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Abstract

Network tomography using multicast probes enables infaref loss characteristics of internal net-
work links from reports of end-to-end loss seen at multicas¢ivers. In this paper we develop estima-
tors for internal loss rates when reports are not availablsame probes or from some receivers. This
problem is motivated by the use of unreliable transportrptotocols, such as RTCP, to transmit loss
reports to a collector for inference. We use a maximum liiaid (ML) approach in which we apply
the Expectation Maximization (EM) algorithm to provide grpeoximate value for the ML estimator for
the incomplete data problem. We present a concrete impletiem of the algorithm that can be applied
to measured data. For certain classes of models we estatdistifiability of the probe and report loss
parameters, and convergence of the EM sequence to the MlrBeNeal results suggest that these prop-
erties hold more generally. We derive convergence ratethéEM iterates, and the estimation error of
the MLE. Last, we evaluate the accuracy and convergencéwategh extensive simulations.

Keywords: End-to-end Measurement, Network Tomography, Missing Ddximum Likelihood Es-
timation, EM Algorithm, Multicast, RTP, RTCP.

1 Introduction
1.1 Motivation

As the Internet grows in size and diversity, its internalfpenance becomes ever more difficult to measure.
Any one organization has administrative access to only dl$maation of the network’s internal nodes,
whereas commercial factors often prevent organizatiays sharing internal performance data.

One promising technique that avoids these problevhdticast Inference of Network Characteristics
(MINC), uses end-to-end multicast measurements to infdelivel loss rates and delay statistics by ex-
ploiting the inherent (and well characterized) correlatio performance observed by multicast receivers.
These measurements do not rely on administrative accestetoal nodes since the inference can be calcu-
lated using only information recorded at the end hosts.

The key intuition for inferring packet loss is that the aatiwf a packet at a given internal node can
be directly inferred from the packet’s arrival at one or mogeeivers reached from the source by paths
through that node; if it reaches the receivers, it must haaehed the node. Conditioning on arrival at
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a descendent, we can determine the probability of sucddsafsmission to and beyond the given node.
Efficient inference algorithms are given in [2] for loss, [16r delay distributions, [9] for delay variances,
and [3] for inferring the logical multicast tree topologgetf. Extensions of these ideas to unicast (where
multicast is replaced by a packet pair [5] or a packet strijd)[have also been proposed.

All of the algorithms based on the MINC methodology rely oa #vailability of complete information
from the receivers. This poses a serious problem in theloglagent. For example, one promising avenue of
deployment is through the extension of RTCP, the RTP [20frobprotocol, to provide extended loss reports
[11]. By piggybacking MINC loss reports on a standard tramsprotocol, one can effectively co-opt regular
applications and their traffic to form a lightweight imprompneasurement infrastructure that encompasses
many host end-points. However, loss reports are typicadigsmitted unreliably. Furthermore, the RTP
standard imposes a constraint on the bandwidth that candekehysRTCP packets. Thus, this deployment
will result in the availability of onlyincomplete data setff®r the purpose of network inference. The need
to analyze incomplete data sets also arises in the extenitie MINC techniques to unicast as they rely
on collecting data from subsets of receivers. Thus thereniseal to modify the inferencing techniques to
be able to handle incomplete data sets. Using loss as an &xatimg goal of this paper is to extend the
techniques developed in [2] to handle incomplete data.

1.2 Contribution

In this paper we adapt the multicast inference techniquegqgzed in [2] to perform inference of internal
network characteristics when data is missing from someefdéceivers. The data for the inference com-
prises measured end-to-end loss of multicast probes semt drsource to a number of destinations but
where only a subset of the destinations report their obensafor each multicast probe. This is used to
infer the loss characteristics of each logical link of theetjoining the source to the destinations, i.e., of the
composite paths between its branch points.

A simple approach to manage the impact of missing data woeltblyestrict inference to subsets of
probes and receivers for which complete data is availablen patch together such estimators to draw
inference on the complete tree. There are three drawbadhkstiis approach: (i) unless the coverage is
sufficiently rich, it is not possible to infer transmissioropabilities for all links; (ii) unless the missing data
distribution obeys certain conditions—known as Missingrmptetely at Random (MCAR)-such estimators
are not consistent in that they remain biased even in the dihiifinitely many probes; and (iii) even under
MCAR such estimators are not generally efficient, i.e.,al@m exist estimators with smaller variance.

For these reasons we follow a more direct approach. We extentMaximum Likelihood (ML) for-
mulation of [2] to include the occurrence of missing data.e Tink loss probabilities are then estimated
by the Maximum Likelihood Estimator (MLE) arising from thercesponding likelihood function. In con-
trast to the results in [2], it is not generally possible tdetmine the MLE by simple root finding when
data is missing. Instead, we use the Expectation Maxinazg&EM) algorithm [7] to generate an approx-
imating sequence to the corresponding MLE. We now outlimerémainder of the paper and the detailed
contributions.

In Section 2 we set up models for the multicast tree, probpagation, and report loss, and review some



results for loss inference from complete data from [2]. Wecdi&e the model frameworks for missing data
and give two examples: inference using unicast stripes @] inference using extended RTCP reports,
as proposed in [1]. In Section 3 we set up the incomplete detliNood function, and describe the EM
algorithm and its application to the present model. We édistabonditions required for convergence of the
EM iterates to the MLE. We translate these into conditionghenmeasured data. If these conditions are
not fulfilled, it is possible to pass instead to one or morateal inference problems on subtrees for which
the conditions are fulfilled. In Section 4 we tailor the EM@lithm to our specific problem and present an
algorithm for use on measured data. Section 5 addressegionador identifiability of model parameters
and relates these to topological properties of familiesubtrees on which complete measurements can be
made. Convergence of the MLE as the number of probes growsgdstigated in Section 6; in particular we
obtain explicit expressions for the asymptotic variancéhefMLE for a class of simple models. A related
expression for the convergence rate of the EM iterates &imdd in Section 7. The algorithm from Section 4
is evaluated in model-based simulation and using expetatigrderived traces in Section 8. We conclude
in Section 9. Details of most proofs are deferred to Sectn 1

1.3 Related work

Several tools and methodologies exist for characterizitiglevel behavior from end-to-end multicast mea-
surements. However, most of these require complete data ditbof the receivers in the multicast tree.
These include the MINC methodologies for losses, [2], amdi&day, [15, 9] and topology characteristics,
[3]. These methodologies have been adapted to unicastginrtine transmission of packet pairs [5] or
stripes [10] to pairs of receivers within a distributionerd he data then consists of observations from pairs
of receivers and can be interpreted as observations in wh&kata is missing from all but these pairs of
receivers. The methodology presented in [10] treats thiel@noas separate problems corresponding to each
pair of receivers and produces link estimates by averagieg all of the estimates produced from each of
these receiver pair problems.

In [5], the authors introduce an additional link parametennely the conditional probability that the
second packet within a pair is not lost given that the firstkpaiés not lost. The authors then treat the
outcomes of the each of the packets in a pair within the traeabserved data and use the EM algorithm
to infer the link probabilities and conditional link problities. Due to the complexity of this task, they
propose a heuristic for inferring these parameters. Becewsrely on multicast, our task is simplified as
we only have one set of link parameters to infer. Our soluti@thodology uses the EM algorithm to obtain
a solution to the likelihood equation. Coates and Nowak hextended their EM-based, unicast-based
techniques to infer delay statistics in [6].

Last, there exist several approaches that infer rounditiligblehavior. These includeat hchar [8, 12]
and the linear algebraic approach of [21]. The former infess, delay, and available link bandwidth
whereas the latter infers round trip link delays. The formegires considerable time to converge. Both
lose accuracy with asymmetric round trip paths.



2 Models for Probe and Report Transmission

2.1 Tree model

Let 7 = (V, L) denote a logical multicast tree with nod&sand links L. We identify one node, the root
p, with the source of probes, and set of leaves_ V' with the set of receivers. We assume that the root
has single child, denoted Ry If not, then we can treat separately the trees descendaglineach child of

p, each one having this property. Each nédepart from the roop, has a parenf (k) such that(f (k), k)

is a link in L. We will sometimes refer to the linkf (k), k) that terminates at simply as linkk. Define
recursively the ancestors bfby £ (k) = f(f™ *(k)) with f°(k) = k. We sayj is descended from, and
write j < k, if K = f"(5) for somen € N. The set of children ok, namely{j € V : f(j) = k} is denoted

by d(k). T (k) = (V(k), L(k)) will denote the subtree rooted lat R(k) = RN V (k) is the set of receivers

in 7(k). DefineU =V \ {p}.

2.2 Packet loss model

We assume a Bernoulli loss model in which probes are indeypgrathd each probe is successfully trans-
mitted across link: with probability «;,. Thus the progress of each probe down the tree is describad by
independent copy of a stochastic procé&Ss= (X},),cy as follows. X, = 1. X, = 1 if the probe reaches
nodek € V and0 otherwise. IfX; = 0, thenX; = 0,Vj < k. Otherwise,P[X; = 1|X;(;) = 1] = a; and
P[X; = 0|Xy(;) = 1] = 1 — a;. We adopt the conventiom, = 1 and denotex = («;);cv. P, will denote
the distribution ofX .

