficiently accurate to identify the
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lossiest links could be performed on measurements collected over about a minute.

Future work is planned in two directions. First, we want to apply the same general methodology to the

estimation of other internal characteristics, such as delay, utilization and topology itself, by adapting the

framework of the present paper to work on estimation of thesequantities with complete data, as performed

in [3, 9, 15] A second direction is to develop more specific models of the missing data mechanism that could

be used in a parametric approach to estimation with missing data. Lastly, we intend to publish elsewhere

details of the RTCP reporting mechanism that motivated thisstudy.

Acknowledgment We thank Francesco Lo Presti for some useful suggestions.

10 Proofs of Theorems

Proof of Theorem 2: We first renderL
c

(�) into the canonical form of a standard exponential family.

� Denote by0 and1 the elementsx of 
 with x

k

all 0 or all 1 respectively.

� Forx 2 
, denote byW 0

(x) those nodesk 2 U for whichx
j

= 0 for all j 2 R(k). LetW (x) be the

�-maximal elements ofW 0

(x). Note thatW (1) = ;.

� For eachk 2 U andi 2 f0; 1g defineq
k

(i) = P

�

[X

j

= i;8j 2 R(k)jX

f(k)

= 1].

� Define new parametersf�
k

: k 2 Ug by �
k

= log(q

k

(0)=q

k

(1)):

� Observe that
p

�

(x)

p

�

(1)

=

Y

k2W (x)

q

k

(0)

q

k

(1)

=

Y

k2W (x)

e

�

k

: (54)

We interpret the product over; for x = 1 as1.

� The map takingA to its image� under the change of parameters� 7! � is invertible. To see this note

that given
P

x2


p

�

(x) = 1, (54) fixes thep
�

(x) in terms of the�. These in turn determine the
k

,

and hence the�
k

, by Theorem 2.

� Writing n(1) = n�

P

x6=1

n(x), and recalling thatW (1) = ;, we find

L

c

(�) =

X

x2


n(x)

X

k2W (x)

�

k

+ n log p

�

(1) =

X

k2U

N

k

�

k

� nc(�);

whereN
k

=

P

x2
:k2W (x)

n(x), andc(�) is the reparameterization of� log p

�

(1) in terms of�:

c(�) = log

X

x2


Y

k2W (x)

e

�

k

: (55)

The expression (55) has the form of a standard exponential family, with the log-likelihood expressed in

terms of the natural parameters� = f�

k

: k 2 Ug, sufficient statisticsN = fN

k

: k 2 Ug, and cumulant

24



c(�). Sincec(�) is finite for all � 2 R

U the family can be considered full. However, the parameter space of

interest is the open subset� � R

U that is the image ofA under the reparameterization� 7! �.

Since the mappingA ! � : � 7! � is invertible, the parameters� are identifiable by Theorem 2(v),

and hence the exponential family is affinely independent. (Asimple argument shows that natural parameters

in an open set are identifiable iff the exponential family is affinely independent). A well-known result (see

e.g. [13, Ex. 6.6.3.]) for standard exponential families then says that the MLE is the solution�0 of

N

k

= E

�

0

[N

k

]; k 2 U (56)

provided this� lies in the interior of�. But clearly
P

j�k

N

j

= n(1 � b

k

), and hence finding the solution

to (56) is equivalent to finding the solution�0 to



k

= E

�

0

[b

k

]; k 2 U: (57)

Providedb 2 G, then by Theorem 1,b� is the unique such solution, and hence if it lies inA it is the MLE.

Proof of Theorem 3: Observe thatE
�

[L

c

(�

0

)jm] =

P

x2


E

�

[n(x)jm] log p

�

0

(x). Hence maximizing

Q

b�

(`)

;�

0

over�0 is equivalent to finding the complete-data MLE, but withn(x) replaced byE
b�

(`)

[n(x)jm]

throughout. In particular,b
k

, being a linear combination of then(x), gets replaced byb(`)
k

. Now if b�(`)

2 A

then it is not hard to see thatb
b�

(`)

(x

�

) 2 G for eachx�, and henceb(`) 2 G sinceG is convex. The result

then follows from Theorems 1 and 2.

Proof of Theorem 4: The condition says that the sequence of EM iterates exists inA. Parts (i) and

(ii) follow from Theorem 6 of [22]. This is because: (a) by Theorem 1(iii), b�(`+1) is stationary for� 7!

