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Abstract. In this paper, we explore the use of end-to-end unicast tra�c

measurements to estimate the delay characteristics of internal network

links. Experiments consist of back-to-back packets sent from a sender to

pairs of receivers. Building on recent work [11, 5, 4], we develop e�cient

techniques for estimating the link delay distribution. Moreover, we also

provide a method to directly estimate the link delay variance, which can

be extended to the estimation of higher order cumulants. Accuracy of

the proposed techniques depends on strong correlation between the delay

seen by the two packets along the shared path. We verify the degree of

correlation in packet pairs through network measurements. We also use

simulation to explore the performance of the estimator in practice and

observe good accuracy of the inference techniques.

1 Introduction

Background and Motivation. As the Internet grows in size and complexity, it be-

comes increasingly important for users and providers to characterize and measure

its performance and to detect and isolate problems. Yet, because of the sheer size

of the network and the limit imposed by administrative diversity, it is not gener-

ally possible to directly access and measure but a small portion of the network.

Consequently, there is a growing need for practical and e�cient procedures that

can take an internal snapshot of a signi�cant portion of the network.

A promising approach to network measurements, the so called Network To-

mography approach, addresses these problems by exploiting the end-to-end traf-

�c behavior to reconstruct the network internal performance. The idea is that

correlation in performance seen on intersecting end-to-end paths can be used

to draw inferences about the performance characteristics of their common por-

tion, without cooperation from the network. Multicast tra�c is in particular well

suited for this since a given packet only occurs once per link in the multicast
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distribution tree. Thus multicast tra�c introduces a well structured correlation

in the end-to-end behavior observed by the receiver that share the same multi-

cast session. This correlation allows to infer the performance characteristics as

packet loss rates, [1], packet delay distributions, [11], and packet delay variance,

[6].
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R

Fig. 1. 2-Leaf Tree.

To illustrate the idea behind multicast based delay inference, consider the

simple tree in Figure 1 with the source (the root node) sending multicast packets

to the two leaf nodes L and R and assume we collect the end-to-end measure-

ments at the two receivers. If we consider the events where the delay seen by L

is zero (assume for simplicity that the transmission and propagation delay are

zero), the corresponding additional delays seen at R can be attributed to the

link from C to R alone. We can thus form an estimate of the delay distribution

for the link from C to R. The delay distribution of the other links can be derived

by similar arguments.

Despite the encouraging results, multicast measurements su�er from two seri-

ous limitations. First, large portions of the Internet do not support network-level

multicast. Second, the internal performance observed by multicast packets often

di�ers signi�cantly from that observed by unicast packets. This is especially se-

rious given that unicast tra�c constitutes the largest portion of the tra�c on

the Internet.

To overcome the limitation of multicast measurements, methods to extend

the inference techniques to unicast measurements have been recently proposed in

[3, 7] for the inference of loss rates and [4, 5] for delay distributions. The key idea

is to design unicast measurement whose correlation properties closely resemble

those of multicast tra�c, so that it is possible to use the inference techniques de-

veloped for multicast inference; the closer the correlation properties are to that

of multicast tra�c, the more accurate the results. The basic approach, which

has been further re�ned in [7] for the estimation of the loss rates, is to dispatch

two back-to-back packets (a packet pair) from a probe source to a pair of dis-

tinct receivers. The premise is that, when the duration of network congestion

events exceeds the temporal width of the packets, packets experience very sim-

ilar behavior when they traverse common portions of their paths. Di�erence in

the packets behavior occurs because congestion events may not a�ect packets

uniformly: packet loss could not be uniform if lossy periods last less than the



time between the arrival of the two packets; delays will di�er because of the

interleaving of background tra�c. Still, if the packets experience very similar

behavior, the error in using the multicast based estimator is very small.

As an example, consider again the tree in Figure 1 with the source now

sending two packets, back-to-back, the �rst to L and the second to R. In corre-

spondence of the events where the delay seen by L is zero we will still attribute

the additional delays seen at R to the link from C to R. But, because the two

packets will possibly experience slightly di�erent delays along the link from 0 to

C, our estimate of the delay distribution for the link from C to R will contain

an error roughly equal to the di�erence in delay seen by the two packets along

common link. The smaller this di�erence, the more accurate the estimates.

We observe that a more accurate approach would consist in taking into ac-

count the di�erence experienced by the two packets along the shared link and

incorporating it in our model. Unfortunately, we found out that it is not possi-

ble to estimate its value, at least not without additional assumptions. Therefore,

here we rely on small deviations from the ideal behavior and proceed as the two

packets experience the same delay along the shared path.

Contributions. In this paper we describe e�cient techniques for the estimation

of link delay characteristics, namely, the per link delay distribution and per link

delay cumulants, via end-to-end packet pairs measurements.

For the distribution analysis, our starting point is the work by Lo Presti,

et al. [11] and subsequent work by Coates and Novak in [5, 4]. Following [11],

we model link delay by non-parametric discrete distributions. The discrete dis-

tribution can be a regarded as binned or discretized version of the (possibly

continuous) true delay distribution, where we explicitly trade-o� the detail of

the distribution with the cost of calculation. A potential limitation of this ap-

proach lies in the accuracy/complexity trade-o� itself. Since the complexity of

the analysis is function of the numbers of bins, it results that under the usual

discrete model, whereby delay is discretized using a �xed bin size q, a small q to

ensure a desired level of accuracy in the estimates results in too many parameters

(bins) and excessive computational costs.

To overcome these limitations, here, we describe a novel approach to delay

modeling. The idea is to discretize delay using variable sized bins. Smaller bins

are used only in correspondence of concentrations of probability mass to ensure

adequate resolution while larger bins are used otherwise. Intuitively, this allows

us to reduce the number parameters (bins), and hence complexity, signi�cantly,

without losing accuracy. A complication with this approach is that a discrete

model with variable bin size does not lend itself to analysis. To this end, we

propose an approach to variable bin size modeling which, while restricting the

possible choices of bin size to a speci�c format, lends itself to analysis. In partic-

ular, we can formulate the estimation problem for the proposed variable bin size

model, by generalizing the Maximum Likelihood formulation of [5]. Estimation

is carried out by adapting the Expectation-Maximization (EM) algorithm used

in [5] to compute the MLE estimates.