2.3 Inference of link loss from complete data

When a probe is sent down the tree from the r@otve cannot observe the whole process We assume
that, at most, we know only the outcorti&y)rcr € 2 = {0, 1}# that indicates whether or not the probe
reached each receiver. When the entire outcome for a prokeoisn (i.e. X, for all receiversk), we
shall say that we have complete data from that probe. In [@h& shown how the link probabilities can be
determined from the the distribution of (complete) outcem#&e briefly review this.

Consider an experiment in whieh probes are dispatched from the rgot Each probe = 1,...,n
gives rise to an independent realizati&ii) of the probe proces¥. We call

chlt = (X](gl));g:ellé’n (1)

the complete data for the experiment. For each outcone (2, let n(z) denote the number of probes
i=1,...nforwhichX\" = z; forall k € R. Let

Pa(x) = Po[ Xy = zk, VE € R] (2
denote the probability of an outcomec . Thecompletedata log-likelihood to obtain the dafé., =
(XM, ..., X)) can be written in terms of the(z) as

Lc(a) = log Pa[chlt] = Z n(x) 1nga(.’17). (3)
zeN



We characterize the Maximum Likelihood Estimator (MLE)afnamely, arg mayxL(«), as follows.
Fork € V, let A; be the probability that the probe reachiesThus Ay = Hjtk ag, the product of the
probabilities of successful transmission on each link et and the roop. For each € U set

Yk = EalVjerk)Xj] (4)

i.e., 7 is the probability that a probe reaches at least one recé@ssrended from node Denote byy, the
corresponding empirical quantity, i.e., the proportioritef». probes that reach at least one leaf descended
from k:

Ve=n""Y" vjER(k)XJ('i)' (5)
=1

In what follows we considet: to lie in the open parameter sdt= {« | o, € (0,1),k € U}. Some of the
results of the following theorem also hold on subsets of thandary ofA.

Theorem 1 ([2]) Assumex € A.

() Foreachk € U,
(1 —7e/Ar) = ] (1—/A), (6)

jed(k)
with the convention that an empty product occurs whenh R is zero.

(i) LetG = {(vk)rev : vk > OVE; v < Xjeqmy 73 VE € U\ R}. Foreachy € Gandk € U, (6) has
a unique solutior# () in the interval(-y, 1).

(i) When#7 € G, the likelihood equation,

8£C(oz)zo, keU (7)
ooy,
has as a unique solution
ar = K(¥) == He(3¥) [ Hsm)(7), k € U. (8)

(iv) With probability one, for sufficiently large, botha and the MLE ofx lie in A, and are hence equal.
(v) The parametera are identifiable, i.e.P, = P, for a, o € A impliesa = «'.

It turns out that Theorem 1(iv) is weaker than required ferghesent paper. We now establish a stronger
version that provides a test as to whether ordpts the MLE for finiten.

Theorem 2 Assuméy € G. If @ € A, then it is the MLE fokx.

Remark: Theorem 1(iv) establishes that farsufficiently large, the MLE lies ind and hence must be,
the solution of the likelihood equation. Theorem 2 is morefuisfrom the computational point of view; it
says that provided lies in A, a condition that can be checked by inspection, it is the MiBardless of..

As a consequence of the MLE properdyjs consistent "—3 « with probability 1), and asymptoti-
cally normal ¢/n(a — «) converges in distribution to a multivariate Gaussian ramdariable as. — oo);
see e.g. [19].



2.4 Missing data model

We now want to generalize the problem by admitting the pd#githat some outcomes may not be com-
pletely known because the receiver variables are missiaegl’|l= (T,ﬁ”))f&’{""” denote ther x # R matrix
of missing data indicators, Wim“,gl) taking the value if the variabIeX,EZ) is missing, andl“,gl) = lifitis

present. The set of observed data and missing data are éispgctively,
Xops = {XI TV =1} and X = (X | TV = 0}. 9)

In this paper we assume that the missing data mechanism asaigle in a sense we now describe;
see [14] for further details. We tredtas a random variable whose distribution is parameterizesbhye
quantity 8. P, will denote the distribution ofl” underf, and P, ¢ the joint distribution ofX.;; and7".
We henceforth assume that the missing datmissing at randon{MAR). This is the property that the
distribution of the missing-data mechanidfrdoes not depend on the missing valugs;;. More formally,
we can write the MAR property &% (7" | Xobs, Xmis] = Po[T" | Xobs]- As a consequence of MAR it can be
shown that the joint distribution of the observed data aedtissing-data mechanism enjoys the following
factorization property:

Pﬂ,a[XobSaT] = PH[T | Xobs]Pa[Xobs]- (10)

Assuming the parametelsy, §) to be distinct with product parameter spadex ©, (10) says that the
missing data mechanism is ignorable in that likelihoodeldasference forx based on the joint likelihood
Po.o[Xobs, T'] are the same as those based uppX,s|. Thus for purposes of inferring, we may ignore
the parameteré of the missing data mechanism. A special case of MAR is datsing completely at
random(MCAR). With MCAR the missingness probabilities do not degen any dataPy[T" | Xobs] =

Po[T].

2.5 Examples

We describe two applications where data is missing and plese into the framework described above.

Inference using unicast data. In [10], the authors describe an approachuticastbased inference in
which n sets of packets, known as stripes, are transmitted by aestaiall receiver pairs. The motivation
is that within each stripe, packets are transmitted badbatk, and so their loss behavior on common links
should be highly correlated. With perfect correlations.(both packets being either transmitted or lost on
a common link) the stripe has the same behavior as a notioniéicast packet that follows the same route
and is subject to the same loss.

We can put each receiver pair in correspondence with a rgisiata indicator as follows (") =
(T,Ei))keR identifies the pair of receivers corresponding to #tik stripe, i.e.;Tj(i) = T,ﬁ” =1, Tl(i) =0,
[ € R,l # j,k if the pair of receivers i3, k € R, j # k. Thus missingness of data from probat receiver
£ occurs becausgéis not a member of the pair of receiver nodes selected forribieep



If the receiver pairs are chosen independently from stripstiipe using the same distribution, then
T = (T(i>);1:1 is a sequence of 1ID random variables. THukas the following distribution,

PIT =] = [[PIT =tD], vte{0,1}# (11)

where

Pr® =t]= Y  1{t;=11{t=1} ][] 1{ti=0pjs, Vte{0,1}¥F
§,kER;j#k IeR\{j,k}

Herep,; is the probability that the pair of receivejsand £ is chosen. If we further assume tHatis
independent of, then the data is MCAR.

Another variation has the sender cycle through the pairsauad robin fashion. Let : R?\ {(j,j) :
j € R} — {1,...,m} be a one-to-one mapping whet¢j, k) is the position in the round robin schedule
where a probe is sent to receiver pasndkandm = #R x (#R — 1). The joint probability distribution
for T'is given by (11) with

Pt =)= N 1n(jk) =dii{t;=131{. =1} [] 1{t =0} (12)

JkeR;j#k leR\{j,k}

forallt € {0,1}#%,i > 0,1 <d < m.

Inference using RTP/RTCP. The Reliable Transport Protocol (RTP) [20] is a protocol thee transfer
of data from a single sender to one or more receivers. Adeacigith it is a control protocol RTCP that
allows receivers to broadcast loss behavior to each ottettan third party. Typically, the observations
are batched and each batch is broadcast as a single repagtthifth party can collect the observations
and apply inference methodologies to them. However, thegserts are typically not transmitted reliably.
Consequently, the data collector must deal with missingrination.

In the current implementation of RTCP, receivers broadoabt average loss rates. Extensions to the
protocol, proposed in [1], enable receivers to report onrdoeption of individual packets. However, due
to the constraints imposed on reporting volumes by RTCPait not be possible to report on every packet.
The omission of certain reports to fulfill this constrainthsis an additional source of missingness.

We propose a simple model for this scenario. Consider recg¢i& R that collects loss observations
and sends them to a data collector. K¢#; ;}°,};cr be a set of random variables whe#g ; is the
number of observations placed in tihxh report by thej-th receiver. Let{{CJ(.k)}g‘;l}jeR be indicator
random variables that represent the outcome of the trapemisf thek-th loss report by receiverto the
data collector; it is received by the coIIectorGf;k) = 1 and lost otherwise. Defing(i,j) = min{l :
Sl Apy < i < Sk Ak}, ie., (4, 4) identifies which report the-th observation from receiveris
placed in. Let{{8§i)}7?i1}j€f{ be a set of indicator random variables that represent whetiebe: was
actually selected for reporting from receivgrit is selected ifSJ(.i) = 1. Then the missing data indicator

(@) , _ - i) _ q(1) ~(w(i5))
T; ,z_17...,n,jERcanbeexpressedﬂ‘§ _Sj Cj .