Q(�; b�

(`)

); (b) r
�

Q(�

0

; �) is clearly continuous for(�0; �) 2 A � A; and (c) By Theorem 2,L
c

comes

from a regular exponential family and hencekb�(`+1)

� b�

(`)

k ! 0 as`!1; see remark 3(vi) in [22]. Part

(iii) then follows from Corollary 1 in [22]

Proof of Theorem 5: For the proof we observe the following Markov property of theprobe processX:

(M) Conditioned onX
i

= 1, the distributions of the sets of variablesfX
k

: k 2 R(i)g are independent

for differenti 2 d(k).

If y�
k

= 1, then_
j2R(k)

x

j

= 1, and henceb
k;�

(x

�

) = 1. Suppose instead thaty�
k

< 1. LetQ(k) denote

the event thatX
j

= 0 for all j 2 R(k; x

�

) if R(k; x�) 6= ;, otherwise takeQ(k) as the universal set in the

underling probability space. Sincey�
h

= 1 for h = h(k; x

�

), thenfX�

= x

�

g � fX

h

= 1g and hence

fX

�

= x

�

g = fX

h

= 1g \Q(d(h; k)) \ fX

�

j

= x

�

j

: j 2 R n R(d(h; k))g. This yields that

P

�

[_

j2R(k)

X

j

= 1 j X

�

= x

�

] =

P

�

[f_

j2R(k)

X

j

= 1g \Q(d(k; h)) j X

h

= 1]

P

�

[Q(d(k; h)) j X

h

= 1]

; (58)

where we have used property (M), and the fact thatP[A j B \ C \D] = P[A j C j B] whenA andC are

conditionally independent ofD givenB.
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The denominator in (58) is justc
d(h;k)

. To treat the numerator, observe that

P

�

[f_

j2R(k)

X

j

= 1g \Q(i) j X

f(i)

= 1] (59)

= P

�

[f_

j2R(k)

X

j

= 1g \Q(d(k; i)) \ fX

i

= 1g \

j2d(i)nd(k;i)

Q(j) j X

f(i)

= 1]

= P

�

[f_

j2R(k)

X

j

= 1g \Q(d(k; i)) j X

i

= 1 j X

f(i)

= 1]P

�

[X

i

= 1 j X

f(i)

= 1]

Y

j2d(i)nd(k;i)

P

�

[Q(j) j X

i

j X

f(i)

]

= P

�

[f_

j2R(k)

X

j

= 1g \Q(d(k; i)) j X

i

= 1] �

i

Y

j2d(i)nd(k;i)

c

j

:

Here we have usedQ(j) = \

i2d(j)

Q(i), the Markov property (M), and the fact thatfX
k

= 1g �

fX

f(k)

= 1g. Applying (59) repeatedly to the numerator of (58), we obtain the formP

�

[f_

j2R(k)

X

j

=

1g \Q(k) j X

f(k)

= 1]

Q

k�i�d(k;h)

�

i

Q

j2d(i)nfd(i;k)g

c

j

.

The first term is in this product isP
�

[f_

j2R(k)

X

j

= 1g \ Q(k) j X

f(k)

= 1] = c

k

P

�

[f_

j2R(k)

X

j

=

1g j Q(k) j X

f(k)

= 1] = c

k

(1�P

�

[_

j2R(k)

X

j

= 0 j X

f(k)

= 1]=c

k

) = c

k

� b

k

, and the stated result (35)

follows.

Proof of Lemma 1: We first show that for eachk 2 V there is somex� 2 


�

0

with m(x

�

) > 0 for which

b

k;�

(x

�

) > 0. By condition (38) there isx� with m(x

�

) > 0, for which eitherx�
j

= 1 or x�
j

= u for some

j 2 R(k). In the former caseb
k;�

(x

�

) = 1– orx�
j

= u; in the latter case it is not hard to see in Theorem 5

thatc
k

> b

k

and henceb
k;�

(x

�

) > 0. Sinceb
k;�

(x

�

) � 0 for all x� 2 


�

0

, thenb
k;�

> 0.

By (40) then for eachk 2 V nR there existsx� withm(x

�

) > 0 such thatb
k;�

(x

�

) = 1, and childrenj; `

of k for whichb
j;�

(x

�

) = 1 while b
j;�

(x

�

) > 0. Henceb
k;�

(x

�

) <

P

j2d(k)

b

j;�

(x

�

). Since by definition

b

k;�

(x

�

) �

P

j2d(k)

b

j;�

(x

�

) for all x�, we haveb
k;�

<

P

j2d(k)

b

j;�

.