Then, we also describe an e�cient method to directly infer the per link delay

variance. By a simple argument, we show that it is possible to express the link

delay variance in terms of the covariance of the end-to-end delays. Therefore, we

can estimate the variance directly from the sample covariance of the end-to-end

delays. The same method can be extended for the estimation of higher order

cumulants. Distribution and cumulants are closely related: knowledge of (all)

the cumulants of a random variable is equivalent to know its distribution.

The rest of the paper is organized as follows. In Section 2 we specify the

tree and delay model. In Section 3 we describe the estimators of the delay dis-

tribution. In Section 4 we describe the link delay variance estimator (for lack of

space, we omit the extension to higher order cumulants). In Section 5 we use the

National Internet Measurement Infrastructure (NIMI) [13] to gather end-to-end

data from a diverse set of Internet paths, and verify the conditions for the ac-

curacy of our methods. In Section 6 we use network level simulation to evaluate

the accuracy of the estimators. We conclude in Section 7.

Related Work. There exist several tools and methodologies for characteriz-

ing link-level behavior from end-to-end unicast measurements. One of the �rst

methodologies focuses on identifying the bottleneck bandwidth on a unicast

route. The key idea is that, in an uncongested network, two packets sent back-

to-back will arrive at the receiver with a spacing that is inversely proportional

to the lowest link bandwidth on the path. This was noted by Jacobson [9], and

analyzed by Keshav [10].

Use of end-to-end measurements of packet pairs in a tree connecting a sin-

gle sender to several receivers for estimation of the link delay has been �rst

considered in [5]. The inference of the link delay distribution is formulated as

a maximum likelihood estimation problem which is solved using the Expecta-

tion Maximization (EM) algorithm. In [5, 4] the authors extend this approach

to the nonstationary case and in [14] investigate unicast based inference in con-

text of passive monitoring, whereby inference is based on observation of ongoing

unicast sessions. Preliminary results on these methods reported in these papers

show promise.

Our approach extend the results in [5] in that we consider a more gen-

eral form of discrete model which allows us to signi�cantly improve the ac-

curacy/complexity trade-o�. We remark that the variable bin size scheme pre-

sented in this paper can be used in other setting, e.g., multicast based inference

techniques.

2 The Tree and Delay Models

Tree Model. We represent the underlying physical network as a graph G

phys

=

(V

phys

; L

phys

) comprising the physical nodes V

phys

(e.g. routers and switches) and

the links L

phys

between them. We consider a single source of probes 0 2 V

phys

and a set of receivers R � V

phys

. We assume that the set of paths from 0 to each

r 2 R is stationary and forms a tree T

phys

in (V

phys

; L

phys

); thus two such paths



never intersect again once they have diverged. We form the logical source tree

T = (V; L) whose vertices V comprise 0, R and the branch points of T

phys

. The

link set L contains the link (j; k) if one or more of the probe paths in T

phys

pass

through j and then k without encountering another element of V in between. We

will sometimes refer to link (j; k) 2 L simply as link k. For k 6= 0, f(k) denotes

the parent of k. We write j � k if j is an ancestor of k in T . i _ j denotes the

minimal common ancestor of i and j in the �-ordering.

Packet Pair and Delay Model. Let hi; ji denote a packet pair dispatched to

destination nodes i; j in that order. The paths traverse a common set of links

down to node i _ j. Let p(i; j) denote the set of nodes traversed by at least one

member of the packet pair. For k 2 p(i; j) let G(k) � f1; 2g, where 1 and 2 denote

the two packets sent in order to i and j, denote the set of packets that transit k.

We describe the progress of the packet pair in T by the variable X

k

(l), l 2 G(k),

which represents the accrued queueing delay of packet d along the route to k.

We assume that we only observe the end-to-end delay X

ij

= (X

i

(1); X

j

(2)) at

receivers i and j.

We specify a delay model for the packet pair. We associate with each node k

a pair of random variables D

k

and D

0

k

that take values in the extended positive

real line R

+

[ f1g. By convention D

0

= D

0

0

= 0. D

k

(D

0

k

) is the delay that

would be encountered by the �rst (second) packet attempting to traverse the

link (f(k); k) 2 L. A delay equal to 1 indicates that the packet is lost on the

link. We assume that delays are independent between di�erent pairs, and for

packets of the same pair on di�erent links. The delay experienced by packet 1

on the path from root 0 to node k is X

k

(1) =

P

l�k

D

l

. The delay experienced

by packet 2 is X

k

(2) =

P

l�(i_j)_k

D

0

l

+

P

(i_j)_k�l�k

D

l

. Note that X

k

(�) =1

i� any delay along the path to k is in�nite, i.e. if the packet is lost on some link

between nodes 0 and k.

For any k 2 V , E

k

= D

0

k

�D

k

is the di�erence between the delays experienced

by the back-to-back packets of a packet pair traversing k. Ideally, E

k

= 0, and

the packet pair behaves like a notional multicast packet sent to the two receivers.

In practice, we expect the two delays to be di�erent. This is because congestion

events at intervening nodes may not a�ect packets uniformly if they are not

back-to-back. This occurs, for example, because of the packets being spaced

apart as a result of traversing a bottleneck (low available bandwidth) link, and

the interleaving of background tra�c in between. Observe that E

k

6= 0 even in

the case of perfectly back-to-back packets, e.g., packet 2 su�ers on additional

delay due to the time required to transmit packet 1.

Measurement A measurement experiment consists of sending, for each pair of

distinct receivers i,j 2 R, n packet pairs hi; ji. As a result of the experiment

we collect a set of measurements X

i;j

= (X

i;j(m)

)

m=1;:::;n

, where X

i;j(m)

=

(X

i

(1)

(m)

; X

j

(2)

(m)

) and (X

i

(1)

(m)

; X

j

(2)

(m)

) is the end-to-end delay of the

m-th packet pair hi; ji. Let X = (X

i;j

)

i 6=j2R

denote the complete set of mea-

surements.



3 Non-parametric Estimation of Delay Distribution

In this section we describe techniques for the estimation of the probability distri-

bution of the per link variable delay D

k

. We quantize the delay to a �nite set of

values Q. We assume that once quantized, D

k

= D

0

k

. In other words, we assume

E

k

small enough that it can be ignored in the discrete model. We consider two

cases. First, in Section 3.1 we consider the most usual form of discretization,

where we discretize delay to a set Q = f0; q; 2q; : : : ; Bq;1g, where q is a suit-

able �xed bin size. Then, in Section 3.2 we consider a di�erent approach whereby

delay is discretized to a more general set Q.