Under strong simplifying assumptions, namely that the oamdariablesA, S andC are independent of
X, the model is MCAR. However we can posit a situation in whiathependence may not hold in practice.
Suppose the collector lies at a noklén the multicast tree. Then the path for reports from regsive
R\ R(k) to k intersects with the paths of probe packets fromo receivers inR(k). Thus we may expect
the missingness variable{Tj(i) :j € R\ R(k)} to be correlated with the receiver stdt&; : j € R(k)}.
This is precisely the type of model allowed when data is MAR.

2.6 Approaches to the problem of missing data

It is tempting to reduce the problem of inference with miggilata to a composite of known inferences by
performing inference using subsets of probes for which ntespeached leaf descendents of a given node.
A simple approach to manage the impact of missing data isstmiceinference to subsets of probes and
receivers for which complete data is available, then paigkther such estimators to draw inference on the
complete tree. A minimal way to do this would be to use onlybgfor which reports were received from
all receivers. A more sophisticated approach is the folhaowvi

(a) Foreaclk € R, estimated), = i by the fraction of observed reports indicating probe rdoept

(b) Foreacht € U \ R let Ry, denote the set of subsetsB{k) in which each member is the descendant
of a different child ofk. For eachr € R, use only probes with reports received from ak r to
form the fractionsy,(r) and {¥;(r) } e, Estimated, = (> rer, Hi(Y(r))/#Ry, i.e., averaging
over ther € Ry.

(c) Estimate link transmission probabilitiég = Ek/ﬁf(k).
However, such “patchwork” approaches have three pitfalls:

() Unless the coverage is sufficiently rich, it is not possito infer transmission probabilities for all
links. If not all nodes are branch points of some “completetaubtree, it follows from one of our
later results that one cannot infer the transmission pritiyator the link that terminates at that node.
In the minimal case, there may he probes for which reports are received from all probes.

(i) Such estimators are not consistent unless data is MG¥eRllustrate with an example in Section 3.1.
Furthermore, checking whether a given data set is consistith the MCAR property may be a
complex task since the number of consistency conditiorisatbald have to be checked grows expo-
nentially with the number of leaves in the tree.

(i) Even under MCAR such estimators are not generally Effit; i.e., there can exist estimators with
smaller variance.

For these reasons we instead extend the previous ML apptoadver the missing data case directly:
under general conditions ML-estimators are consistentefficdent. This is the subject of the next section.



3 Estimation of Link Loss Rates with Incomplete Data

In this section we present the likelihood functighfor the incomplete data. Determination of the cor-
responding ML estimator for the link probabilities turnst ¢o be significantly more complex that in the
complete data case. We turn to a standard iterative methed&M algorithm, to derive an approximating
sequence to the incomplete data MLE.

3.1 Description of incomplete data and the likelihood fundbn

The correspondinghcompletedata likelihood function is the marginal distribution fdion of the observed
data; formally we write this a§ Po[Xobs, Xmis)dXmis- We now obtain an explicit expression. In order
to represent both missing and observed data in a compact feenextend the set of outcomes to the set
Q* = {0,1,u}?, whereu is used to denote that a given receiver datum is missifig= (u,...,u) € Q*

will denote the outcome in which data is missing from all ieees. Lett € {0,1}* denote the generic
vector of missing data indicator variables. With each sughdz € €2 we then associate an elemetft) of

Q* through

_Jou ift, =0
ok(t) = { 2y otherwise * ¥ € (13)

An inverse of the above map associates withe Q* its missing data indicatar(z*) by

o J O ifzy=u
br(a”) = { | otherwise * ¥ € It (14)

The set of complete outcomeghat can give rise to an incomplete outcomeis the set
Qz*) ={z €|z, =z, & tx(z*) =1}, andconversely Q*(z) = {z* € Q" |z € Q(z*)} (15)

is the set of complete outcomes that can be obtained from a complete outcaméd he equivalent condi-
tionsz € Q(z*) andz* € Q*(z) can be rewritten ag(t(z*)) = z*.
The probability to record an incomplete outcoi€’ (T¥)) = z* is denoted

Ga0(z") = P g X (T17) = 2], (16)
Now {XO)(T®W) = z*} = {X® € Q(z*)} N {T® = t(z*)}. Using the MAR property (10) we factorize
Ga,0(z") = po(z)0(z") 17)
where

Ph(a) =Po[XD € Q)] = Y pale) and 6(z*) = Pe[T@ =t(z*) | X € Q")) (18)
z€Q(z*)
Without loss of generality we have taken the missingnedsghitities themselves as parametgrélote that
by the MAR property, for any: € Q(z*), Po[T® = t(z*) | X®) € Q(z*)] = Po[T®) = t(z*) | X = z].
Since{t(z*) | z* € Q*(z)} = {0,1}%, the conditional probabilitie8 satisfy

Y b)) =1, Vezeq (19)
z*eQ*(x)

9



Now let m(z*) denote the number of probés= 1,...,n for which X()(T(®) = z*. Due to the
factorization property (10), the log-likelihood functitmg [T}, ga.0(X @ (7)) can be written as a sum of

Lla)= ) m(z")logp}(a*), (20)
z* e
with a term that is independent af Thus, for the purposes of obtaining an ML estimateroive need only
considerL(«). We refer toL as the incomplete data likelihood function. Note that tmti 2 (u*) makes
no contribution toC since2(u*) = 2 and hence?,(u*) = 1. Hence the sum in (20) can be restricted to
QF =%\ {u*}.

Example: 2 leaf tree with MAR data. We now give an example to show how the complete data MLE,
applied to those probes for which complete data is avail@@rerally produces an inconsistent estimate of
the link probabilities in the MAR case. Consider a two leaktwhere data is MAR from the right leaf; the
probability of missingness thus depends on the data olidetvibe left leaf. The leaf probabilities obey:

q(11) = arapasf(11), ¢(10) = ajae@3f(10), ¢(01) = ayaasf(01), (21)
q(00) = (a1 + cn@p@3)0(00),  q(1u) = anab(lu),  ¢(0u) = (1 — 1az)(lu) (22)

Using the four instances of (19), hamely,

z=11: 0(11) +6(lu) =1; =z =10: 6(10) +6(1lu) =1, (23)
z=01: 0(01) +0(0u) =1; = =00: 6(00) + H(0u) = 1; (24)
(21) reduces to
q(11) = aqapasf(11), ¢(10) = aanaizf(11), ¢(01) = ay@asf(01), (25)
q(00) = (@ + ar@za3)0(01), q(lu) = ajaz6(11), q(0u) = (1 — a1az)0(01) (26)

Now, the complete data MLE based on the corresponding cdenglata empirical probabilities
q(11),4(10),4(01),4(00) is

g @D FFONGUD +GO) L GO) o q1)
' G @) +q(10) + 400 +g00)” = i) a1’ T g(11) +4(10)

In the MCAR case, alb(z*) appearing in (25) would be equal, and substitutjrfgr g'in (27) one recovers
a1, as, a3 the estimator is consistent. But in the general MAR caseotm@ns only

061(0120(11) —1—@29(01))
0(10(29(11) + (1 — 061062)9(01)

0620(11)
0620(11) + 620(01)

# ay, #ay, as, (28)

i.e. only estimation ofv3 is consistent.

10



3.2 Application of the EM algorithm

We can in principle estimate the link probabilitiesby the incomplete data MLE = arg max L(«) in
(20) calculated from the counts of incomplete outcomes= {m(z*) : z* € Q§}. However, we have been
unable to obtain a direct solution to the incomplete-datlitiood equation. Instead, we employ a standard
statistical method,the Expectation-Maximization (EMjaithm [7], to obtain an iterative approximation
a®, ¢ =0,1,... to a stationary value of the incomplete data likelihood. Hhgorithm comprises the
following steps:

() Initialization. Pick some initial link probabilities?). This could be done, e.g., by settia§) = @,
the complete data MLE determined from the counts of commlateomesm if these are non-zero.
When complete data is not available, we can use the factl{egadof of Theorem 5 in [2]) thaf, =

A+ O([[@]|?) to approximatexy = Ag /Ay = Y/ Vi) = 1 =T6)/ (1 =T ) = 1+%6 = Vsk)-
This suggests the initial value

A =143, — Y- (29)

(i) Expectation.For eacha®) find the conditional expectation of the complete log-liketid given the
incomplete dat&) (o, a*)) = Eg [Lo(!) | m).

(iiiy Maximization.Find the maximizer of the condition expectatiabi‘*!) = arg max, Q(c/, a"))
(iv) Ilteration. Iterate steps (ii) and (iii) until some termination critariis satisfied.

Fork € V, define the conditional probabilities for a probe to reéiflt) as

?k,a = Ea[vjeR(k)Xk | m] (30)

For notational convenience we write the conditional prdhyb?k,am derived from the iterat&(®) as?,g).