Taking these relations over all relevantk, we conclude thatb
�

2 G.

Proof of Theorem 6: Reparameterizing the incomplete data likelihood functionL in terms of, we
obtain

L = n(11) log(

2

+ 

3

� 

1

) + n(10) log(

1

� 

3

) + n(01) log(

1

� 

2

) + n(00) log(1� 

1

)

+n(1u) log(

2

) + n(u1) log(

3

) + n(0u) log(1� 

2

) + n(u0) log(1� 

3

)

Writing this form asL =

P

x�2


�

0

n(x

�

)L

x

� , it suffices to show that�L
x

� is jointly convex in
1

; 

2

; 

3

for eachx�. This follows from the fact, established by direct computation, that the principal minors of the

Hessian matrices�[@2L
x

�

=@

i

@

j

]

ij=1;2;3

are non-negative. Convergence then follows from Theorem 4

and the standing assumptions (38) and (40).

Remark: the method used in the proof appears not to extend to more general trees, not even binary ones.

Proof of Theorem 7: (i) We establish that ifU = [

m

i=1

U

S

i

, then there is a unique solutionx. We

do this by contradiction. Suppose that there exists a nodek 2 V such that there does not exist a unique
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value forx
k

. Pick any such�-maximalk. By assumption,k terminates some segmentK
S

i

(k) and hence

x

k

= �

S

i

(k)�

P

k�j�f

S

i

(k)

x

j

. By the maximality assumption, all terms on the RHS are unique, and hence

so isx
k

.

We establish now that if there is a unique solutionx, thenU = [

m

i=1

U

S

i

. This is done by contradiction.

First, note if the solutionx is unique, it must bex
k

= log�

k

. Second, note that we only need to consider a

branch pointk 2 U nR. Assume there existsk =2 [

m

i=1

U

S

i

nR. Then every segment containingv 2 d(k) also

containsk. Usingx
k

= log�

k

we can reduce the family of equationsf�
S

i

= D

S

i

xg

m

i=1

to the following set

of equations describing the behavior ofx

k

andx
v

, v 2 d(k),

x

k

+ x

v

= �

0

v

; 8v 2 d(k) (60)

where�0
v

is the log of the probability of a reception of a packet atv 2 d(k) given that it was received at

f(k). The�0
v

are determined by the link probabilities other than�

k

and�
v

, v 2 d(k), and the original�
S

i

.

However, these equations do not have a unique solution, resulting in a contradiction.

(ii) The solutionx to f�
S

i

= D

S

i

xg

m

i=1

is not unique if and only if there is more that one set of link

probabilities� giving rise to the samef�
S

i

g

m

i=1

and hence the samefP
�;�;S

i

g

m

i=1

.

Proof of Theorem 8: With MCAR the missingness probabilities do not depend on anydata, and so

we can replace�(x�) with �(t(x

�

)). Since
P

x

�

:t(x

�

)=t

0

p

�

�

(x

�

) = 1 for all t0 2 f0; 1g

R, q
�;�

(x

�

) =

q

�

0

;�

0

(x

�

);8x

�

2 


� implies� = �

0.

Consider now anyS � R for which complete data is available. Then�(t(x�)) are equal and hence

strictly positive for anyx� with R(�; x

�

) = S. Henceq
�;�

(x

�

) = q

�

0

;�

0

(x

�

) impliesp
�

(x

�

) = p

�

0

(x

�

). By

Theorem 1(iv),�
S

is identifiable. Then� is identifiable by Theorem 7(ii) since� 2 �

c

.

Proof of Theorem 9: The proof of mirrors that of Theorem 3(ii) in [2] which in turnuses Lemma 7.54 in

[19]. Although not mentioned there, the latter result requires identifiability. This follows from the MCAR

assumption and Theorem 8.

Proof of Theorem 10: We first show thatI
S

is positive definite if complete data is available fromS. By

standard arguments (see e.g. Prop 2.84 in [19]) one writesI

jk

S

(�

S

) = Cov

�;�

(

@L

c

(T

S

;n

S

;�

S

)

@�

S

(j)

;

@L

c

(T

S

;n

S

;�

S

)

@�

S

(k)

).