For the analysis, we thus model the link delay by a nonparametric discrete dis-

tribution that we can regard as a discretized version of the (possibly continuous)

actual delay distribution. We denote the distribution of D

k

by �

k

= (�

k

(d))

d2Q

,

where �

k

(d) = P[D

k

= d], d 2 Q. We will denote by � = (�

k

)

k2V

the set of

links distributions.

3.1 Delay Analysis with a Fixed Bin Size Discrete Model

Here, we consider the usual discrete model wherein D

k

takes a value in Q =

f0; q; 2q; : : : ; Bq;1g, where q is a suitable �xed bin size. The point 1 is inter-

preted as \packet lost" or \encountered delay greater than Bq". We de�ne the

bin associated to iq 2 Q to be the interval [iq �

q

2

; iq +

q

2

), i = 1; : : : ; B, and

[Bq �

q

2

;1) the one associated to the value 1. Because delay is non negative,

we associate with 0 the bin [0;

q

2

). We denote this model as the (q; B) model.

Our goal is to estimate � using maximum likelihood based on the overall

observed data X (also discretized to the set Q). Denote by 
 = Q�Q the set of

possible outcomes for the packet pairs delays For each outcome x

i;j

2 
 denote

n(x

i;j

) the number of pairs hi; ji, m = 1; : : : ; n, for which X

i;j(m)

= x

i;j

. Let

p

�

(x

i;j

) = P

�

[X

i;j

= x

i;j

] denote the probability of the outcome x

i;j

. p

�

(x

i;j

)

can be expressed in terms of convolutions of the distribution �

k

, k 2 p(i; j).

The log-likelihood of the measurement X is

L(X ;�) = logP

�

[X ] =

X

i 6=j2R

X

x

i;j

2


n(x

i;j

) log p

�

(x

i;j

) (1)

We estimate � by the maximizer of the likelihood (1), namely, b� = argmax

�

L(�).

Unfortunately, given the form of (1) we have been unable to obtain a direct ex-

pression for b�. Instead, we follow the approach in [4, 5], and employ the Expec-

tation Maximization (EM) algorithm to obtain an iterative approximation b�

(`)

,

` = 0; 1; : : : ; to (local) maximizer of the likelihood (1). The basic idea behind

the EM algorithm is that, rather then performing a complicated maximization,

we \augment" the observed data with unobserved or latent data so that the re-

sulting likelihood has a simpler form. Following [5], we augment the observations

X with the unobserved actual delay experienced by the packet pairs along each

link, namely, D = (D

i;j

k

)

k2p(i;j);i 6=j2R

, where D

i;j

k

= (D

i;j(m)

k

)

m=1;:::;n

are the

delays experienced by the n packet pairs hi; ji along link k. The pair (X;D)



represents the complete data for our inference problem. The log-likelihood of the

complete data (X;D) is

L(X;D;�) = logP

�

[X;D] = logP

�

[X jD] + logP

�

[D]: (2)

The �rst term is 0 (since D uniquely determines X , we have that P

�

[X jD] = 1).

Expansion of the second term yields

logP

�

[D] =

X

i 6=j2R

X

k2p(i;j)

logP

�

[D

i;j

k

] =

X

k2V

X

d2Q

n

k

(d) log�

k

(d) (3)

where n

k

(d) is the total number of packets pairs that experienced a delay equal

to d along link k. Should D be observable, the counts n

k

(d) would be known,

and maximization of (3) would directly yield the MLE estimate of �

k

(d),

b�

k

(d) =

n

k

(d)

P

d2Q

n

k

(d)

(4)

Since D and n

k

(d) are not known, the EM algorithm uses the complete data

log-likelihood L(X;D;�) to iteratively �nd b� as follows:

1. Initialization. Select the initial link delay distribution b�

(0)

. As shown in

Appendix, we select b�

(0)

as an estimate of � we compute by adapting the

approach in [11].

2. Expectation. Given the current estimate b�

(`)

, compute the conditional ex-

pectation of the log-likelihood given the observed data X under the prob-

ability law induced by b�

(`)

, Q(�

0

; b�

(`)

) = E

b�

(`)

[L(X;D;�

0

)jX ] =

P

k2V

P

d2Q

bn

k

(d) log�

0

k

(d) where bn

k

(d) = E

b�

(`)

[n

k

(d)jX ].Q(�

0

; b�

(`)

) has the same

expression as L(X;D;�

0

) but with the actual unobserved counts n

k

(d) re-

placed by their conditional expectations bn

k

(d). To compute bn

k

(d), observe

that we can write the counts n

k

(d) as n

k

(d) =

P

i 6=j2R:k2p(i;j)

P

n

m=1

1

fD

i;j(m)

k

=dg

.

Then

bn

k

(d) =

X

i 6=j2R:k2p(i;j)

n

X

m=1

P

b�

(`)

[D

i;j(m)

k

= djX

i;j(m)

] (5)

=

X

i 6=j2R:k2p(i;j)

X

x

ij

2


n(x

ij

)P

b�

(`)

[D

k

= djX

ij

= x

ij

] (6)

3. Maximization. Find the maximizer of the conditional expectation �

(`+1)

=

argmax

�

0

Q(�

0

; b�

(`)

). The maximizer is given by (4) with the conditional

expectation bn

k

(d) in place of n

k

(d).

4. Iteration. Iterate steps 2 and 3 until some termination criterion is satis�ed.

Set b� = b�

(`)

, where ` is the terminal number of iterations.

Convergence. Because the complete data likelihood can be shown to derive from

a standard exponential family, the EM iterates b�

(`)

converge to a stationary point



of the likelihood �

�

, i.e.,

@L(X;D;�)

@�

(�

�

) = 0, (see e.g. [15]) . This implies that

when there are multiple stationary points, e.g. local maxima, the EM iterates

may not converge to the global maximizer. Unfortunately, we were not able to

establish whether there is a unique stationary point or conditions under which

unicity holds. Therefore, in general the estimates b�

(`)

converge to a local (but

not necessary global) maximizer. Since the point of convergence depends on the

initial estimate, we must carefully choose the initial estimate b�

(0)

. Here we select

as initial distribution the estimate of � obtained by using the approach in [11]

(see the Appendix). We expect that, for large enough n, b�

(0)

(which converges

to �), is close enough to the actual likelihood maximizer so to ensure, in most

cases, the desired convergence.