Theorem 3 Assumé/(¥) € G. Then
o™V =K GY), keU (31)
provided thattC(7(9) lies in A.

We now investigate the question of convergence of the #s@t). Whereas the complete data like-
lihood function can be shown to derive from a standard exptimefamily (see the proof of Theorem 2),
the incomplete data likelihood function derives only frommuaved exponential family. Thus we cannot use
results based on standard exponential families (see €}).d®ne to conclude convergence®f) to . We
now establish conditions under which the sequence exisisand converges to the MLE for the incomplete
data problem.

Theorem 4 Assum&¥) € G andK(79)) € A for all £.

(i) £(@®) converges to some limit.
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(i) If {a € A | L(a) = L} is discrete,a®) converges to some* that is a stationary poiniZ, i.e.
OL (. x

(i) If £ is unimodal,a® converges to the incomplete data MGE

3.3 Calculation of the EM iterates

An algorithm for the calculatingC (y) for a giveny € G has been detailed in [2]. It remains then to provide
an algorithm for the calculation of thg,. Letny = n —m*(u*) denote the number of probes for which the
data is not entirely missing. Observe that

~ m(z*)
Ve, = Z o ’Yk,a(x ) (32)
x* €€y
where
Yr,a(27) = Ea[Vjcrpm Xk| X = 27]. (33)

Let R(k,z*) = {5 € R(k) | tj(«*) = 1} denote the receivers descended frbritom which data is
observable. Lek(k, z*) denote the closest ancestoof k for which a packet has been observed to reach at
least one descendant leaf, i.e.,

wherey; = v;‘.eR(k)x;‘-. Whenk < j, letd(j, k) denote that child of that is an ancestor (or possibly equal

to) k, i.e.,d(j, k) = {i € d(j) : i = k}.

Theorem 5 Wheny; = 1, 9y, o(z*) = 1. Wheny; < 1,

%,a(as*>=c’“_b’“ 11 {aich} (35)

Cdhk) g 2iZaten) ied)\dG.k)

whereh = h(k,z*), and fork < i < h,

1, if Rk, o) =0
b, = Pa[vjER(k)Xj =0 | Xf(k) = 1], Ccp = Pa[vjeR(k,z*)Xj =0 | Xf(k) = 1] . (36)
otherwise

Remark: it was found in [2] that the problem of determining thédor a tree with complete data factors into
the problem of solving a set of depth two tree inference gnmis, one for each nodec V \ R. For each
leaf £ one constructs the logical tree with rgohaving single child:, andd(k) leaf-children. Furthermore,
for a general tree, the problem could be mapped onto thattioraay tree by the insertion of lossless links.
However, this method cannot be applied when there is miskitg. This is because the form (35) fiﬁzx
includes variables from receivers other than those desceftdmk.
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3.4 Topology and data conditions

Theorems 3 and 4 required the iteratgf§ to lie in the domaing. In this section we specify conditions
on the data in order for these requirements to hold. In sormescahere the conditions do not hold, it is
possible adjust the problem by passing to one or more sgotfede original tree, for which the conditions
do hold. The requirements for Theorems 3 and 4 are then édfilsee Lemma 1 below. The conditions
describes here are similar to those applied in the case gblevendata in [2].

Non-identifiable subtrees. Order the elements of the sf,1,u} asu < 0 < 1 and extend the usual
maximum operatox on {0, 1} to an operation/* on {0, 1, u}, respecting the order in an obvious manner.
For a given realizatiof X, 7') of the single probe and missing data process, define theijeant
Yy = ViermXi(T) (37)

i.e., the extended maximum a&f;(7") over all receiverg descended from. Y} takes the valua if all data
from R(k) on a given probe is missing,if a probe was observed to reach at least one receivg(Ar), and
0 otherwise. We first eliminate from consideration subtreesvhich no data is missing but whose leaves
were reached by no probes. Fore V, let D, denote the event that for some prabe’(](.i) (T%)) £ 0 for
somej € R(k). We will assume

Dy, occurs for allk € V (38)

If (38) does not hold, the following procedure reduces tlierence problem to one for which it does.J¥;
fails, we remove from further consideration the subtfeé) rooted atk. If this pruning leaves the parent
f (k) with only one offspringj, the remaining tree is no longer a logical multicast tree.néke it so we
remove the link(f(k), j) and identify the nodeg and f (k). The consequence is that we will only able to
identify the characteristics of the composite link joiningo f2(j) of the original tree. Performing these
operations for alk at which D, fails, we obtain a tree for which (38) holds.

In general, it is not possible to attribute a transmissiarbpbility, even of zero, to individual links in
T (k), since we cannot distinguish the link or links with zero swission rate. An exception to this is when
Dy, fails for a leaf nodek, but D, holds at the parent nodg(k). In this case we may estimatg, = 0.
Except in this case, we flag glv; : j < £} as unknown.

Links with perfect transmission. Let D) denote the complement of the eve{d(’](.i) (T) = 1,5 €
R(k),i =1,...,n}. WhenD fails, lossless transmission is reported for all probedl t@eeivers inR(k).
The effect is to positiorkC(7,) on the boundary of4, since it follows that'C;(7,) = 1 for all j € R(k).
Although this is not a problem for computation, it takes usafithe domain of application of Theorems 2,
3 and 4. The formal application of these results requires tha

Dj. holds for allk € V. (39)

If (39) does not hold, the following procedure reduces tHereance problem to a set of one or more for
which it does. WherD;, fails, we sety; = 1 for all nodesj € V(k), and omit these nodes from further
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consideration. We then spawn a set of separate inferend#epre by forming the set of subtrees not
containingk that are rooted at ancestors/of This is the set of tree§7 (4,¢) | j = k; £ € d(j),¢ # k},
whereT (j,¢) has verticeqj} UV (¢) and links{(j,¢)} U L(¢).

Model Conformance. We also need a condition to ensure that estimated quartitiesin G. Let Dg
be the event that has childrenj, ¢ € d(k) such thatX](.i)(T(“) — 1 and X\(T®) # 0. Without this
condition, probe losses on different subtrees descendediy conditional on the probe having reached
are correlated. This is because each probe is observed ommothan one such subtree. Henceforth we
assume

Dy holds for all anyk € V' \ R. (40)

If D} fails, we adjust the tree by removing the ligk(%), k) from the tree and identifying its endpoints
k and f (k). In the original tree, we will only be able to identify the cheteristics of the composite links
joining f (k) to the childrend(k). The procedure is iterated if necessary until (40) holds.

Conditions (38) and (40) enable us to fulfill some assumgptiarTheorems 3 and 4. We will henceforth
assume that they hold.

Lemma 1 When (38) and (40) hold;, € G for anya € A.

3.5 Example: the two-receiver tree

In the simplest case we can establish unimodalitg otlirectly, and thus conclude convergence of the EM
iterates to the incomplete data MLE. Consider the two receikee with rootp having a single childl
whose children are the leaf nod2and3. In the two receiver tree, we enumeréte= {11,01, 10,00} and

Q5 = {11,01,10,00, 1u, ul, Ou,u0}. It is not difficult to determine that thg;, ,(z*) are as given by the
following table:

| N,a(@®) F2a(z”) Fsa(z?)
1111 1 1
10 |1 1 0
011 0 1
0010 0 0
lu |1l 1 a3
ul |1 Q9 1
Oulghem 0 a¥am
uO _alaZa_3 _ala2a_3
ajtajas  artoaias
These yield
noY2,o = m(11) +m(10) + m(lu) + m(ul)as + m(uO)a(::_aiZj%S
noYs,a = m(11l)+m(01) + m(ul) + m(lu)ag + m(Ou)%

1o(V2,a + V3,0 — Y1,a) = m(11) + m(lu)as + m(ul)as
The EM iterateS/C1 (7o), K2 (Ya), K3(Fa)) Of (a1, ag, ag) are then

~ ?2 a:)/\?) [
]Cl = = /7\ : ~ )
() Y2,0 + V3,0 — Va

~ V2,0 + V3,0 — 71, ~ Yo, + V3,0 — V1,
Ko(a) = A0 Ky (,) = Pe i Tl
V3,a 72,a
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Theorem 6 In the two-receiver tree, the incomplete data likelihooddtion £ is unimodal, and hencé(®)
converges to the incomplete data MLE provided &) € A for all 4.

4 Network Inference Algorithm

In order to carry out inference on measured data, we exphessaiculation ofy in Theorem 5 as an
algorithm. We start by constructirig, ¢, andy;. recursively. Clearly thé, satisfy

ay, k € R,
b =19 = 41
k {ak+aknj€d(k)bj kcU\R (41)
Thec,, satisfy a similar recursion:
1, ke R,z =u
Cp = ay, keR, z;#u (42)
They; satisfy the recursion
. xy, ke R
Y = * * (43)
g { VieawVj> FEV\R

We formally specify an algorithm for the calculation of thg, in Figure 1. The main procedure
comprises two phases. In the first phaset _ybc, calculates thg;, b, andc, passing up the tree from the
leaves. The second phasst _g, then calculates thg; ,, traversing the tree from the roptdownwards.
hi plays the role ofi(k, h) while e plays the role ofy; Hjed(i)\{d(i,k)} c¢;. On a given path down the tree,
flag = 1 until a nodek with y; = 0 is first encounteredflag = 0 on all calls toset _g below k. The
identity of the nodéi (7, 2*) is then maintained in calls at nodéebelow the child; of & (lines 10-13).