If Ijk
S

(�

S

) is not positive definite, there exists some nonzeroc 2 R

U

S for which c � I
S

(�

S

) � c = Var

�;�

(c �

@L

c

(T

S

;n

S

;�

S

)

@�

S

) = 0. This happens ifc�@Lc(TS ;nS

;�

S

)

@�

S

= 0, almost surely, or, equivalently, ifc�
@ log p

�

S

(x

�

S

)

@�

S

=

0 for all x�
S

, since�(x�) > 0 by assumption. Repeating the argument of Theorem 4(ii) in [2], this requires

c = 0.

Observe that@�S
@�

= B(�

S

)D

S

B

�1

(�) whereB(�) is the diagonal matrix with entries from�. Thus

I �

P

S2S

�

B

�1

(�)D

T

S

B(�

S

)I

S

(�

S

)B(�

S

)D

S

B

�1

(�), in the order of positive linear operators. Since

the kernel of a sum of non-negative definite operators is the intersection of their kernels, the sum is positive

definite iff\
S2S

�

ker(D

S

) = f0g, which happens iff the equationsf�
S

= D

S

xg

S2S

�

have a unique solution

x, which is guaranteed by Theorem 7(i) and the assumption that� 2 �

c

.
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(ii) Let S 2 S
�

. Note�
S

(k)=�

i

= D

S;ki

(1+O(k�k)). With data MCAR, the�(x�) are equal for anyx�

with R(�; x

�

) = S, and henceEm(x

�

) = N

S

p

�

�

(x

�

) = N

S

p

�

S

(x

�

S

). From Theorem 5 of [2],N�1

S

I

S

(�

S

)

has inverse�
S

for which �k`
S

= �

S

(k)�

k`

+ O(k�

S

k

2

). HenceIk`
S

(�

S

) =

N

S

�

S

(k)

(�

k`

+ O(k�

S

k). Finally,

observe that�
S

(�

S

(i)) =W

S

(i) +O(k�k

2

). Putting these together with (48) the result follows.

Proof of Proposition 1: RewriteC =

P

#R

s=1

p

s

C

0

s

whereC 0
s

=

P

1�t�s

C

t

� (�1)

s�t

�

n�t

s�t

�

. Observe that

the definition ofK
s

is invariant under replacement ofC
s

byC 0
s

in (50) sinceP
K

1

+:::+K

s�1

C

s

0

P

K

1

+:::+K

s�1

=

0 for s0 < s. Let W
s

denote the unitary matrix that diagonalizesK
s

and setW =

Q

r

0

i=1

W

s

. (Since the

ranges of theK
s

are disjoint, the variousW
s

commute). Then up to unitary transformation underW , we

can writeC is block diagonal form

C =W

0

B

B

B

@

pA

11

(p) p

2

A

12

(p) � � � p

r

0

A

1r

0

(p)

p

2

A

21

(p) p

2

A

22

(p) � � � p

r

0

A

2r

0

(p)

...
...

. . .
...

p

r

0

A

r

0

1

(p) p

r

0

A

r

0

2

(p) � � � p

r

0

A

r

0

r

0

(p)

1

C

C

C

A

W

T (61)

whereA
ij

(p) = A

T

ji

(p), and each submatrixA
ij

converges to someA
ij

asp ! 0 such that the block

matrix with A

ss

as thesth diagonal element and zero elsewhere is unitarily equivalent to K

s

underW .

By construction, theA
ss

are invertible, and hence so are theA
ss

(p) for sufficiently smallp. The block

diagonal representation ofC can be inverted inductively as follows. Assume the block submatrixB
[s�1][s�1]

comprising the firsts � 1 blocks can be inverted and thatB�1

[s�1][s�1]

is O(p1�s) asp ! 0. This condition

is trivially satisfied fors = 2. Now writeB
[s][s]

as a two-by-two superblock matrix

B

[s][s]

=

�

B

[s�1][s�1]

B

[s�1] s

B

s [s�1]

p

s

A

ss

(p)

�

(62)

ThenB�1

[s][s]

= D

s;1

(p) �D

�1

s;2

(p) where

D

s;1

(p) =

 

B

�1

[s�1][s�1]

�p

�s

B

�1

[s�1][s�1]

B

[s�1] s

A

�1

ss

(p)

�p

�s

A

�1

ss

(p)B

s [s�1]

B

�1

[s�1][s�1]

p

�s

A

�1

ss

(p)

!