Complexity. The complexity of the algorithm is dominated by the computation

of the conditional expectation bn

k

(d) which can be accomplished in time that is

O(npB

2

), where p is the average number of links between the source and a leaf

node, using the upward-downward probability propagation algorithm [8].

Choice of bin size. Since packet delay is essentially continuous in nature, the use

of a discrete model introduces a quantization error, which is a function of the

bin size q. The choice of q is thus primarily dictated by the trade-o� between

accuracy and computational complexity: a smaller q provides better accuracy

but at rapidly increasing computational cost (observe that since the product

qB is constant the complexity is basically O(np=q

2

)); on the other hand, use of

larger bin size, reduces the computational complexity but may not be adequate

to accurately capture very small delays.

We must also consider that, in the context of unicast measurements, the

delay resolution must be large enough so that, once discretized to Q, we can use

the approximation D

k

� D

0

k

. Our network experiments in Section 5 suggest that

q should not be smaller than 1msec to satisfy this condition.

3.2 Delay Analysis with Variable Bin Size Discrete Model

Here we consider a more general form of discrete model in which D

k

takes

values in a more general �nite set Q. This is motivated by the observation that

the use of a �xed bin size may be too restrictive in the analysis of large networks

where delay characteristics signi�cantly vary from node to node: a value of q

chosen to adequately capture the delay behavior of very fast links would result

in too many parameters if slower or congested links are also present. Ideally,

to overcome the limitations of the accuracy/complexity trade-o� of the �xed

bin size models, it is preferable to discretize delay to a suitable set Q, which

guarantees the desired resolution in the delay range of interest while keeping the

overall number of bins su�ciently small. For example, smaller bins could be used

only in correspondence of concentrations of probability mass to ensure adequate

resolution while larger bins could be used otherwise. Intuitively, this would allow

us to reduce the number parameters (bins), and hence complexity, signi�cantly,

without losing accuracy.



A complication with this approach is that a discrete model with a general

set of values Q does not lend itself to analysis. The problem, is that a general

discrete set Q is not closed under the sum operation. Therefore, we cannot

express the observable delay (discretized to Q) in terms of sum of link delays

(also discretized to Q).

To overcome these di�culties, we now describe a simple approach to variable

bin size modeling which, while restricting the possible choices of Q to a speci�c

format, lends itself to analysis. The key idea is to consider variable bin size mod-

els, the analysis of which can be reduced to that of a set of �xed bin size models.

We proceed as follows: (1) we de�ne a variable bin size model as the composition

(in the sense described below) of �xed bin size models; and (2), we choose the

constituent �xed bin size models so that the estimates of the distribution for

these models can be composed to form the estimate of the distribution of the

variable bin size model itself. By appropriate choice of the �xed bin size models,

the resulting variable bin size model has a better accuracy/complexity trade-o�.

We detail the approach below.

3
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Fig. 2. Variable bin size model as composition of fixed bin size models.

We de�ne the variable bin size discrete model as the composition of M uni-

form bin size discrete models ((q

l

; B

l

))

l=1;:::;M

, with increasing bin size, 0 < q

1

<

: : : < q

M

and such that B

1

q

1

< : : : < B

M

q

M

(see Figure 2). We assume that for

l = 2; : : : ;M , each bin of level l either corresponds to an integer number of level

l� 1 bins (i.e., the boundaries of the bin of level l correspond to boundaries of a

group of adjacent bins of level l � 1) or is contained in the 1 bin of level l � 1.

We let g

l

(j) denote the set of level l� 1 bins which corresponds to the j-th level

l bin, j = 0; : : : ; B

0

l

< B

l

where B

0

l

is the �rst level l bin contained in level l� 1

last bin (the one corresponding to 1).

In the variable bin size model, D

k

takes values in Q = f0; q

1

; : : : ; B

1

q

1

; B

0

2

q

2

;

: : : ; B

0

M

q

M

;1g. We de�ne the bin associated to iq

l

2 Q as the interval [iq

l

�

q

l

2

; iq

l

+

q

l

2

), and [B

M

q

M

�

q

M

2

;1) the one associated to1. With this de�nition,

we create a correspondence between the bins of the variable bin size model and

bins of the �xed bin size models (the shaded bins in Figure 2). This allows us to



express the distribution � in the variable bin size model in terms of the delay

distribution in the M uniform bin size models. For k 2 V , denote �

k

(d; q

l

) =

P [D

k

= d], d 2 Q

l

= f0; : : : ; B

l

q

l

;1g the distribution for the model with �xed

bin size q

l

. The distribution of D

k

in the variable bin size model is then �

k

=

(�

k

(d))

d2Q

, where �

k

(d) = �

k

(iq

l

; q

l

), d = iq

l

2 Q, and �

k

(1) = �

k

(1; q

M

),

k 2 V . We will take advantage of this correspondence for the estimation.

With the above de�nition, we are limited to variable bin size models where

the bin size progressively increases. However, we do not believe this choice to be

restrictive. Indeed, we expect that in most cases it is desirable to have smaller

bins in correspondence with small delay values and larger bins otherwise; while

the small bins guarantee enough resolution for very fast or uncongested links,

the larger bins prevent the explosion of the number of parameters due to the

large delays experienced by the slower and congested links.

Example. We consider the ternary variable bin size model de�ned, for a given

base bin size q and number of levels M , as ((3

(l�1)

q; 2g))

l=1;:::;M

. Delay is thus

discretized to the set f0; q; 3q; 9q; : : : ; 3

M�1

q;1g(see Figure 3). This can be con-

sidered as an extreme case where each level has only three bins, 0, 3

(l�1)

q and1,

and the bin size grows exponentially with the level. Observe that this model cov-

ers the delay range from 0 up to a maximum value d

max

with only O(log

3

d

max

q

)

bins.

q27

0 delay

q

27q9q3qq0

q
0

0

0 3q
q3

9

27q

q
9q0

Fig. 3. Example: The Ternary Variable Bin Size Model (M = 4).

We estimate the distribution � of the variable bin size model indirectly by

taking advantage of the relationship between the bins of the variable bin size

model and those of the component �xed bin size models. Basically, we estimate

the probabilities of the former by the corresponding estimates of the latter. More

precisely, estimation of � proceeds by computing recursively the MLE estimate

of M discrete models (q

l

; B

l

), starting with l = 1 as follows:

1. Discretize the delays to the set Q

l

.