We note there is some redundancy in the algorithms, whictbeaavoided in implementations, and
cr need not be calculated at nodedor which y; = 1, since these values are not used. Ehelepend
only on the missing data indicatofz*), and so need be calculated once for each set incompletenoesco
{z* € Q" : t(z*) = t} having the same missing data indicato heb;, do not depend on*, and so may be
calculated once in advance; in particubar= c, whenz* has no missing data, i.e., whef # u Vk € R.
Lastly, they; need only be calculated once for each probe with distirictand once at the start of the
sequence of iterations.

5 Identifiability and Missing Data

We address the question of identifiability, i.e., whetherd¢hexists a unique set of model parameters giving
rise to a given distribution of observable data. The muiticaference method exploits correlations between
end-to-end measurements on intersection paths. Conyengekxpect that if the sets of receivers on which
data from a given probe is observable are insufficiently, fitkchill not be possible to infer the loss rates on
all links. We give below a simple example that demonstrdiess tn this section we shall derive conditions—
between the topology and the subsets at which data is oltdertlaat must be satisfied in order that the
model parameters can be identified.
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proceduremain(7T, a, z*)
Set—ybC(Ta «, l'*, p)'

Set—g(T;a;LP; P, 1)'
return({g; : k € V});

PR

procedure set_ybc(T,a,z*, k)
if(d(k) == 0) then {
Yi = Ths
br := ag;
if(zj == u) then {c; :=1;}
else{cy := ay; }
}
else{
foreach(j € d(k) {
10. (y5,bj,¢j) := setybe(T, a,z%, j);

N R~WONE

12. yr = Viyj,

13. by == + ag Hjed(k) bj;
14. Cp = + g Hjed(k) Cjs
15. }

16. return(yy, bg, ¢ );

procedure set_g(7, a, e, k, h, flag)

if(y; ==1) then {
g =1,
foreach(j € d(k)){
Set_g(T7 a7 17j7 p7 1);
}

}

. else{

11. if(flag ==1) then {hy :=k; }

12. else{hy := h;

13.

14. gk = e(ck — br)/ch,;

15. foreach(j € d(k)){

16. set_g(T, o ear [ Lic e 5y Cis s Pk, 0);
17. )

18. }

©CoNokrwD R

[E=Y
o

Figure 1: Algorithms for determining, ,(z*), as returned from the procedurai n.
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Consider a parameterized family of distributi¢R,, : ¢ € ®} with vector parametep, and letF" be
some function orp. We say thaP, identifiesF'(¢) whenPy = Py implies F(¢) = F(¢'). Here,F will
be the identity, or some other projection of component$.dh an MAR model P, 4 identifies(a, 6) iff

Qa0 (2%) = qur o (27), V2" € Q" = (0, 0) = (o, 0. (44)

A simple example of MCAR data that is not identifiable is a twafltree in which, for each probe indepen-
dently, data is missing from exactly one leaf. Then the owly-trivial equations (17) become

Ga,p(lu) = aranb(lu),  ¢a,p(0u) = (1 — a1az)6(0u) (45)
Qa,Q(Ul) = a1a39(U1)7 Qa,ﬁ(uo) = (1 - a1a3)9(U0)

The RHS of these equations are invariant w.r.t. the transonsa; — kay, ag — ag/k, az — az/k.

With eachS C R we associate the minimal logical multicast tfBe = (Vs, Lg) that spans the rogt
andS. This is obtained by first finding the minimum spanning tre@ @hd S in 7. The branch points in
the spanning tree, together withand .S, form the node seV¥s. To defineLg, the parentfs(k) in 7g, of
each node itUs := Vg \ {p}, is the>=-minimal j in Vs such thatj > k£ in 7. A path in7 that connects
two nodes inVs is called anS-segment.Ks(i) = {j € V : i < j < fs(i)} is theS-segment terminating
ati € Ug. Giveni € V, k(i) denote the node ilg that terminates th&-segment containing i.e,. that
for whichi € Kg(rs(i)). Likewise,as(i) = [];cx,(;) @ denotes the composite transmission probability
along the segmemts (7). as = {as(7) : ¢ € Ug} will denote the collection of such probabilities.

Let Dg be the#tUs x #U incidence matrix of the nodes 6f in the segments df, i.e., Dg j; = 1 if
k € Ks(j) and0 otherwise. Settin@s (k) = log as (k) andzy, = log o, we have that

Bs = Dsx (46)

for any S C R. Before stating and proving results on identifiability, watenthat there exists at least one
solution, log «, to (46). LetP, ¢ denote the distribution of the reports from nodesSin We give two
conditions for identifiability of.

Theorem 7 Let7 be a canonical loss tree ands; }; , a collection of subsets dt.
(i) U =U],Ug, if and only if the equation$ss, = Dg,«};", have a unique solution.

(i) AssumeP,, g s, identifiesag, for eachi. Then{P, ¢ s, }i*, identifiesx iff either (and hence both) of
the conditions of part (i) are satisfied.

Remarks. Uniqueness of the solution to (46) is determined by the siraewf theDg, which depend only
on the topology and the choice of ti$ not ongs. Consequently, when unigueness holds, it does so for
any additive metric. Thus one can devise a test for idenitiifi\abased on path length in terms of number of
links. Furthermore, ity is not identifiable, the procedure can be modified to detegmihich links can be
solved.

We say thatomplete data is availablérom a subsef if 6(z*) > 0 for all z* such thatR(p, z*) = S,
i.e,. for which reports are received from all receiversSiand no others. Le$, denote the set of subsets
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S of R for which complete data is available, afd denote the set of missingness paramefidiar which
U =UgesUs.

Theorem 8 Restrict the parameter spacetbx O, and assume data is MCAR. Thep  identifies(c, 6).

Although we do not have a corresponding result for generaRMAodels, Theorem 8 is sufficient to
enable further analysis of simple models in the followingtems.

6 Asymptotics for Large Numbers of Probes

Let @ = arg max, L(«) denote the incomplete data MLE arising from (20). In thigisecwe examine the
asymptotic properties @f as the number of probesgrows, without specific reference to the EM algorithm.

Theorem 9 Assume data is MCAR. The incomplete data MLI& consistent, i.elim,,_,,, & = « almost
surely.

We now describe the asymptotic variancedofor large numbers of probes in the regime of small
loss probabilitiesy. We calculate the expected Fisher information matrix ferititcomplete data problem,
i.e., the matrixZ(«, 0) = [Z%(«, 0)]ijer, WhereZ¥(a) = —Egifa(gz. Under conditions that we establish
below, the inverse df («), suitably rescaled, is the asymptotic variance:of

Our approach is to decompose the Fisher information magraxsum over subtrees for which complete
data is present at the leaves. In the original incompleta pliadblem for the logical multicast topology,
the countsrg = {m(z*) | R(p,2*) = S}, for eachS C R, can be considered as a set of counts of complete
outcomes o17g stemming from those probes for which reports were receivdyl foom nodes inS. Thus

the incomplete data log-likelihood function can then beodegosed as follows:

Lla)= Y LTs,mg,as), where Lo(Ts,ms,as)= > m(z*)logpes(zs) (47)
SCR:S#0D z*:R(p,x*)=S

andz§ = {z} : k € S} is the data inc* that is observable &. The corresponding decomposition of the
expected Fisher information matrix is

D)= Y Y TH(as) 25 2050 (@8)

ooy oo
SCR:S#0 ktcUs ¢ J

whereZ/F(ag) = —E%. Let N¢ = nP[R(T™W(X®)) = S] be the mean number of probes

with data observable exactly 8t andWs (i) = >_;c g (s (1)) @ the sum of link loss rates on titesegment
containingi.

Theorem 10 (i) Whené € ©. and hence whett is consistent,/n (& — «) converges in distribution to
a mean zero multivariate Gaussian random variable with cawee matrixn Z ().

(i) When data is MCARLY = 3" s 4ty Oxs (ipms () + O(1) @@ — 0.
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Example: uniform report transmission. Let reports be transmitted independently with uniform rob
bility p € (0,1]. ThenNg = np#Sp#E-#5, For eachS C R, and node/ € Ug, let Cs(¢) denote the
matrix onU with entriesC¥ (¢) = 1/Ws(3) if i,j € Ks(£) and0 otherwise. Fos € {1,...,#R} let

Cs = ZS:#S:S EéeUS Cs(£). Then

#R
I=nC-(1+0(@), where C=> p°(l-p)#C, (49)
s=1

Let Px denote the orthogonal projection onto the nullspace of awgtric matrixk', and recursively define
matricesK, ..., Kyr by K; = Cy, and

KS = PK1+...KS_1CSPK1+...KS7 Kl - Cl' (50)
Letro denote the minimad for which P, x, = 1. SinceCxpr = 1, such aryp < #R exists.
Proposition 1 p"oC~! converges to the pseudo-inverseigf asp — 0.