(63)

D

s;2

(p) =

 

1� p

�s

B

[s�1] s

A

�1

ss

(p)B

s [s�1]

B

�1

[s�1][s�1]

0

0 1� p

�s

B

s [s�1]

B

�1

[s�1][s�1]

B

[s�1] s

A

�1

ss

(p)

!

(64)

NowB

[s�1];s

= O(p

s

) asp! 0, from which it follows that

B

[s;s]

(p) =

�

0 0

0 p

�s

A

�1

ss

�

+O(p

1�s

): (65)

Consequently,B�1

[ss]

= O(p

�s

) asp ! 0, completing the induction step. The statement of the Proposition

then follows from (65) by takings = r

0

.

Proof of Proposition 2: (i) In the given model,N
S

> 0 for all subsetsS of R, and henceI � I

2

. Since

each node inU � R has at least two descendent leavesU = [

#S=2

U

S

and henceI
2

> 0 by an argument
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similar to that in Theorem 7(i). Now ifA � B > 0 then0 < 1� a � 1� b < 1 wherea = A=(2kAk) and

b = B=(2kAk). Sincek1�ak; k1�bk < 1, a�1 = (1�(1�a))

�1

=

P

1

i=0

(1�a)

i

<

P

1

i=0

(1�b)

i

= b

�1,

whence the result follows.

(ii) Consider inference performed by using only measurements from binary setsS. I
2

= pQ

1

+p

2

Q

2

for

someQ
1

andQ
2

independent ofp, and henceI�1
2

isO(p�2). By (i), I�1 � I

�1

2

, which precludesr
0

> 2

in Proposition 1. We concluder
0

= 2 by showing thatK
1

has0 as an eigenvalue, for thenr
0

> 1. Assume

that the root� as a unique child1. If not, partition theT into disjoint subtrees with nodes descended from

each child of�, then apply the following argument to each subtree. Letv denote the element ofRU with

v(1) = 1, v(j) = �1 for j 2 d(1), andv(k) = 0 otherwise. Observe that for eachk 2 R, theC
fkg

(k)

ij

are

equal fori; j 2 f1; d(k; 1)g. SinceC
1

=

P

k2R

C

fkg

, thenC
1

� v = 0.

Proof of Proposition 4: max E(rM) = 1��minE(C) +O(�)). From Propositions 1 and 2 we know

thatC takes the block diagonal form (61) withr
0

= 2. From this is follows that each eigenvalue ofC

takes the formpiv
i

(p) + O(p

i+1

) for somei 2 f1; 2g, wherelim
p!0

v

i

(p) 2 E(A

ii

). Since0 62 E(A
ii

),

p

�2

minE(C)! minE(A

22

) asp! 0, and hence the result follows.
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[3] R. Cáceres, N.G. Duffield, J.Horowitz F. Lo Presti, D. Towsley, “Statistical Inference of Multicast Network
Topology”, in Proc. IEEE Conf. on Decision and Control, Phoenix, AZ, Dec. 1999.

[4] R. Carter, M. Crovella, “Measuring bottleneck link-speed in packet-switched networks,”Performance Evalua-
tion, 27&28, 1996.

[5] M. Coates, R. Nowak. “Network loss inference using unicast end-to-end measurement”,Proc. ITC Conf. IP
Traffic, Modeling and Management, Sept. 2000.

[6] M.J. Coates and R. Nowak, “Network Delay Distribution Inference from End-to-end Unicast Measurement,” to
appear inProc. IEEE ICASSP, May 2001.

[7] A.P. Dempster, N.M. Laird, D.B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm
(with discussion)”, J. Roy. Statist. Soc. Ser., vol. 39, pp.1–38, 1977.

[8] A.B. Downey. “Using pathchar to estimate Internet link characteristics,”Proc. SIGCOMM’99Sept. 1999.

[9] N.G. Duffield and F. Lo Presti, “Multicast Inference of Packet Delay Variance at Interior Network Links”, in
Proc. IEEE Infocom 2000, Tel Aviv, March 2000.

[10] N.G. Duffield, F. Lo Presti, V. Paxson, D. Towsley, “Inferring link loss using striped unicast probes,” to appear
in Proc. IEEE Infocom 2001, Anchorage, Alaska, April 22-26,2001.
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