2. Estimate the probabilities �

k

(d; q

l

), d 2 Q

l

, k 2 V . For l = 1, we use

the EM algorithm directly. For l > 1, to have consistency between the

estimates of the di�erent models, we compute the estimates of the prob-

abilities of level l bins corresponding to a group of level l � 1 bins, di-

rectly as the sum of the probabilities of those bins. In other words, we let

b�

k

(d; q

l

) =

P

j2g

l

(d=q

l�1

)

b�

k

(jq

l�1

; q

l�1

) for d � q

l

B

0

l

. We then use the EM

algorithm to estimate the remaining probabilities �

k

(d; q

l

) for d � q

l

B

0

l

as-

suming the probabilities �

k

(d; q

l

), d � q

l

B

0

l

, as known parameters (set equal

to the estimates above). This is equivalent to the EM algorithm shown in

Section 3.1, where we replace (4) with

b�

(`)

k

(d; q

l

) =

0

@

1�

X

d

0

�B

0

l

q

l

b�

k

(d

0

; q

l

)

1

A

bn

k

(d)

P

d

0

>B

0

l

q

l

bn

k

(d

0

)

(7)

3. Iterate 1 and 2 for l = 1; : : : ;M .

4. Compose the estimates of the M models to estimate �, i.e., set b�

k

(d) =

b�

k

(iq

l

; q

l

), d = iq

l

2 Q, k 2 V .

Complexity. The computational cost equals the sum of the costs of computing

the MLE estimates of each model. Assuming for simplicity that the number of

iterations required by the EM algorithm does not vary, the complexity is then

O(np

P

M

l=1

B

2

i

).

Choice of the Variable Bin Size Model. The use of the variable bin size model

provides great 
exibility in terms of both accuracy and computational cost. We

consider two examples below. To ensure high accuracy a simple solution lies

in using a variable bin size model with only two levels, i.e., M = 2: the �rst

level has a small bin size, chosen according the desired level of accuracy and

enough bins to include most of the probability mass, e.g., B

1

large enough that

P [D

k

� B

1

q

1

] > 0:999; the second level has a larger bin size and covers the

rest of the delay interval. We expect that capturing the tail of the distribution

with a larger bin size can provide a signi�cant reduction in the computational

cost without accuracy degradation. At the other extreme, we might consider the

solution which has the smallest complexity. Since the complexity is proportional

to

P

M

l=1

B

2

i

, we simply have to minimize the number of bins per level and use

as many levels as necessary. We thus obtain the ternary variable bin size model.

In between these extreme cases, it is possible to consider several models which

provide the desired accuracy complexity trade-o�. In general we expect the model

to be determined either a priori or based on the measurements themselves.

3.3 Comparison of the Variable and Fixed Bin Size Model.

We illustrate the potential bene�t of the variable bin size model using model-

based simulations in which link delays are independent, exponentially distributed

random variables. We assume no packet loss. We conducted 1000 independent



experiments over the 2-leaf tree in Figure 1. In each experiment, we sent 1000

packet-pairs down the tree. We assumed that the back-to-back packets have the

same delay along the common link. Average link delays were chosen indepen-

dently with a uniform distribution in the interval [0:1; 10]msec.

For the analysis, we consider three di�erent discrete models: the �rst two

models are the two bin size models (1msec; 100) and (10msec; 10); the third

model is the ternary model (3

l�1

1msec; 2)

l=1;:::;5

. The number of bins in each

model was chosen so that the largest �nite delay in each model was about

100msec. We used the EM algorithm for the estimation. Initialization was per-

formed as described in the Appendix. The termination criterion for the EM al-

gorithm was that successive iterates of any probability should have an absolute

distance less of 10

�3

.

Complexity. The computational costs di�er substantially. To compare the costs,

observe that each iteration has a complexity proportional to the square of the

number of bins, which for the three models is 10,000, 100 and 9. The average

number of iterations for the di�erent models, was respectively, 22, 13 and 31

(the last number is the sum over the 5 �xed bin size models). Thus, the �xed

bin size model with bin size 1msec requires about two orders of magnitude

more operations than what is needed by the variable bin size model, which,

despite the need of executing the EM algorithm multiple times, has the smallest

computational complexity.

�xed bin size variable bin size

q = 1msec q = 10msec

all links 2.6% 8.1% 17.6%

links with average delay < 1msec 9.7% 64.4% 14.6%

Table 1. Median of the Absolute Relative Error of the Average Delay

Estimates.

Accuracy. We now compare the accuracy of the di�erent approaches. In order to

quantify the accuracy, in Table 1 we list the median of the absolute relative error

of the average delay estimates. As expected the best performance is achieved by

the �xed bin size model with q = 1msec; use of a larger bin, while greatly reduc-

ing the complexity, resulted in very poor accuracy for the smaller delays (if we

consider only links with average delay smaller than 1msec, the typical error was

64.4%). By contrast, the variable bin size model achieves good accuracy across

the entire delay range, while at the same time enjoying a low computational

cost.

4 Non-parametric Estimation of Link Delay Variance

In this section we present a class of non-parametric estimators of the link delay

variance. We assume initially that all delays are �nite: P[D

k

=1] = 0. We will

later relax this assumption.
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Fig. 4. Logical multicast Tree (left) and the two subtrees traversed by

the pairs hi; ji (center) and hi

0

; j

0

i (right).

For a node k 2 V , consider the packet pairs hi; ji and hi

0

; j

0

i, dispatched to the

nodes i and j and i

0

and j

0

, respectively, such that i_j = k and i

0

_j

0

= f(k); see

Figure 4. From the assumption that delays along di�erent links are independent

and the bilinearity of the covariance, for the packet pair hi; ji it follows that

Cov[X

i

(1); X

j

(2)] = Cov[X

k

(1) + (X

i

(1)�X

k

(1)); X

k

(2) + (X

j

(2)�X

k

(2))] (8)

= Cov[X

k

(1); X

k

(2)] (9)

= Var[X

k

(1)] + Cov[X

k

(1); X

k

(2)�X

k

(1)] (10)

= Var[X

k

(1)] +

X

l�k

Cov[D

l

; E

l

]: (11)

Similarly, for the the packet pair hi

0

; j

0

i we have that Cov[X

i

0

(1); X

j

0

(2)] =

Var[X

f(k)

(1)] +

P

l�f(k)

Cov[D

l

; E

l

]. Observe that X

k

(1) = X

f(k)

(1) +D

k

, and

X

f(k)

(1) =

P

l�f(k)

D

l

and D

k

are independent. Therefore, Var[D

k

] = Var[X

k

]�

Var[X

f(k)

] which we can rewrite

Var[D

k

] = Cov[X

i

(1); X

j

(2)]� Cov[X

i

0

(1); X

j

0

(2)]� Cov[D

k

; E

k

] (12)

� Cov[X

i

(1); X

j

(2)]� Cov[X

i

0

(1); X

j

0

(2)] (13)

under the assumption that jCov[D

k

; E

k

]j � Var[D

k

] (Observe that Cov[D

k

; E

k

] =

0, in particular, if E

k

and D

k

are independent, or if E

k

is constant). (13) ex-

presses the variance of the packet delay along link k in terms of the covariance

of delays measured at receivers. We can form an estimator of Var[D

k

] (which is

unbiased if Cov[D

k

; E

k

] = 0) from the unbiased estimators of the end-to-end co-

variances. More precisely, abbreviate Cov[X

i

(1); X

j

(2)] = s

ij

and Var[D

k

] = v

k

.