Let I, denote the Fisher information arising from measurementsimary subsets, i.ely is the sum ob-
tained by restricting (48) to binary subséts

Proposition2 (i) Z > Z, > 0, and hence®) < Z=! < Z, !, in the order of positive linear operators.
(i) Proposition 1 holds withy = 2.
Thus we have established:

Proposition 3 Assume independent report loss with uniform probabjlitfhen/n (& — «) converges to a
multivariate Gaussian random variable with mean zero anchc@anceG («, p), wherelim,_,o p?G(a, p) =
KI, + O(||a)|?) asa — 0, whereK I, is the pseudo-inverse éfs.

Remark:  Proposition 3 suggests that we approximate the variandg of (K I3)x/(np?) whenp and
@ are small, anad is large.

Example: uniform report transmission from binary trees  Consider the family of binary trees witti
leaves,r = 1,2,..., with small uniform link loss probabilitieg& and uniform small report transmission
ratep. Letwv(r) = (vi(r),...,v.41(r)) denote the set of unique diagonal elementskds, /@, the 5!
element determining the asymptotic variance on lihkedes away from the root. Using Mathematica [16]
to perform the algebra, we found the first sif) to be:

11 121 2 3 49 25 3 1 43 27 91 4

1) ={=. = 9)={= = = 3)={=>, — 22 ° ek
v ={3.3h @ ={g53h O ={gx 0w 7} v =196 572 112’ 1447 0
5 33 5 21 36 5 187 133 153 73 209 6

5 222 = 51
v0) =702 Tz’ 60 80’ 55° 110 U6 = {4096 36864 5760° 1760° 264°312° 13/ D)

In all cases the estimator variance rises in a given tree aiing@away from the root, except falling slightly
at a leaf link as compared with its parent. At a given distanoe the root, the link variance decreases as
the tree depth increases. Both this trends can be underbtotig intuition that variance should decrease

19



Figure 2: 4RECEIVER BINARY TREE used in model based simulation of Section 8.1.

when data is available from larger subtrees below a givdeafrinterest. Considering the root and leaf links
only, the values in (51) are consistent with the forms

r 1 r

ou(r) = r 4 222r-1)’ vrpa(r) = 2r+1

(52)

7 Convergence Rates for the EM iterates

We now consider convergence of the EM iterates themsehatstt denote the map oRY that implements
the iteration, i.e., such that‘*1) = M(al®). A Taylor expansion of the iterative map gives

atl —ax VM- (@Y —a) (53)

whereVM;; = %ﬁ’;i is the gradient ofM. A standard result [17%3.9.3] expresse¥ M = (1 — 7, '7),

with Z.. the complete data information matrix adhe incomplete data information matrix from (48). The
convergence ratio of the iteration is taken as the maximgarsalue\ for VM.

Our analysis of the convergence ratio is confined to the regieated in Section 6, namely that of
independent report transmission with small probabgitand small link loss probabilities. In this regime,
we have seen thaf');; = n~!(@;d;; + O(||@||*) and so from (49V M («r);; = §;; — @ Cij + O(||@?).
Let £(X) denote the set of eigenvalues of a mafXix

Proposition 4 Assume independent report loss with probabifity= (0, 1) and small uniform probe loss
rate @. The convergence ratefor the EM algorithm obeys = 1 — p?s + O(p?(p + @)). Wheres is the
minimum non-zero eigenvalue @f,.

8 Experiments and Simulations

In order to evaluate the performance of the missing dataenf® algorithm, we conducted two types of
simulation. First, we used model-based simulation in wktiehmodel for missing data indicators conformed
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with the MCAR property. Second, we used a network-basedamphtation of the RTCP-based reporting
mechanism outlined in Section 2.5. In this case the missatg ohdicators are not known to conform to
the MAR model. This enabled us to test robustness of theittigomwith respect to violations of the MAR
hypothesis that might occur in a real network application.

8.1 Model-based simulation

We conducted model based simulations on a balanced bireryntith 4 receivers, illustrated in Figure 2.
Probe losses were independent with a uniform loss rate ier Receiver reports were generated at each
receiver for each probe and were transmitted independaiittyuniform probabilityp. We conducted 100
separate simulation runs, each of 100,000 probes. lagiatin ofa(®) used (29). The termination criterion
for the EM algorithm was that successive itera?é@ should have an absolute difference of less thart

on each linkk.

Figure 3(left) shows the mean and error bars for 95% confelefdink loss rate estimates obtained
using the missing data algorithm. We also display the cpmeding quantities for the complete data es-
timator applied to only those probes for which complete repwiere available. In both cases the mean
estimate is close to the model loss rate,@g.= 0.01. But note the rapid widening of error bars for the full
data algorithm, compared with the missing data algorittsrtha report transmission probability decreases.
From Prop. 3 we expect the standard error of the link lossastienates to diverge as ! for the missing
data algorithm, regardless of the topology. However, inlead-tree the number of probes with complete
data is proportional tp*. Hence we expect the standard error to diverge s with faster divergence for
trees with more receivers. In this example, foless thar).4, the error bars encompass loss ratehe
inferred loss from complete becomes statistically indgishable fron®.

Figure 3(right) breaks down the standard error of the lidsIate estimates according to the location of
the link in the topology links 1, 2 and 4 being representati/énks respectively 0, 1 and 2 links removed
from the root. The experimental standard errors show clgseeanent with the theoretical values obtained
by inverting the information matri< in (49). We also show the small approximation obtained using
Proposition 3 and the value$2) from (51). The approximation remains reasonable even fite dargep.

8.2 RTCP-based experiments

The RTCP-based simulations used data gathered from a rkebased implementation of loss reporting.
Loss reports are embedded in RTCP feedback packets; amctoollistening to these can then perform
inference. The basic RTCP reporting mechanism includeg el average loss rate based on sequence
numbers of received packets. An extension of the report domiows the inclusion of a binary vector
indicating receipt or otherwise of a set of packets.

According to the RTP standard [20], the total report volumerall receivers should not exceed 5% of
the source rate. RTCP clients estimate their share of tlsecbapon the reports they hear from the other
receivers, and limit report frequency and size accordinGlgnsequently, for a sufficiently large number of
receivers, it will not be possible to report on all probes.séitigness arises then by two mechanisms: the
omission of certain probes from reporting, and the lossmdrepackets during transmission to the collector.
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Figure 3: \ARIANCE OF MISSING DATA ESTIMATOR IN 4-RECEIVER UNIFORM PROBE AND PACKET
LOSS MODEL Over 100 simulation runs each of 100,000 probes, unifonk lbssa@ = 0.01, probe trans-
mission ratep from 0.1 to 0.9. LEFT: mean estimate with error bars f66% confidence. Comparison
with estimator using only probes with complete dataGiRr: standard error depending on link location:
experiment, theory and approximation.

The implementation of extended RTCP-based reporting usélid study has a simulation mode that
enables it to report on packet losses generated on a moddbgypaccording to a Bernoulli loss model,
rather than due to packet loss in a real network. The probesouvas chosen to have the characteristics
of a GSM audio stream that could act as a probe source in reabries, sending packets at a rate of 50
per second. Since probe losses follow the assumed staltisimdel, only the missing data indicators can
potentially exhibit departures from our model assumptioRgport thinning and transmission then takes
place in the manner described above.

We collected traces from a 32 receiver balanced binary treelfich the link loss rates were chosen in-
dependently with a uniform distribution between 1% and 10%e trace comprised reports on 11,956 probe
packets, encompassing about 4 minutes at 50 packets pedsé&dte mean number of reports received for
a given probe was 18.8, so that the proportion of missingrtepeas 1 - 18.8/32 = 0.413. The maximum
number of reports per probe was 29, i.e. no probe had comgidete Figure 4(left) shows a scatter plot of
the 63 pairs of (actual,inferred) loss rates. The agreeimeputiet close, with tight clustering around the line
of slope 1 through the origin. The median relative error @lklinks was only 4.5%.

Figure 4(right) displays the mediant"5and 95" percentile of the relative error over all links as a
function of the size of a subset of probes used for infereiise that even with 2000 probes the relative
error is typically less than 50%. Hence we can expect to ifyethte lossiest links with measurements over
a duration less than 1 minute. The median error is only ab®u for this number of probes.
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Figure 4: NFERENCE FORMRTCP TRACE DATA ON 32 RECEIVER BINARY TREE LEFT: Scatter plot of
inferred vs. actual loss rates for a full trace of 11,956 peoRGHT: Median, 5" and 95" percentiles of
relative error over all links as function of number of probes

9 Conclusions

In this paper we have extended the multicast based methadféoring network internal loss from end-to-
end measurements that was first proposed in [2]. The origiethod assumed the presence of complete data
specifying the set of end-points reached by each multicadtep However, the proposed use of the RTCP
transport protocol to transmit measurements inevitaldgdao missing data, either through the need to thin
data, or due to loss of reports in transmission. This mavatxtending the former approach to work with
missing data. An ad hoc approach of working with subsets wiptete data would have several drawbacks:
inference on all links may not be possible; inference wowddrzonsistent under the types of correlation
between probe data and missingness that could reasonahly incthis context (see Section 2.5); and the
estimators are not generally efficient. These consideratiootivated the use of a more generally applicable
scheme that accommodates the missing data directly, under general conditions on the missing data
mechanism.

This paper extended the Maximum-Likelihood approach ot¢2ncompass missing data. We applied
the EM algorithm to generate an iterative approximatiorht ¢orresponding MLE. We analyzed conver-
gence rates for the EM algorithm itself, and for the MLE asrthmber of probes grows, and showed how to
calculate these rates explicitly for a particular class oflels. We tested an implementation of the algorithm
in model-based simulations with known missingness siedisand also in traces gathered from an imple-
mentation of the RTCP-based report transfer method. Thessdts showed (i) the reduction in estimator
variance, as compared with the ad hoc approach, where aplajcand (ii) accuracy of inferred loss rates
compared with model or directly measured rates in the sitimma(iii) robustness of the approach under
potential departures from the model assumptions on thengissss statistics in the RTCP-based applica-
tion. In the RTCP-based experiments the median estimation @ a 32 receiver tree was only about 13%
for 2,000 probes, and was typically less than about 50%. Trtiagence sufficiently accurate to identify the
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lossiest links could be performed on measurements caflanter about a minute.
Future work is planned in two directions. First, we want tplgghe same general methodology to the
estimation of other internal characteristics, such asydeitlization and topology itself, by adapting the
framework of the present paper to work on estimation of thigsatities with complete data, as performed
in [3, 9, 15] A second direction is to develop more specific Bisdf the missing data mechanism that could
be used in a parametric approach to estimation with missitg. d_astly, we intend to publish elsewhere
details of the RTCP reporting mechanism that motivatedstuidy.

Acknowledgment We thank Francesco Lo Presti for some useful suggestions.
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Proofs of Theorems

Proof of Theorem 2:  We first rendelC.(«) into the canonical form of a standard exponential family.

Denote by0 and1 the elements: of Q2 with z, all 0 or all 1 respectively.

Forz € (2, denote by’ (z) those nodeg € U for whichz; = 0 for all j € R(k). LetW (z) be the
»-maximal elements off’’(x). Note thati? (1) = 0.

For eachk € U andi € {0, 1} definegy (i) = Po[X; = i,Vj € R(k)| X4 = 1].
Define new parametefdy, : k € U} by 6, = log(gx(0)/qr(1)).

Observe that

5[7 QkO o Sk
oD " H wm = 1L < (54)

keW (z

We interpret the product ovérfor z = 1 asl.

The map taking4 to its imageA under the change of parameters— ¢ is invertible. To see this note
that given) ., pa(7) = 1, (54) fixes thep,(z) in terms of thes. These in turn determine thg,,
and hence they, by Theorem 2.

Writing n2(1) = n —3-, ,1 n(z), and recalling thatV (1) = (), we find

L) = Z Z dk +nlogpa(l Z Nidx — ne(d

z€N keW( ) keU

whereNy, = 3- co.ew (2) (%), ande(d) is the reparameterization eflog p. (1) in terms ofd:

=log) ] e (55)

zEQ keW ()

The expression (55) has the form of a standard exponentralyfavith the log-likelihood expressed in
terms of the natural parameteis= {J; : £ € U}, sufficient statisticsV = { N, : k£ € U}, and cumulant
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c(d). Sincec(d) is finite for all§ € RV the family can be considered full. However, the parametacspf
interest is the open subsAtC RY that is the image ofd under the reparameterization— J.

Since the mappingd — A : « — ¢ is invertible, the parametersare identifiable by Theorem 2(v),
and hence the exponential family is affinely independentif@ple argument shows that natural parameters
in an open set are identifiable iff the exponential familyfialy independent). A well-known result (see
e.g. [13, Ex. 6.6.3.]) for standard exponential familiesrtisays that the MLE is the solutiohof

Ny =Ep[Ni], keU (56)

provided thisj lies in the interior ofA. But clearly ., N; = n(1 — %), and hence finding the solution
to (56) is equivalent to finding the solutier to

Y =E«[], keU. (57)

Providedy € G, then by Theorem 1y is the unigue such solution, and hence if it lies4rit is the MLE. g

Proof of Theorem 3:  Observe thak,[L.(«')m] =}, cq Ea[n(z)|m]log py (z). Hence maximizing
a0 o Overa' is equivalent to finding the complete-data MLE, but witfr) replaced byE; ) [n(z)|m]

throughout. In particulafy, being a linear combination of the(z), gets replaced b? ©) Nowif a® € A

then it is not hard to see thak (+*) € G for eachz*, and hencg®) € G sinceg is convex. The result

then follows from Theorems 1 and &.

Proof of Theorem 4:  The condition says that the sequence of EM iterates exist. ifParts (i) and
(ii) follow from Theorem 6 of [22]. This is because: (a) by Bnem 1(iii), a“t1) is stationary fora —
Q(a,a®); (b) VaQ(o/, ) is clearly continuous fofe/, o) € A x A; and (c) By Theorem 2, comes
from a regular exponential family and herjg@(‘*1) — a9 || — 0 as¢ — oo; see remark 3(vi) in [22]. Part
(iii) then follows from Corollary 1 in [22]g

Proof of Theorem 5:  For the proof we observe the following Markov property of grebe procesX :

(M) Conditioned onX; = 1, the distributions of the sets of variabléX, : k¥ € R(:)} are independent
for differenti € d(k).

If y; = 1, thenVcpyz; = 1, and hencéy, o (z*) = 1. Suppose instead thgf < 1. LetQ(k) denote
the event thalX; = 0 for all j € R(k,z*) if R(k,z*) # (), otherwise take) (k) as the universal set in the
underling probability space. Sineg = 1 for h = h(k,z*), then{X* = z*} C {X; = 1} and hence
{X* =2} ={X) =1} NQd(h,k)) N{X] ==} : j € R\ R(d(h,k))}. This yields that
PoliVjer)Xj = 1} NQ(d(k, h)) | Xp =1]

Pa[Q(d(kvh)) | Xn = 1] 7
where we have used property (M), and the fact#jat | BN C N D] =P[A | C | Bl whenA andC are
conditionally independent db given B.

Pa[vjeR(k)Xj =1 X" =2 = (58)
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The denominator in (58) is jusy, x). To treat the numerator, observe that

Pal{ViermX; =1} NQ>) | Xy = 1] (59)
=Po[{VjermX; = 1} NQd(k,7)) N {Xi = 1} Njeainar,i) QU) | Xy =1
= Pal{VjermX; =1} NQd(k, 1)) | Xi = 1] Xy =1Po[Xs = 1| Xy = 1] H PalQ() | Xi | Xy(i)]
jed(i)\d(k,i)

= Pal{ViermX; = 1} N QK1) | Xi = 1] a; [] ¢
jed(i)\d(k,t)

Here we have use@(j) = N;eq(;)Q(i), the Markov property (M), and the fact thg, = 1} C
{Xrw) = 1}. Applying (59) repeatedly to the numerator of (58), we abtie formP,[{V cru)X; =
13N QE) | Xpy = 1] Hk<ijd(k,h) @ Hjed(i)\{d(i,k)} Cj-

The first term is in this product B, [{Vcrm)X; = 1} N Q(k) | Xjw) = 1] = ckPal{VjcrmX; =
1} | Q(k) | Xf(k) = 1] = Ck(l — Pa[vjeR(k)Xj =0 | Xf(k) = 1]/Ck) = ¢, — by, and the stated result (35)
follows. m

Proof of Lemma 1:  We first show that for each € V' there is some* € € with m(z*) > 0 for which
Yr,o(z*) > 0. By condition (38) there is* with m(z*) > 0, for which eitherz; = 1 or z; = u for some
j € R(k). In the former cas§y . (z*) = 1- orz} = u; in the latter case it is not hard to see in Theorem 5
thatcy, > by, and hencéyy, (z*) > 0. Sinceyy, o(«*) > 0 for all z* € €Qf, thenyy, o, > 0.