We can then estimate v

k

by the di�erence bs

ij

� bs

i

0

j

0

of the unbiased estimators

of s

ij

and s

i

0

j

0

, namely

bs

ij

=

1

n� 1

0

@

n

X

m=1

X

i;j

i

(1)

(m)

X

i;j

j

(2)

(m)

�

1

n

n

X

m;m

0

=1

X

i;j

i

(1)

(m)

X

i;j

j

(2)

(m

0

)

1

A

(14)

and similarly for bs

i

0

j

0

.



More generally, let Q(k) = ffi; jg � R j i _ j = k; g be the set of distinct

pairs of receivers whose �-least common ancestor is k 2 V . Measurements of the

packet pairs hi; ji, fi; jg 2 Q(k) and hi

0

; j

0

i, fi

0

; j

0

g 2 Q(f(k)) yields estimates of

v

k

, namely, bs

ij

� bs

i

0

j

0

as does any convex combination

P

fi;jg2Q(k);fi

0

;j

0

g2Q(f(k))

�

iji

0

j

0

(bs

ij

�bs

i

0

j

0

) (where the �

iji

0

j

0

are non negative and sum to 1), which we can

rewrite as

V

k

(�; bs) :=

X

fi;jg2Q(k)

�

ij

(k)bs

ij

�

X

fi

0

;j

0

g2Q(f(k))

�

i

0

j

0

(f(k))bs

i

0

j

0

(15)

where bs = fbs

ij

: fi; jg 2 Q(k); k 2 V g, �(k) = (�

ij

(k))

fi;jg2Q(k)

, �

ij

(k) =

P

fi

0

;j

0

g2Q(f(k))

�

iji

0

j

0

� 0,

P

fi;jg2Q(k)

�

ij

(k) = 1, and similarly for �

i

0

j

0

(f(k)).

Finally, denote � = (�(k); �(f(k))). An example is the uniform estimator where

all �(k) and �(f(k)) are constant. The uniform estimator has the disadvantage

that a high variance of any summand may result in a high variance in the overall

estimate. By proper choice of the weights we can determine the estimator V

k

(�; bs)

of minimum variance.

The next theorem characterizes the asymptotic behavior of V

k

(�; bs) and gives

a form for the estimator of minimum variance. The proofs follow the same lines of

those for the multicast case in [6] and are omitted. De�ne Z

i

(l) = X

i

(l)�E[X

i

(l)],

i 2 R, l = 1; 2, and let w

ij

= Var[Z

i

(1)Z

j

(2)], i 6= j 2 R and m

k

= Cov[D

k

; E

k

].

Theorem 1. For each k 2 V :

(i) the random variables

p

n � (bs

ij

�v

k

+m

k

), fi; jg 2 Q(k) are independent and

converge in distribution to a Gaussian random variable with mean 0 and

variance w

ij

;

(ii) for any choice of �,

p

n(V

k

(�; bs) � v

k

+m

k

) converges in distribution to a

Gaussian random variable of mean zero and variance

P

fi;jg2Q(k)

�

2

ij

(k)w

ij

+

P

fi

0

;j

0

g2Q(f(k))

�

2

i

0

j

0

(f(k))w

i

0

j

0

;

(iii) the minimal asymptotic variance of the estimator V

k

(�; bs) is achieved when

�

ij

(h) = �

�

ij

(h) :=

w

�1

ij

P

fi

0

;j

0

g2Q(h)

w

�1

i

0

j

0

, h 2 fk; f(k)g. The corresponding

asymptotic variance of the estimator is

1

P

fi;jg2Q(k)

w

�1

ij

+

1

P

fi

0

;j

0

g2Q(f(k))

w

�1

i

0

j

0

.

Theorem 1 shows that V

k

(�; bs) is asymptotically normal. We de�ne the esti-

mator bias as b

k

= jE[V

k

(�; bs)�v

k

]j, k 2 V . For large n, we can use the approx-

imation b

k

� jCov[D

k

; E

k

]j. Thus, under the assumption that jCov[D

k

; E

k

]j �

Var[E

k

], we have E[V

k

(�; bs)] � v

k

.

Operationally, the weights � need to be calculated from an estimate bw

i;j

of the variances w

ij

. These can be computed as shown in [6]. The resulting

estimator V

k

(b�

�

; bs), where �

�

is obtained by using bw

ij

in place of w

ij

, has the

same asymptotic behavior of V

k

(�

�

; bs).

Impact of Loss on the Estimators. We now relax the assumption of �nite delays.

We associate in�nite delays to packet losses. Although lost packets will not



provide delay samples at receivers, clearly, the foregoing still applies to cumulant

estimation based on the end-to-end delays of the received packets. For any packet

pair hi; ji, de�ne I

n

(i; j) � f1; : : : ; ng the set of pairs for which both packets

reach the leaf nodes; de�neN

n

(i; j) = #I

n

(i; j) the number of such pairs. Denote

by B(i; j) =

Q

k�i;j

P[D

k

<1] the probability that the two packets of the packet

pair reach the leaf nodes.N

n

(i; j)=n converges almost surely to B(i; j) as n!1.

For large n we have approximatively N

n

(i; j) � B(i; j)n delay measurements

from both packets of the pair hi; ji.

We adapt the approach of the foregoing theory by estimating s

ij

using only

the measurements from the pairs in I

n

(i; j). This corresponds to replacing n

with N

n

(i; j) and

P

n

m=1

with

P

m2I

n

(i;j)

in (14). The e�ect of packet loss is to

reduce the number of packet pairs available for estimation, thus increasing the

variability of the estimates. The asymptotic behavior is characterized by results

similar to Theorem 1 where we replace w

ij

by

w

ij

B(i;j)

.