By (40) then for eaclt € V'\ R there exists:* with m(z*) > 0 such thafy, (z*) = 1, and childrery, /
of k for which¥; o (z*) = 1 while 3o (z*) > 0. Henceyy o (z*) < 3 ;c 4 Vie(z™). Since by definition
Vi, (T*) < Dica) Vie(z™) for all 2%, we haveyy o < 3 cq) Via

Taking these relations over all relevantwe conclude th&f, € G. g

Proof of Theorem 6: Reparameterizing the incomplete data likelihood functibin terms ofy, we
obtain

£ = n(11)log(y2 +v3 — 1) + n(10)log(y1 — v3) + n(01)log(y1 —72) 4+ n(00)log(l —71)
+n(1u)log(y2) + n(ul)log(ys) + n(Ou)log(l — v2) + n(u0) log(l — v3)

Writing this form as( = Zx*e% n(x*) L+, it suffices to show that-L,- is jointly convex invyy, y2,vys3

for eachz*. This follows from the fact, established by direct compotatthat the principal minors of the
Hessian matrices-[0?L,+/0v;0v;]ij=1,2,3 are non-negative. Convergence then follows from Theorem 4
and the standing assumptions (38) and (§0).

Remark: the method used in the proof appears not to extend to moreajdrees, not even binary ones.

Proof of Theorem 7: (i) We establish that iU = Uj“,Ug,, then there is a unique solutian We
do this by contradiction. Suppose that there exists a model’ such that there does not exist a unique
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value forz. Pick any such<-maximalk. By assumptionk terminates some segmeki, (k) and hence
zp = Bs, (k) — Z,Hﬂfsi(k) x;. By the maximality assumption, all terms on the RHS are umiqund hence
SO iSzy.

We establish now that if there is a unique solutigrthenU = U}, Ug,. This is done by contradiction.
First, note if the solutiorn: is unique, it must be;;, = log o,. Second, note that we only need to consider a
branch poink € U\ R. Assume there exists¢ U, Ug, \ R. Then every segment containinge d(k) also
containsk. Usingz;, = log ay, we can reduce the family of equatiof\ss, = Dg,z}!", to the following set
of equations describing the behavioragf andz,, v € d(k),

T+ 3y = B, Yo € d(k) (60)

where /] is the log of the probability of a reception of a packevat d(k) given that it was received at
f(k). Thep, are determined by the link probabilities other thgnandc,, v € d(k), and the originals,.
However, these equations do not have a unique solutionfiresin a contradiction.

(if) The solutionz to {3s, = Ds,z};™, is not unique if and only if there is more that one set of link
probabilitiesc giving rise to the saméas, }i* | and hence the sam{@, .5, 17" 1. B

Proof of Theorem 8: With MCAR the missingness probabilities do not depend on @daipa, and so
we can replace(z*) with 6(t(z*)). SinCe}_ .,y Pa(z*) = 1forall ' € {0,1}2, gap(z*) =
dor o (%), Va* € Q* impliesd = ¢'.

Consider now anys' C R for which complete data is available. Thé(¢(z*)) are equal and hence
strictly positive for anyz* with R(p,2*) = S. Henceg, o(z*) = qu o (z*) impliespy (2*) = py (z*). By
Theorem 1(iv) s is identifiable. Then is identifiable by Theorem 7(ii) sincee ©.. g

Proof of Theorem 9:  The proof of mirrors that of Theorem 3(ii) in [2] which in tutrses Lemma 7.54 in
[19]. Although not mentioned there, the latter result regglidentifiability. This follows from the MCAR
assumption and Theorem .

Proof of Theorem 10: We first show thafs is positive definite if complete data is available frégmBy
standard arguments (see e.g. Prop 2.84 in [19]) one vﬁﬁ%(ag) = Cova,a(aﬁcs;r&g’sr(ljs)’%) ’ 656(55;’(’,5)’“@ )
If ng(ag) is not positive definite, there exists some nonzeeRYs for whichc - Zs(ag) - ¢ = Var, g(c -
%ﬁw) = (. This happens kﬁ-a‘C(Tg# = 0, almost surely, or, equivalently,df%%g(zg) =
0 for all 2%, sinced(z*) > 0 by assumption. Repeating the argument of Theorem 4(ii) it requires
c=0.

Observe tha?aia = B(as)DsB !(a) whereB(«) is the diagonal matrix with entries from. Thus
T > Y ges, B 1 (@)DEB(as)Is(as)B(as)DsB (), in the order of positive linear operators. Since
the kernel of a sum of non-negative definite operators isrtezsection of their kernels, the sum is positive
definite iff Nges, ker(Dg) = {0}, which happens iff the equatiofgs = Dsxz}scs, have a unique solution

z, which is guaranteed by Theorem 7(i) and the assumptiorftbha®...

Ng aaS)
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(i) Let S € Sy. Noteas(k)/a; = Dgi(14+O(||ex]])). With data MCAR, thed(=*) are equal for any*
with R(p, z*) = S, and henc&m(z*) = Ngpi,(z*) = Nspas(z%). From Theorem 5 of [2]N 'Zg(ars)
has inverseg for which v%¢ = @g(k)dke + O(|[@s||?). HenceZt! (ag) = a]:fk) (6xe + O(|[as||). Finally,
observe thatvs(ks(i)) = Ws(i) + O(||a||?). Putting these together with (48) the result folloys.

Proof of Proposition 1:  RewriteC' = "7 psC! whereC = 3, _,., C; - (=1)*"*("_!). Observe that
the definition ofK, is invariant under replacement©f by C' in (50) s_irl_cePK1+_,,+Ks_lC’S/PK1+,,,+KS_1 =

0 for s’ < s. Let W, denote the unitary matrix that diagonaliz&s and setW = []'°, W,. (Since the
ranges of theK; are disjoint, the variou8/, commute). Then up to unitary transformation unéér we

can writeC' is block diagonal form

p2An(p) piAlz(p) e p0 AL, (p)
cowl ? A?l(p) p A?2 (p) pTOAZ-ro (p) wT 61)
pro Arol (p) pro AroZ (p) Tt pTO AT'OT'O (p)

where A;;(p) = A};(p), and each submatri¥d;; converges to somd;; asp — 0 such that the block
matrix with A,, as thes'" diagonal element and zero elsewhere is unitarily equiva@d(, under V.
By construction, thed,, are invertible, and hence so are thg,(p) for sufficiently smallp. The block
diagonal representation 6f can be inverted inductively as follows. Assume the blocksatoix B, _ ;1]

comprising the first — 1 blocks can be inverted and thBF |s O(p'~*) asp — 0. This condition
is trivially satisfied fors = 2. Now write By, as a two-by- two superblock matrix
B B
B — ( Bis-us-1  Bis-ys ) 62
[s]ls] ( B; [s—1] pSAss(p) ( )
ThenB[;}l[S] = D;.1(p) - D;;(p) where
B! —p*B ! B AL (p)
D, _ [s—1][s—1] [s—1][s—1]"[s—1] s 63
71(p) ( - _sAss( ) s[s— 1]B{S 1][s—1] SA ( ) ( )
1= p=*Biy_1)s A5 (p) By s- 1]B[ 1[s—1] 0
Dy = s—Hls— 64
72(p) ( 0 1—p*B; [s— 1]Bs 1][s— 1]‘B[s 1]s A (p) ( )

Now B,_y),, = O(p®) asp — 0, from which it follows that

B[s,s](p) = < 8 p—s(j45—81 > +O(p178)- (65)

ConsequentIyB[gsl} = O(p~—*) asp — 0, completing the induction step. The statement of the Piitpos
then follows from (65) by taking = ry. g

Proof of Proposition 2: (i) In the given modelNg > 0 for all subsetsS of R, and henc&€ > Z,. Since
each node iV C R has at least two descendent leales- U, s—»Ug and hencé, > 0 by an argument
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similar to that in Theorem 7(i). Now il > B > 0then0 <1 —a <1—b < 1wherea = A/(2]|A|) and
b= B/(2||Al). Sincel[1—al, [1-b] <1,a™! = (1—=(1—a))"" = Y2 (1—a)' < 322(1—-b)' = b7,
whence the result follows.

(ii) Consider inference performed by using only measurgssam binary sets. 7, = pQ; +p*Q- for
some(); and(Q)- independent op, and hencég1 is O(p~2). By (i), Z~' < Z, !, which precludes; > 2
in Proposition 1. We conclude = 2 by showing that<; has0 as an eigenvalue, for theg > 1. Assume
that the rootp as a unique child. If not, partition the7 into disjoint subtrees with nodes descended from
each child ofp, then apply the following argument to each subtree. «{Ldenote the element a&V with
v(1) = 1,v(j) = —1forj € d(1), andv(k) = 0 otherwise. Observe that for eakle R, theCy;, (k); are
equal fori, j € {1,d(k,1)}. SinceCy = ;. Cxy, thenCy - v = 0. g

Proof of Proposition 4: max&(VM) =1 —amin&(C) + O(@)). From Propositions 1 and 2 we know
that C takes the block diagonal form (61) witlh = 2. From this is follows that each eigenvalue ©f
takes the fornpv;(p) + O(p**!) for somei € {1,2}, wherelim,_,ov;(p) € E(A;). Sinced ¢ E(Ay),

p 2min£(C) — min€&(Asz) asp — 0, and hence the result followg.
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