5 Network Experiments

The accuracy of the techniques described in Sections 3 and 4 rely on the assump-

tions that: (1) the back-to-back packets in the packet pair experience roughly

the same delay on each link along their common path, i.e., D

k

� D

0

k

; (2) the

additional delay experienced by the second packet is uncorrelated to the delay

experienced by the �rst packet (or practically so), i.e., jCov[D

k

; E

k

]j � Var[D

k

].

In this section we investigate conformance of both of measurements of packet

pairs transmitted across a number of end-to-end paths in the Internet to both of

these assumptions. Although these experiments did not access the transmission

properties of individual links (which are very di�cult to measure), they are able

to detect link-wise departures from the assumptions, since these would also be

re
ected in the properties of end-to-end paths over non-conformant links.

Measurement Infrastructure. We conducted the experiments using the National

Internet Measurement Infrastructure (NIMI) [13]. NIMI consists of a number of

measurement platforms deployed across the Internet (primarily in the U.S.) that

can be used to perform end-to-end measurements. We made the measurements

using the zing utility, which sends UDP packets in selectable patterns, recording

the time of transmission and reception. zing was extended to transmit packets

pairs with minimal spacing between packets. The resulting inter-packet spacings

were of about 40�sec.

Measurements were performed along end-to-end paths, by sending packet

pairs from a sender to a receiver host. These measurements did not allow us to

directly study the delay behavior of the pair along internal links, which would

have required measurement inside the network.

Here we report the results from 13 successful measurements made between

11 NIMI sites (two of which are in Europe). Each measurement recorded at both

sender and receiver the transmission of 6000 back-to-back packet pairs sent at

exponentially distributed intervals with a mean of 100msec. All measurements



were made at either 2PM EDT (a busy time) or 2AM EDT (a fairly unloaded

time) separated by a mean of 100msec. Since our focus is on the variable portion

of the delay, in the results reported below we normalize each delay measurement

by subtracting the minimum delay seen at the receiver. A delay equal to the min-

imum delay is thus regarded as a variable delay equal to 0. In other words, we

interpret the observed minimum delay as the constant propagation and trans-

mission delay along the path, under the assumption that at least one packet

experienced no queueing delay along the path.

Delay Characteristics. In Table 2 we display the relevant delay statistics (mea-

sured in msec) along each path, ordered in increasing average delay.

E[D

k

]

p

Var[D

k

] E[E

k

]

p

Var[E

k

]

Cov[D

k

;E

k

]

Var[D

k

]

0.58 0.40 0.06 0.14 �2:73 � 10

�2

0.62 10.22 0.08 0.22 7:81 � 10

�4

0.89 2.63 1.03 0.36 �3:16 � 10

�4

1.27 7.50 0.18 0.88 2:23 � 10

�3

1.58 8.74 0.10 0.22 1:34 � 10

�4

1.95 1.62 1.01 0.18 �2:78 � 10

�3

2.64 3.61 0.08 0.04 �1:81 � 10

�3

4.30 23.31 0.25 0.34 �1:10 � 10

�4

5.44 42.70 0.29 0.90 2:80 � 10

�5

5.62 60.31 0.32 0.45 �5:66 � 10

�5

37.28 47.55 0.26 0.83 2:79 � 10

�5

63.72 65.67 0.61 0.82 5:98 � 10

�5

65.97 62.16 0.42 1.57 5:19 � 10

�5

Table 2. Summary Delay Statistics (in msec).

The average delay ranged from 0:6msec to 66msec, a span of two orders of

magnitude. The entries in Table 2, with either a large average delay, a large stan-

dard deviation, or both, correspond to six experiments involving sites in Europe

(the last rows in Table 2). Despite the delay diversity in our measurements, the

di�erence in the average delay seen by back-to-back packets was somewhat more

uniform, increasing with larger delay, but with an average and standard deviation

typically below 1msec. This suggests that in practice we can use the approxi-

mation D

k

� D

0

k

as long as we adopt a delay resolution larger than 1msec, i.e.,

we discretize delay with bin size larger than 1msec. At these resolutions, indeed,

the delays seen by the two packets can be considered identical.

Finally, we turn our attention to the bias of the variance estimator. In Table 2,

we list the relative bias

Cov[D

k

;E

k

]

Var[D

k

]

. The results show that variability of E

k

is much

smaller than that of D

k

. The bias is only 3% in the worst case.

6 Simulation Results

The experiments of Section 5 show that the delay properties of back-to-back

packets make packet pairs suitable for delay inference. In this Section, we employ

simulation to evaluate how accurate the estimators might be in practice.



5Mb/sec, 50 ms

1Mb/sec, 10 ms

(a)

Source

Receiver

(b)

Fig. 5.Network Topology and Logical Source Tree used in the Simulations.

We used the ns simulation environment [12]; this enables the representation

of transport-protocol details of packet transmissions. The simulations reported

in this paper used the 39-node topology of Figure 5(a). The bu�er on each link

accommodated 20 packets. Background tra�c came from 420 sessions comprised

of a mixture of TCP sessions and exponential and Pareto on-o� UDP sources.

We performed di�erent sets of experiments. In each set we �xed a source

and a set of receivers and conducted 100 experiments across the logical tree

spanning those nodes. Measurement probes comprised packet pairs with a 1�sec

interpacket time. The packet pairs were generated periodically with an inter-

packet time of 16 msec by cycling through pairs hi; ji sent to distinct receivers

i; j. In each experiment, for each pair of distinct receivers i; j 2 R, n = 1000

packets pairs hi; ji were transmitted.

In order to evaluate the inference methods, we compare inferred delay statis-

tics, namely, mean and variance, against the actual link delay as determined by

instrumentation of the simulation. Here we will report the results for the logical

7 receiver tree in Figure 5(b) which covers part of the network.
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min. 0.3 1 0.04 0 2:1 � 10

�6

median 17.4 17.6 0.27 1.1 2 � 10

�3

max 55 38.7 0.47 2 2:03 � 10

�2

Table 3. Simulations Summary Delay Statistics (in msec) .

Link Statistical Properties. We �rst examine the statistical properties of the

underlying link processes. Characteristics vary considerably across the di�erent

links and in the di�erent simulations. The average delay ranged from 0.3msec to

55msec, and the delay variance from 1msec

2

to 1; 500msec

2

. The link loss rates

ranged from 0% to 18%. The link delay statistics are displayed in Table 3. The

behavior and range is very similar to that observed in the network experiments.

The important observation is that for 98% of the packet pairs the di�erence in



the delay seen by back-to-back packets was less than 1msec. We can thus use

the approximation D

k

� D

0

k

as long as the delay resolution is larger than this

value. The bias due to ignoring the term Cov[D

k

; E

k

] in the estimation of the

variance is negligible and only about 2% in the worst case.

Accuracy of Inference. We now compare inferred and actual link delay in the

simulations. Here we focus on the estimation of the summary delay statistics,

namely mean and variance. Given the large delay spread across the di�erent links

(delay was as large as a few hundreds msec), to infer the average delay we esti-

mated the link delay distribution using the variable bin size model. We used the

ternary variable bin size model (3

l�1

msec; 2)

l=1;:::;5

. For the analysis, delay was

thus discretized to the set Q = f0; 1; 3; 9; 27; 81; 243;1gmsec, only eight bins.

The estimate of the average delay is then

d

E[D

k

jD

k

<1] =

P

d2Qnf1g

db�

k

(d)

P

d2Qnf1g

b�

k

(d)

,

k 2 V . As shown below, even if this model can be considered too coarse to ad-

equately capture the probabilities of large delays, it allowed us to compute the

estimates of the average delay e�ciently and accurately. To estimate the link

delay variance, we used directly the method described in Section 4.

0.1

1

10

100

0.1 1 10 100

es
tim

at
ed

 a
ve

ra
ge

 d
el

ay
 (

m
se

c)

actual average delay (msec)

1

10

100

1000

1 10 100 1000

es
tim

at
ed

 d
el

ay
 v

ar
ia

nc
e 

(m
se

c2 )

actual delay variance (msec2)

Fig. 6. Inferred vs. actual average and variance of link delay in simula-

tions. Scatter plot for 100 experiments: (a) average link delay; (b) link delay variance.

In Figure 6, we display scatter plots of inferred vs. actual link delay mean

and variance. Accuracy increases for higher values as exhibited by the clustering

about the line y = x. In order to quantify the accuracy of the estimates, we

computed the median of the absolute error of the estimates of the link delay

mean and variance. The median was 22:05% for the mean and 40% for the delay

variance. Estimates were more accurate for larger delays: if we consider delay

means larger than 10msec or delay variances larger than 10msec

2

, the median

of the relative absolute error fell to 10% and 11:75%, respectively.

We can attribute the larger inference errors for smaller delays only in part to

the fact that D

k

6= D

0

k

and Cov[D

k

; E

k

] 6= 0. Observe, indeed, that especially for

the variance estimates, the relative errors are quite large despite jCov[D

k

; E

k

]j �

Var[D

k

]. We ascribe these larger errors to departure of the actual packets delay



from the independence assumption of the model. We calculated the coe�cient

of correlation of packet delays on consecutive links. The median was 0.09, the

maximum value 0.57. We believe that the higher correlations are a result of the

small scale of the simulated network. In general, we expect correlations to be

smaller in real networks because of the wide tra�c and link diversity. The large

e�ect that correlation has on the estimates of the variance can be explained

by observing that, because of the independence assumption we ignore all the

cross-correlation terms when we derive the expression for the variance estimator

(equations (8)-(13)). In the presence of correlation, these terms are not negligible

and can be signi�cantly larger than the smaller variances. On the other hand,

we observed that estimation of the average delay is more robust and does not

signi�cantly su�er from the violation of the independence assumption. This is

not unexpected since unlike the variance, the mean of a sum is always equal to

the sum of the means irrespective of the underlying correlation structure.

7 Conclusions

In this paper, we explored the use of end-to-end unicast tra�c measurements

to estimate the delay characteristics of internal network links. Measurement

experiments consist of back-to-back packets (a packet pair) sent from a sender

to pairs of receivers. We develop e�cient techniques to estimate the link delay

characteristics, namely, delay distribution and delay variance.

For the estimation of the delay distribution, building on previous work in [11]

and the recent work of the authors of [4, 5], we proposed a novel approach for the

estimation of the link delay distribution. The key idea is the use a variable bin

size model, wherein smaller bins are used in correspondence of concentrations of

probability mass and larger bins otherwise. We consider a variable bin size model

the analysis of which can be reduced to that of �xed bin size models. Through

examples, we showed that, compared to previous approaches, we are able to

signi�cantly reduce the computational complexity, without losing accuracy.

We also provided methods to directly estimates the link delay variance. We

express the link delay variance in terms of the covariance of the end-to-end

delays. Therefore, we can estimate the variance from the sample covariance of

the end-to-end delays. The method can be extended to the estimation of higher

order cumulants.

Accuracy of the proposed approaches depends on strong correlation between

the delay seen by the two packets along the shared path. We veri�ed the de-

gree of correlation in packet pairs through network measurements. We also used

simulation to explore the performance of the estimator in practice and observed

good accuracy of the proposed inference techniques, although violation of some

of the model assumptions, e.g., spatial correlation, introduces systematic errors.

This will be object of further study.
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A Computation of

b

�

(0)

We illustrate the method for the computation of b�

(0)

. Let A

k

(d) = P

�

[X

k

(1) =

d], k 2 V the probability that the �rst packet of the pair reaches k in d unit

of time. For each pair fi; jg 2 Q(k), we use the approach in [11] to com-

pute an estimate

b

A

i;j

k

(d) of A

k

(d) from the empirical distribution of X

i;j

by

solving a system of polynomial equations. Since X

k

(1) = X

f(k)

(1) + D

k

and

X

f(k)

and D

k

are independent we obtain an estimate of the distribution of D

k

by deconvolution of the estimates of the distributions of X

k

(1) and X

f(k)

(1).

We use this estimate as initial distribution. More precisely, for k 2 V , we let
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(0), d 2 Qn1, where

b
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(d) =
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#Q(k)

P

fi;jg2Q(k)

b

A

i;j
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(d), and let b�

(0)

k

(1) = 1�

P

d2Qn1

b�

(0)

k

(d). It is

possible to show that b�

(0)

is a consistent estimator of � and, as n goes to in�-

tity,

p

n(b�

(0)

� �) converges in distribution to a multivariate Gaussian random

variable with mean 0 and covariance matrix �

�

.


